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BIFURCATIONS OF GENERALIZED VON KARMAN EQUATIONS
FOR CIRCULAR VISCOELASTIC PLATES

IGOR BRILLA
(Received March 20, 1989)

Summary. The paper deals with the analysis of generalized von Karman equations which
describe stability of a thin circular clamped viscoelastic plate of constant thickness under a uni-
form compressive load which is applied along its edge and depends on a real parameter, and gives
results for the linearized problem of stability of viscoelastic plates. An exact definition of a bifur-

cation point for the generalized von Karman equations is given. Then relations between the critical
points of the linearized problem and the bifurcation points are analyzed.
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1. INTRODUCTION

We consider the axisymmetric deformation of a thin circular clamped viscoelastic
plate of constant thickness under a uniform compressive load applied along its edge.
We describe the behaviour of this plate by the generalized von Kdrman equations
which for our problem can be reduced to the system [2]

(1.1) (1 + ab,) [x*w'(x, )] = (1 + BD,) x*w(x, 1) [f(x, 1) — 4],
(1.2) (1 + D) [xX*f'(x, )] = —(1 + aD,) x*w?(x, 1)
xe(0,1); te(0,T); T<

where w is the space derivative of the transverse displacement of the plate, f is the
space derivative of the stress function, 4 is the positive parameter of proportionality
of the given boundary loading, «, f are positive viscous parameters such that « > B,
D, denotes the differentiation with respect to time, a prime denotes the differentiation
with respect to the space variable. We consider the boundary conditions

(1.3) [w(x, )|sz0| < 0 1€<0, T
(1.4) |f(x, 0)]x=0] <0 1e€<0, T
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(1.5) wix, )=y =0 te0, T
(1.6) fx0)=y =0 1e<0, T)
and initial conditions
(1.7) w(x, t)l,=o- =0 xe<0,1)
(1.8) f(x, 1))i=0- =0 xe<0,1).
The problem (1.1)—(1.8) can be reformulated to the operator form [2]

(19  wi)=4 g L(t) — C[w(t)] +

+1(2- 1) [ t96) + 6w ey Kt = )

0

(1.10) f) = d B[w(t), w(r)] — 1 <g - 1) J'tB[w(r), w(t)] K(t — 1) dr
B B\B
defined on the space L, (0, T; H) where H is the Hilbert space
H = {u(x) e W"*((0, 1); x*) | u(1) = 0}
with the inner product
(1.11) Cu, vy = [ x> u'(x) v'(x) dx
and the corresponding norm

(112 Julu = [ ]2,
The kernel K has the form
K(t—1) = eXp[— L - r)]
_ B

and
(1.13) CLu(t), 9> = [ xu(x, 1) o(x) dx ,
(1.14) <Blu(t), o(1)], > = fo x*u(x, 1) v(x, 1) @(x) dx ,
(115)  cfu(t)] = BLu(o). BLu(o). «o)]] .
(1.16) Glu(1), u*()] = B[u(t), B[u(x), u(x)]]
for a.e. 1€ <0, T) and for ¢ € H, u, ve L (0, T; H). Lis a linear bounded selfadjoint
compact operator mapping H into itself for a.e. 1€ {0, T; B is a bilinear bounded
symmetric compact operator defined on H x H with range in H for a.e. te {0, T);
C is a bounded compact operator mapping H into itself for a.e. t € {0, T).

Equations (1.9) and (1.10) are uncoupled in the sense that w can be determined
independently of f. Thus it is sufficient to consider only (1.9) if we wish to de-

terminate w.
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2. THE LINEARIZED PROBLEM

For an analysis of the bifurcation problem we need to deal with the stability of
the linearized problem of the viscoelastic plates, that is with the analysis of the
linear equation

(2.1 (1 + aDy) [X*w(x, )] + 2(1 + BD,) x*w(x, ) = 0
xe(0,1); te(0,Ty; T< o,
(2:2) [w(x, )|szo| < 0 1€40, T,

(2.3) w(x, 1)
(X)) w(x, 1)]=o- =0 xe0,1).

=1 =0 te0,T),

In terms of our operator formulation the linearized problem leads to the operator
equation

t
25w = 2P Lw + 1@ O [ v k(- 1) ae
« a\p 0
defined on the space L,(0, T; H).
To analyze the linearized problem we consider perturbations of the initial con-
dition and use the following concepts:

Definition 2.1. Stability (of the solution of the given problem) is characterized
by the fact that all perturbations tend to zero as time tends to infinity.

