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BIFURCATIONS OF GENERALIZED VON KARMAN EQUATIONS 
FOR CIRCULAR VISCOELASTIC PLATES 

IGOR BRILLA 

(Received March 20, 1989) 

Summary. The paper deals with the analysis of generalized von Karman equations which 
describe stability of a thin circular clamped viscoelastic plate of constant thickness under a uni­
form compressive load which is applied along its edge and depends on a real parameter, and gives 
results for the linearized problem of stability of viscoelastic plates. An exact definition of a bifur­
cation point for the generalized von Karman equations is given. Then relations between the critical 
points of the linearized problem and the bifurcation points are analyzed. 
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1. INTRODUCTION 

We consider the axisymmetric deformation of a thin circular clamped viscoelastic 
plate of constant thickness under a uniform compressive load applied along its edge. 
We describe the behaviour of this plate by the generalized von Karman equations 
which for our problem can be reduced to the system [2] 

(1.1) (1 + aDt) [x3w'(x, t)]' = (1 + fiDt) x3w(x, t) [f(x, t) - X] , 

(1.2) (1 + PDt) [x3f'(x, t)]' = - ( 1 + aDt) x3w2(x, t) 

x e (0, 1) ; t e (0, T> ; T < oo 

where w is the space derivative of the transverse displacement of the plate, / is the 
space derivative of the stress function, X is the positive parameter of proportionality 
of the given boundary loading, a, f$ are positive viscous parameters such that a > /?, 
Dt denotes the differentiation with respect to time, a prime denotes the differentiation 
with respect to the space variable. We consider the boundary conditions 

(1.3) \w(x, t)\x=0\ < co í e < 0 , T> 

(1.4) | / (x, í) |»-o | < * í e<0 ,T> 
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(1.5) w(x,t)\x=l = 0 te<0, T> 

(1.6) f(x,t)\x=t = 0 fe<0, T> 

and initial conditions 

(1.7) w(x,0|(=o- = 0 xe<0, 1> 

(1.8) f(x,t)\t=0- = 0 xe<0, 1>. 

The problem (1.1) —(1.8) can be reformulated to the operator form [2] 

(1.9) w(t) = X2 Lw(t) - C[w(t)] + 
(X 

l ) P (W(T) + G[w(t), W2(T)]} K(t - T) dr , 

(1.10) / ( 0 = 5 5[w(0, w(0] - J g - l ) £B[W(T) , W(T)] X(t - T) dr 

defined on the space Loo(0, T; H) where H is the Hilbert space 

H = {u(x) e W^2((0, 1); x3) | u(l) = 0} 

with the inner product 

(1.11) <u, v> = Jo x3 u'(x) v'(x) dx 

and the corresponding norm 

(1.12) ||^|U = [<t/9i/>]1/2 . 

The kernel K has the form 

K(t-T) = e x P r - i ( t - T ) J 

and 

(1.13) <Lu(l), <B-> = Jo x3u(x, t) cp(x) dx , 

(1.14) <B[u(0> *>(0]> ̂  = Jo x3u(x, t) v(x, t) cp(x) dx , 

(1.15) C[u(t)] = B[u(t),B[u(t),u(t)]], 

(1.16) G[u(t), U2(T)] = B[u(t), B[u(T), u(T)]] 

for a.e. t e <0, T> and for <pe H,u,ve Loo(0, T; H). Lis a linear bounded selfadjoint 
compact operator mapping H into itself for a.e. t e <0, T>; B is a bilinear bounded 
symmetric compact operator defined on H x H with range in H for a.e. t e <0, T>; 
C is a bounded compact operator mapping H into itself for a.e. t e <0, T>. 