Instability is characterized by the existence of perturbations which grow to
infinity as timr tends to infinity.

Neutral stability is a limit case between stability and instability such that there
exists a perturbation which, after being introduced, remains of constant amplitude
in time.

Instant instability is a limit case between stability and instability such that
there exists a perturbed solution which is finite for a finite time, but it tends to
infinity for an arbitrary time as the parameter A approaches from the left the
limit point which we call the critical point.

In the proof of the next theorem we use the following results [3], [4].

Assertion 2.1. The eigenvalues of the equation
u = goLu
are simple, fulfil the relation

‘Il(\/gn) = 0

where J is the Bessel function of the first order, and form a sequence of discrete
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numbers tending to oo. The corresponding eigenfunctions are from the space H
and they have the form

u,(x) = C—V"Jl(\/(g,,) x) xe0,1)

where ¢, is a constant. Every u, has exactly n — 1 simple internal zero points
(s€(0,1) is a simple internal zero point of u, if u,(s) = 0 and u,(s) =% 0).

Assertion 2.2. (Paley-Wiener theorem) If there exists
¢ = lim [gu(z) f(t — 7)dr
t— o
and if f(t) is absolutely integrable, i.e.
& |f(@)] dr < =
and nonnegative then

¢ = limu(t) [§ f(7) dz.

Theorem 2.1. The critical points J, of the linearized problem (2.5) coincide with
the eigenvalues .\ of the problem (2.5) for time t = 0. At these points the solution
of (2‘5) is instantly unstable, and they form a sequence of discrete numbers tending
to co. The eigenvalues A" of the problem (2.5) for time t = oo also form a sequence
of discrete numbers tending to oo. Between A2 and A* the relation

(2.6) Bro_ )=
o

takes place.

Proof. Using the Fourier method we solve the linearized problem (2.5), i.e. we
look for the solution in the form

(2.7) w(x, 1) = u(x) v(r) .

If we insert (2.7) into (2.5) we get

u {u(t) - i(% - 1) J.;v(t) K(i - ) df} )

(2.8) u= ug Lu,
o

(2.9) o(t) <1 - I%) - i(% - 1) f ; v(x) K(t — 7)dr = 0

v(t) Lu .

R I™

Hence
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where u is a real parameter. Denoting
B
e =u-
a

we obtain from (2.8)
(2.10) u = oLu .

This equation is identical with the operator form of the linearized equation for
stationary von Karmén equations. According to Assertion 2.1, it has nontrivial
solutions only if ¢ = g, where g, is one of the eigenvalues of the operator L. These
eigenvalues form a sequence of discrete numbers tending to co. We denote the cor-
responding eigenfunctions by u,. Then the eigenvalues u, of the operator (f/«) L
satisfy

(211) . =%Q,,.

The homogeneous Volterra integral equation (2.9) has only the trivial solution in
L,((0, T)) (see e.g. [5]). Therefore we consider a nonhomogeneous initial pertur-
bation

w(x, )]0 = ¥(x) = cu(x) £ 0 xe0,1) - M
where mes M = 0. Then, instead of (2.5), we get

(2.12) w(t) — Ang(t) - i(% - 1) J" w(t) K(t — 7)dt =

0o

= (zﬁ - giLtﬁ)exp(— %I)

If we insert (2.7) into (2.12) we get (2.8). But (2.8) has nontrivial solutions only for p,
satisfying (2.11). Hence for n = 1,2, ... we arrive at

(2.13) v,,(t)(l - i) - 1(5 - 1)Jﬂ v(t) K(t — 7)dr =

Hn (Xﬁ [

{2l )

where ¢, is the Fourier coefficient of the initial perturbation according to u,. If
A = p, the equation (2.13) is a homogeneous Volterra integral equation of the first
kind and has only the trivial solution (see e.g. [5]), and so the only solution of (2.12)
is the trivial one. If 4 # p, then the solution of (2.12) is

© E.un -2 l
@14)  wx i)=Y e ux)expl— L i\
ns ﬂm—lJ
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On the other hand, the equation (2.5) has for ¢ = 0 the form
w(x, 0) = 4 g Lw(x, 0).

A comparison with (2.8) gives

(2.15) 20 =p,.

Further, using Assertion 2.2 we obtain from (2.5) for time t = o
w(x, ) = ALw(x, o).

Thus from (2.10) and (2.11) we have

(2.16) o =by
o

From (2.15) and (2.16) we obtain the validity of (2.6). If we use (2.15) and (2.16)
we get from (2.14)

® 142 — 2
(2.17) w(x, 1) —";c,, u,(x) exp {—- 320 t} .

Thus, when we consider the perturbation of the initial condition in the form of the
eigenfunction u,, then for 1 < 1 we have

limw,(x,1) =0 xe<0,1>

t—> 0

and the solution is stable. For A = 4 we have
wi(x, 1) = c,u(x) xe<0,1>; te<0, T
and the solution is neutrally stable. For 4° < 1 < 12 we have

limw,(x,1) = + 0 xe<0,1) -1,

t—

where I, denotes the set of n — 1 internal zero points of the eigenfunction u, (see
Assertion 2.1). Then the solution is unstable. For 1 = A7 the equation (2.12) has
only the trivial solution because in this case (2.13) is a homogeneous Volterra integral
equation of the first kind (see e.g. [5]) but

lim wyx,7) = +o0 te(0,T); xe<0,1)—1I,,

A—20,~
hence in this case the solution is instantly unstable. For 4 > A% we have

limw,(x,1) =0 xe<0,1)

t— oo

and the solution is stable.
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Thus from (2.17) we have for n = 1,2, ...
lim w(x,7) = +00 1e(0,T>; xe€<0,1)—1I

A=20,-
where
@
I=U1,,
n=1

which is a countable set. But on the other hand (2.17) implies that for 2 = A,
n =1,2,... the solution w(x, t) is finite for x € €0, 1>; t € (0, T). Then at the
points A7, n = 1,2, ... the solution of (2.5) is instantly unstable and thus these
points are critical points of (2.5).

Corollary 2.1. If we consider the perturbation of the initial condition in the form
of the eigenfunction u, then the solution of (2.5) is neutrally stable at the point A7
and instantly unstable at the point A°.

3. BIFURCATION POINTS

Now we introduce a concept of a bifurcation point from the trivial solution for
generalized von Kdrman equations for time ¢ = 0.

We now introduce the solution w(x, f) as the function not only the space and
time variable of but also as the function of the parameter 4, i.e. w(x 1, ).

Definition 3.1. For a given A the value
w(x,0,4) xe<0,1)
is called the starting point of w(x,t, A). This point is called the zero starting
point if
w(x,0,4) =0
for all x € {0, 1), and the nonzero starting point if
w(x,0,4) 0
for x € {0,1> — I where mesI = 0.

Definition 3.2. 4 point A = A, is a bifurcation point of the problem (1.1)—(1.8)
from the trivial solution for time t = 0 if:

a) 3e > 0 such that for all 2 € (Ay, A, + €) there exist nonzero starting points
w(x, 0, ) of the nontrivial solutions w(x, t, A);

b) lim w(x,0,2) = w(x,0, ;) = 0;

A= der™t

¢) the zero starting point w(x, 0, A,) is the starting point of a nontrivial solution.
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If the solutions from parts a) and c) are from the space C'((0, T); C*(<0, 1))
(from the space of the classical solutions of the problem (1.1)—(1.8), see [2]) we
call ., a bifurcation point of type I, while if these solutions are solutions with small
norm in the space L,(0, T; H) (i.e. sufficiently small for our next study of the problem
(1.1)—(1.8)) we call it a bifurcation point of type II.

We will deal with the bifurcation points of type I in the paper ““Analysis of Post-
buckling Solutions of Generalized von Karman Equations for Circular Viscoelastic
Plates”. Now we prove two important theorems about the bifurcation points of
type 1I.

Theorem 3.1. The bifurcation points of type I and also of type Il of the generalized
von Kdrmdn equations with respect to the trivial solution for time t = 0 can occur
only at the critical points of the linearized problem.