Equations (1.9) and (1.10) are uncoupled in the sense that w can be determined 
independently of f. Thus it is sufficient to consider only (1.9) if we wish to de­
terminate w. 
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2. THE LINEARIZED PROBLEM 

For an analysis of the bifurcation problem we need to deal with the stability of 
the linearized problem of the viscoelastic plates, that is with the analysis of the 
linear equation 

(2.1) (1 + <xDt) [x3wf(x, t)]' + X(l + pDt) x3w(x, t) = 0 

x e (0, 1) ; t e (0, T> ; T < oo , 

(2.2) | H < X , 0 | * - O | < oo t e < 0 , T> , 

(2.3) w(x,t)\x = 1 = 0 t e < 0 , T> , 

(2.4) w(x, t)\t=0- - 0 xe<0, 1> . 

In terms of our operator formulation the linearized problem leads to the operator 
equation 

(2.5) w(t) = X^ Lw(t) + U- - l) P w(x) K(t - T) dr 
a a\/J / J o 

defined on the space L^O, T; H). 
To analyze the linearized problem we consider perturbations of the initial con­

dition and use the following concepts: 

Definition 2.1. Stability (of the solution of the given problem) is characterized 
by the fact that all perturbations tend to zero as time tends to infinity. 

Instability is characterized by the existence of perturbations which grow to 
infinity as timr tends to infinity. 

Neutral stability is a limit case between stability and instability such that there 
exists a perturbation which, after being introduced, remains of constant amplitude 
in time. 

Instant instability is a limit case between stability and instability such that 
there exists a perturbed solution which is finite for a finite time, but it tends to 
infinity for an arbitrary time as the parameter X approaches from the left the 
limit point which we call the critical point. 

In the proof of the next theorem we use the following results [3], [4]. 

Assertion 2.1. The eigenvalues of the equation 

u = QLU 

are simple, fulfil the relation 

JlWQn) = 0 

where Jx is the Bessel function of the first order, and form a sequence of discrete 
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numbers tending to GO. The corresponding eigenfunctions are from the space H 
and they have the form 

u„(x) =^Jiy(Qm)x) X6<0,1> 
X 

where cn is a constant. Every un has exactly n — 1 simple internal zero points 
(s e (0, 1) is a simple internal zero point of un if un(s) = 0 and un(s) =f= 0). 

Assertion 2.2. (Paley-Wiener theorem) If there exists 

c = lim j 0 u(x)f(t — T) dT 
i"-+co 

and if f(t) is absolutely integrable, i.e. 

ft |/(T)| dT < 00 

and nonnegative then 

c^\imu(t)^f{x)dx. 
t-*o0 

Theorem 2.1. The critical points Xn of the linearized problem (2.5) coincide with 
the eigenvalues Xn of the problem (2.5) for time t = 0. At these points the solution 
of (2.5) is instantly unstable, and they form a sequence of discrete numbers tending 
to co. The eigenvalues X™ of the problem (2.5) for time t = co also form a sequence 
of discrete numbers tending to co. Between Xn and X™ the relation 

(2.6) - U 0 - - ^ 
a 

takes place. 

Proof. Using the Fourier method we solve the linearized problem (2.5), i.e. we 
look for the solution in the form 

(2.7) w(x, t) = u(x) v(t). 

If we insert (2.7) into (2.5) we get 

u Jv(t) - i {- - l\ f V(T) K(t - T) dT 1 = X £ v(t) Lu . 

Hence 

(2.8) u = fi^Lu, 
a 

M <0(i-^-ig-
/•Ѓ 

u(т) K(í - т) dт = 0 
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where \i is a real parameter. Denoting 

P 
Q = fl-

Oi 

we obtain from (2.8) 

(210) u = QLU . 

This equation is identical with the operator form of the linearized equation for 
stationary von Karman equations. According to Assertion 2.1, it has nontrivial 
solutions only if Q = Qn where Qn is one of the eigenvalues of the operator L. These 
eigenvalues form a sequence of discrete numbers tending to oo. We denote the cor­
responding eigenfunctions by un. Then the eigenvalues fin of the operator (Pjot) L 
satisfy 

a 
(2.11) Џn 

ß 
Qn 

The homogeneous Volterra integral equation (2.9) has only the trivial solution in 
Loo((0, T)) (see e.g. [5]). Therefore we consider a nonhomogeneous initial pertur­
bation 

w(x> 0l*=o = Hx) = c u(x) * ° * e <0, 1) - M 
where mes M = 0. Then, instead of (2.5), we get 