Proof. We show that if 4, is not a critical point of the linearized problem, there
exists an interval (1, — &, 4o + &) such that the only solution with small norm in
the space L,(0, T; H) of the problem (1.1)—(1.8) is the trivial solution. To this end,
it is sufficient to use the operator formulation (1.9) of the problem. All norms in this
proof are in L,(0, T; H):

(3.1) w(e) — lng(t) + Cw(0)] - i(% - 1) J' () +

0o

+ G[w(1), w* ()]} K(t — 1) dt |

- i(% - 1>L w(e) K(t — 7)de|
~ et - (5~ 1) | j 6L (O] K(t — 1) de

0
Now as 4, is not a critical point of the linearized problem, there exists a positive
constant k, independent of w and such that

w(t) - Aong(t) - Zi(% - 1) f W) K(t — 7) de

0

v

w(t) = 4o B Lw(t) -

= |2 = 2| Lwpo)] -

(3.2) Z ky|w()] -

As Lis a bounded operator, there exists a positive constant k, independent of w
and such that

(33) [Lw(@)] = ka|w(®)] -

From (1.14)—(1.16) we obtain existence of a positive constant k; independent of w
and such that

(34) ICOwl] = ks[w)]®
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and
(35) 155 GLw(), w>(@)] K(t — =) de]| < Bhs|w(r)]* .

Thus from (3.1)—(3.5) by choosing |4 — 4| and |w(r)| sufficiently small we obtain
existence of a positive constant k, independent of w and such that

w(t) Ang(t) + ()] - i(g - 1) j (w(e) +

+ G[w(1), w(7)]} K(t — t)dt || = ko|w()] -

Thus 4, cannot be a bifurcation point of the problem (1.1)—(1.8).

Theorem 3.2. The critical points of the linearized problem are bifurcation
points of type II for the problem (1.1)—(1.8).

Proof. Let
[ '
36)  o[w(O)] = w(1) - &<E - 1) j W) K ) de,

then we can rewrite (1.9) in the form
67 QD] - 22 (o) + BIw(y). Q[B{w(0). w(olll] = 0.

Let u,(x) be the eigenfunction corresponding to 4,, which according to Assertion 2.1
belongs to the space H. Let the subspace spanned by u, be denoted by [u,] and its
orthogonal complement in H by H,. For a.e. t € {0, T) let P, be the projector of H
onto H,.

Thus the totality of solutions of (3.7) in the neighbourhood of 4, can be obtained
for a.e. t € (0, T,,)>, where T, is sufficiently small, by solving the equations

(38) P, {Q[w(t)] - l—ng(t) + B[w(t), O[B[w(1). w(t)]]]} ~0,

(39) <Q[w(t)] - Ang(t) + B[w(), O[B[w(t), w()]]]. u,,> ~0.

Any solution w of (3.8) and (3.9) can be written in the form

(3.10) w(x, 1) = y(x, 1) + &,(1) u,(x)
where y e L,(0, T,; H,), ¢, € L,(0, T,).
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Inserting (3.10) into (3.8) and (3.9) we get

GI) ) = (A P Q)“ P, (BLw(), OB [w(t). w()]1]}

o

n

612 (5~ @)l = <wLv(e. QLB wIIL >

The operator (A(f/x) L— Q)™ ! from (3.11) is defined for functions in the space
L.(0, T,; H,) also for 4 = A,

Now we show that (3.11) is uniquely solvable for y in the term of ¢, and that
the estimate
(3.13) 13m0t < Klallzuco,

holds where k is a positive constant indepedent of ¢,. We assume that

”y“Lw(O.Tn:H) and “"n”Lm(o,Tﬂ)

are small compared to 1 and that

(3.14) 7120, sty = el co.r -

We denote
(0] = (z SL— Q>_1 P{BIY(0) + ) s
Q[B [y(t) + e ¥(1) + &) u,]T1} -

Let ve L,(0, T,; H,) with
(3.15) 17 Laco. iy < leallznco,rm
and let
W(x, t) = p(x, 1) + &,(1) un(x) .
Then using (3.14), (3.15) and (1.14) we have

N

”TE[)’] - Ts[y]an(O,Tn;H) s k1"£n"12,¢,(0,T,.) "y - J—}“LQ(O,T";H)

where k; is a positive constant independent of w and w. Thus for sufficiently small
l€all oo, 7. it is possible to find a positive y < 1 such that

ITL] = T o, mmm = 9]y = P10, rmim) -
Thus the solution of

(3.16) T[y] =y

exists and is unique, i.e. if l]a,.HLw(o,T") is sufficiently small, y is uniquely determined
by &,. Moreover, the solution of (3.16) with (3.14) satisfies

”y“Lm(o,T":H) = HTc[y] = T[y] + To[y] “L,,(o,r,.;n) = k||3n“r3,,,(o.r...-m~
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Now we deal with (3.12). First we show that for [e,]. .1, sufficiently small the
solutions of (3.12) can be completely described for a.e. 1 € <0, T,> by studying the
solutions of a simpler equation

(3.17) ()i - Q) e(t) = (B[et) ty, Q[Blen(t) ttns &a(t) w1l tn> -

To this end we use the following inequality for a.e. t € €0, T,,>:

[<BLw(r), Q[B[w(x), w(t)]]] —
= Ble(t) up Q[BLent) s &(1) w11 wd] = Kaflea]l2ao,mn

where k, is a positive constant independent of w. Thus for ”s,,“ L.(0,T,) Sufficiently
small, (3.12) can be written in the form

(f - Q) (1) = <BLe(t) , Q[BLet) w0ty w,]]] +
+ B{w(t), [BLw(t), w(i]]] — BLeu() t, O[BLan(r) s 6 w,T1]y s> =
= (B[a,,(t) u,, Q[ B[e,(1) u,. &(1) u,,]]], u,y {1 + 0(1)} .

Then (3.17) can be rewritten in the form

(3.18) G - Q) 1) = &.(t) Q[s2(1)] <ClusL, uny = dy &x(t) Q[e2(0)]

where
dn = <C[un]s un> = <B[um un]a B[um un]> = "B[ull’ u"]”lzi > 0 .

Now we analyze (3.18). Using (3.6) we have

o) A =1(3- 1) &) j K -9 de s

e )

From [1] it is obvious that there exists & > 0 such that for A€ (4, — 4, 4,) (3.19)
has only the trivial solution, for i€ (4,, 4, + d) in addition to the trivial solution
there exist exactly two nontrivial symmetric solutions of (3.19) starting from the
nonzero starting points, for A = 4, in addition to the trivial solution there exist at
least two nontrivial symmetric solutions of (3.19) starting from the zero starting
point. All these solutions are from the space C*((0, T,).

Now we show that for A = 4, the equation (3.19) has in addition to the trivial
solution exactly two nontrivial solutions. For (3.19) with 1 = 4, and for nontrivial
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solutions &, we have

(20 & - (l - f—){t - exp ( - ;r)} o3(Ex) ot) +
Dol

where ¢, &, € (0, 1. Because ¢,(1) is nonzero for 1€ (0, T,> (see [1]), there exist
nonzero constants m; and m, such that

e2(&;) = my el(1),
e(E2) = my e1).
Then (3.20) implies

(-9 ( -
a2 Bf-en(-})

im ()
IR (R R E

Thus (3.20) has at most two nontrivial solutions but according to [1] it has exactly
two nontrivial solutions. This is completes the proof of the theorem.

and
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Sahrn

BIFURKACIE ZOVSEOBECNENYCH VON KARMANOVYCH ROVNfC
PRE KRUHOVE VAZKOPRUZNE DOSKY

IGOR BRILLA

Clanok sa zaober4 anal§zou zovSeobecnenych von Karmanovych rovaic popisujicich stabilitu
tenkej kruhovej vizkopruznej dosky na okraji upevnenej a radialne symetricky zataZenej. V ¢lan-
ku je zavedeny pojem bifurkacie pre zovieobecnené von Karmanove rovnice a si skiimané
vztahy medzi kritickymi bodmi linearizovanej lohy a bodmi bifurkacii.

Pe3iome

BUOYPKALIMU OBOBIUIEHHBIX VPABHEHUM ®OH KAPMAHA
A KPYIJIBIX BSBKOVIIPYTUX ITNIACTUHOK

IGOR BRILLA

PaccmaTtpuBaroTcss 06001IeHHbIe ypaBHeHHs (oH KapMmaHa Uis OCECHMMETPHUYHOTO H3rubda
TOHKOH KPYI'Oi >eCTKO 3alIeMJIEHHOW BA3KOIYIPYroi IMNaCTHHKU IIOCTOSHHOW TOJIIMHBI NOABEP-
TaloUIEeHCA IO CBOEMY KOHTYPY HNEHWCTBHIO PaBHOMEPHBIX CKHMAIONIMX YCHJIMM, WHTEHCUBHOCTH
KOTODBIX IIPOIOPLIHOHATIbHA BEIECTBEHHOMY Iapamertpy. Omnpenensercs Touka Oubypkauuu aist
0600uIeHHbIX ypaBHeHuit Gon Kapmana. VccieqyroTcsl COOTHOLECHHS MEXIY KPHTHYECKHMHM TOY-
KaMH JITAHEapU30BaHHOM 3aJa4¥ M TOYKaMH Oudypkanuu.
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