(2.12) w(t) - A -? L w(t) - ! f- - A f W(T) K(t - T) dT = 
a a \/? / J 0 

-(*-««•)-,(-!,). 
If we insert (2.7) into (2.12) we get (2.8). But (2.8) has nontrivial solutions only for \in 

satisfying (2.H). Hence for n = 1, 2,... we arrive at 

(2.13) v„(t) (l - ±) - 1 0 - l) £ vn(r) K(t - t) dr = 
Mл 

= c „ [ l Jexp 
V vJ (-r) 

where cn is the Fourier coefficient of the initial perturbation according to un. If 
A = JJL„ the equation (2.13) is a homogeneous Volterra integral equation of the first 
kind and has only the trivial solution (see e.g. [5]), and so the only solution of (2.12) 
is the trivial one. If A 4= fin then the solution of (2.12) is 

(2Л4) w(x, t) = X cn un(x) exp 
л = l 

1 a 
џn - A 

ß џn-k 
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On the other hand, the equation (2.5) has for t = 0 the form 

w(x, 0) = A -? Lw(x, 0 ) . 
ft 

A comparison with (2.8) gives 

(2.15) 2.°n=fin. 

Further, using Assertion 2.2 we obtain from (2.5) for time t = co 

w(x, co) = XLw(x, co). 

Thus from (2.10) and (2.11) we have 

(2.i6) ;»"=-U. 
a 

From (2.15) and (2.16) we obtain the validity of (2.6). If we use (2.15) and (2.16) 
we get from (2.14) 

(2.17) w(x, t) = J ) c, u„(x) exp j - ~ ^ ^ t j . 

Thus, when we consider the perturbation of the initial condition in the form of the 
eigenfunction un, then for A < Â ° we have 

lim wn(x, t) = 0 x e <0,1> 
r-*oo 

and the solution is stable. For A = A* we have 

wn(x, t) = c„ u„(x) x e <0, 1> ; f e <0, T> 

and the solution is neutrally stable. For A* < A < A° we have 

lim wn(x, t) = ± co x e <0,1) — In 
t->CO 

where In denotes the set of n — 1 internal zero points of the eigenfunction un (see 
Assertion 2.1). Then the solution is unstable. For X = ln the equation (2.12) has 
only the trivial solution because in this case (2.13) is a homogeneous Volterra integral 
equation of the first kind (see e.g. [5]) but 

lim wn(x, t) = ± co t e (0, T> ; x e <0, 1) - J„ , 

hence in this case the solution is instantly unstable. For A > Â  we have 

lim wn(x, t) = 0 x e < 0 , 1> 
f->oo 

and the solution is stable. 
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Thus from (2A7) we have for n = 1, 2 , . . . 

lim w(x, t) = ± oo t e (0, T> ; x e <0,1) - I 

where 

I = uI„, 
n= 1 

which is a countable set. But on the other hand (2.17) implies that for X = Xn, 
n = 1, 2, ... the solution w(x, t) is finite for x e <0, 1>; t e (0, T>. Then at the 
points Xn, n = 1,2,. . . the solution of (2.5) is instantly unstable and thus these 
points are critical points of (2.5). 

Corollary 2.1. If we consider the perturbation of the initial condition in the form 
of the eigenfunction un then the solution Of (2.5) is neutrally stable at the point X™ 
and instantly unstable at the point Xn. 

3. BIFURCATION POINTS 

Now we introduce a concept of a bifurcation point from the trivial solution for 
generalized von Karman equations for time t = 0. 

We now introduce the solution w(x, t) as the function not only the space and 
time variable of but also as the function of the parameter X, i.e. w(x, t, X). 

Definition 3.1. FOr a given X the value 

w(x,0, X) x e < 0 , 1> 

is called the starting point of w(x, t, X). This point is called the zero starting 
point if 

w(x, 0, X) = 0 

fOr all x e <0, 1>, and the nonzero starting point if 

w(x, 0, X) 4= 0 

fOr x e <0, 1> — I where mes I = 0. 

Definition 3.2. A point X = XCT is a bifurcation point of the problem (1.1) —(1.8) 
from the trivial solution for time t = 0 if: 

a) 3 s > 0 such that for all Xe(XCT,XCT + e) there exist nonzero starting points 
w(x, 0, X) of the nontrivial solutions w(x, t, X); 

b) lim w(x, 0, X) = w(x, 0, XCT) = 0; 

c) the zero starting point w(x, 0, Acr) is the starting point of a nontrivial solution. 
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If the solutions from parts a) and c) are from the space Cx((0, T>; C2(<0, !>)) 
(from the space of the classical solutions of the problem (1.1) —(1.8), see [2]) we 
call Xcr a bifurcation point of type I, while if these solutions are solutions with small 
norm in the space L^O, T; H) (i.e. sufficiently small for our next study of the problem 
( l . l ) —(1.8)) we call it a bifurcation point of type II. 

We will deal with the bifurcation points of type I in the paper "Analysis of Post-
buckling Solutions of Generalized von Karman Equations for Circular Viscoelastic 
Plates". Now we prove two important theorems about the bifurcation points of 
type II. 

Theorem 3.1. The bifurcation points of type I and also of type II of the generalized 
von Kdrmdn equations with respect to the trivial solution for time t = 0 can occur 
only at the critical points of the linearized problem. 

Proof. We show that if X0 is not a critical point of the linearized problem, there 
exists an interval (X0 — e, X0 + s) such that the only solution with small norm in 
the space L^O, T; H) of the problem (1.1) —(1.8) is the trivial solution. To this end, 
it is sufficient to use the operator formulation (1.9) of the problem. All norms in this 
proof are in L^O, T; H): 

(3.1) Kt)-A L̂w(o + cKO]-V^-i)fwT) 
a «\£ / J o 

-f G[w(t), w2(т)]} K(t - т) dт > w(t) - Ă0"Lw(t) 
OL 

Ҷï-i 
Лß 

j j w(т) K(t - т) dт - U IMO 

- | C M 0 ] | -~(~p- l ) | | £ G [ W ( 0 , W 2 ( T ) ] ^ - T)dT 

Now as X0 is not a critical point of the linearized problem, there exists a positive 
constant k1 independent of w and such that 

(3.2) v(t) - xЛ Lw(t) - - (- - Л Г w(т) K(t - т) dт 
« Лß / J o 

= fciHOII-

As L is a bounded operator, there exists a positive constant k2 independent of w 
and such that 

(3.3) M0I = MKOi 
From (1.14) — (1.16) we obtain existence of a positive constant k3 independent of w 

and such that 

(3.4) 1№(0]|| ^ МЧО 
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and 

(3.5) ß G[w(t), w2(т)] K(t - т) dт[| š ßk3\\w(t) 

Thus from (3.1) — (3.5) by choosing |A — X0\ and ||w(t)|| sufficiently small we obtain 
existence of a positive constant k4 independent of w and such that 

w(í)-Л^Lw(ř) + C[w(í)] -

+ G[w(t), w2(т)]} *Г(í - т) dт 

Ч-
Ąß 
= kĄw(t) 

)J> + 

Thus X0 cannot be a bifurcation point of the problem (1A) — (1.8). 

Theorem 3.2. The critical points of the linearized problem are bifurcation 
points of type II for the problem (1A) —(1.8). 

Proof. Let 

(3.6) Q[w(ij\ = w(t) - i 0 - l ) £ W(T) K(t - T) dT , 

then we can rewrite (1.9) in the form 

(3.7) Q[w(t)] - k^-Lw(t) + B[w(t), Q[B[w(t), w(t)]J] = 0 . 
a 

Let u„(x) be the eigenfunction corresponding to Xn, which according to Assertion 2.1 
belongs to the space H. Let the subspace spanned by un be denoted by [u„J and its 
orthogonal complement in H by Hn. For a.e. t e <0, T> let Pn be the projector of H 
onto H„. 

Thus the totality of solutions of (3.7) in the neighbourhood of kn can be obtained 
for a.e. t e <0, Tn}, where Tn is sufficiently small, by solving the equations 

(3.8) P„ ja[w(0] - A -? Lw(t) + B[w(0, 6[B[w(0, w(.)]]]l = 0 , 

(3.9) 6[w(t)] - X^Lw(t) + B[w(ř), 6[5[w(ř), w(ř)]]] , «„ ) = 0 . 

Any solution w of (3.8) and (3.9) can be written in the form 

(3.10) w(x, t) = y(x, t) + en(t) un(x) 

where y e LjO, T„; Hn), E„ e Loo(0, T„). 
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Inserting (3.10) into (3.8) and (3.9) we get 

(3.ii) y(t) = (xh- QX1 pn{B[™(<)>Q[BM<)Am}, 

(3.12) ( i - - e ) en(t) = <B[w(t), QlB[W(t), w(/)]]], «„> • 

The operator (>l(/?/a)L — Q)"1 from (3.H) is defined for functions in the space 
L^(05 Tn; Hn) also for X = Xn. 

Now we show that (3.11) is uniquely solvable for y in the term of sn and that 
the estimate 

(3-13) |Mk(o. r n ; H ) =i fc|k„|L(o,r„) 

holds where k is a positive constant indepedent of e„. We assume that 

||y||Loo(0,Tn;H) a n d ||e/.||Lgo(0,Tn) 

are small compared to 1 and that 

(3-14) ||y|L(o,Tn;H) -S ||e»IUco(o.rn) • 

We denote 

Te[y(t)] =U£L-Q\ ' Pn{B[y(t) + Bn(t) un, 

Q[B [y(t) + Bn(t)un, y(t) + sn(t) u j ] ] } . 

Let y e Laj(0, Tn; Hn) with 

( 3 A 5 ) ||y||Loo(0,Tn;H) = ||a«|lLoo(0,Tn) 

and let 
w(x, t) = y(x, t) + e„(t) u„(x) . 

Then using (3.14), (3.15) and (1.14) we have 

l ^ l y ] ~ ^[y]||wO,Tn;H) g fcl||en||L(0,Tn) ||y ~ y|L(0,Tn;H) 

where kx is a positive constant independent of w and w. Thus for sufficiently small 

IKIILco(o,Tn) it is possible to find a positive y < 1 such that 

\Tly] ~ T«[y]||wo,Tn;H) -S y\\y ~ y||L«(0,Tn;H) • 

Thus the solution of 

(3.16) TB[y] - y 

exists and is unique, i.e. if ||ert||Loo(o,rn) is sufficiently small, y is uniquely determined 
by Bn. Moreover, the solution of (3.16) with (3.14) satisfies 

IML(0,Г„;Я) = ЏгЫ - ЧУÌ + ÎOІ>]|ІŁ-(O.TBÎН) = % " 3 
Ł»(0,Г„;H) • 
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Now we deal with (3.12). First we show that for ||eB||Loo(0>rn) sufficiently small the 
solutions of (3A2) can be completely described for a.e. t e <0, T,,> by studying the 
solutions of a simpler equation 

(3.17) (j - Q\ en(t) = <B[en(r) u„, Q[B[en(t) un, en(t) u j ] ] , wn> . 

To this end we use the following inequality for a.e. t e <0, T„>: 

\<B[w(t),Q[B[w(t),w(t)]]]-

- B[en(t) u„, Q[B[en(t) u„, en(t) u„]]], u„>| g !<2|h|L<o,r„) . 

where k2 is a positive constant independent of w. Thus for Jfi«||r.00(o,r„) sufficiently 
small, (3.12) can be written in the form 

(j ~ 0\ en(t) = <B[e„(t) u„, Q[B[e„(t) u„, en(t) u„]]] + 

+ B[w(t), Q[B[w(t), w(t)]]] - B[e„(t) u„, Q[B[en(t) u„, e„(t) «„]]], «„> = 

= <B[en(t) u„, Q[B[6„(0 u„, e,,(t) u„]]], u„> {t + o(l)} . 

Then (3.17) can be rewritten in the form 

(3.18) (j - Q\ e„(t) = en(t) Q[e2
n(t)] <C[u„], «„> = d„ en(t) Q[e2

n(t)] 

where 

dn = <C[uJ, un> = <B[un, u j , B[u„, u j > = ||B[un, u J | | H > 0 . 

Now we analyze (3.18). Using (3.6) we have 

(3.19) el(t) = i Q - l)eB(t) [ £ „ 2 ( T ) ^ - T)dr + 

+ ^G- I)£e-W K ( '-' )"+t(r.-1)e- (^ 
From [ l ] it is obvious that there exists d > 0 such that for 2 e (An — 5, Xn) (3.19) 
has only the trivial solution, for X e (Xn, Xn + d) in addition to the trivial solution 
there exist exactly two nontrivial symmetric solutions of (3.19) starting from the 
nonzero starting points, for X = Xn in addition to the trivial solution there exist at 
least two nontrivial symmetric solutions of (3.19) starting from the zero starting 
point. All these solutions are from the space C°°((0, T„>). 

Now we show that for X = Xn the equation (3.19) has in addition to the trivial 
solution exactly two nontrivial solutions. For (3.19) with X = Xn and for nontrivial 
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solutions en we have 

(3.20) e3
n(t) = ( l - tj j l - exp ( - i AJ «£({.) £„(<) + 

+ iH){'—(-*« 
where £l9 c2 e (0, t>. Because e,,(t) is nonzero for t e (0, T„> (see [1]), there exist 

nonzero constants m1 and m2 such that 

&1{Q = m, £n
2(t), 

^(^2) = ™2 £„(*) . 

Then (3.20) implies 

* ) { - ( i - í ) [ i — P ( - Í < ) m. > = 

and 

-<2K-Í){'-'(-í« 

..!w -'m! 

^ i - i - W i - J - í м ц 
«/1 V J» 

Thus (3.20) has at most two nontrivial solutions but according to [1] it has exactly 

two nontrivial solutions. This is completes the proof of the theorem. 
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Súhrn 

BIFURKÁCIE ZOVŠEOBECNENÝCH VON KÁRMÁNOVYCH ROVNÍC 
PRE KRUHOVÉ VÁZKOPRUŽNÉ DOSKY 

IGOR BRILLA 

Článok sa zaoberá analýzou zovšeobecněných von Kármánovych rovnic popisuj úcich stabilitu 
tenkej kruhovej vázkopružnej dosky na okraji upevnenej a radiálně symetricky zaťaženej. V člán­
ku je zavedený pojem bifurkácie pre zovšeobecnené von Kármánove rovnice a sú skúmané 
vzťahy medzi kritickými bodmi linearizovanej úlohy a bodmi bifurkácii. 

Резюме 

БИФУРКАЦИИ ОБОБЩЕННЫХ УРАВНЕНИЙ ФОН КАРМАНА 
ДЛЯ КРУГЛЫХ ВЯЗКОУПРУГИХ ПЛАСТИНОК 

1оок ВЫЬЬА 

Рассматриваются обобщенные уравнения фон Кармана для осесимметричного изгиба 
тонкой кругой жестко защемленной вязкопупругой пластинки постоянной толщины подвер­
гающейся по своему контуру действию равномерных сжимающих усилий, интенсивность 
которых пропорциональна вещественному параметру. Определяется точка бифуркации для 
обобщенных уравнений фон Кармана. Исследуются соотношения между критическими точ­
ками линеаризованной задачи и точками бифуркации. 

АтНог'з аййге^з: ЯN^^. 1дог ВгШа, С8с, йз1ау ар1^коVапе^ та1ета11ку а VуросЧоVе̂  
гесптку ^ К , М1упзка с1оНпа, 842 15 ВгаИз^а. 
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