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EQUIVALENT FORMULATIONS OF 
GENERALIZED VON KARMAN EQUATIONS 

FOR CIRCULAR VISCOELASTIC PLATES 

IGOR BRILLA 

(Received March 20, 1989) 

Summary. The paper deals with the analysis of generalized von Karman equations which 
describe stability of a thin circular viscoelastic clamped plate of constant thickness under a uniform 
compressive load which is applied along its edge and depends on a real parameter. The meaning 
of a solution of the mathematical problem is extended and various equivalent reformulations of 
the problem are considered. The structural pattern of the generalized von Karman equations 
is analyzed from the point of view of nonlinear functional analysis. 
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1. INTRODUCTION 

The analysis of von Karman equations has its own history. Since their derivation 
in 1917 they have attracted attention of different groups of specialists. In the first 
place they have been analyzed from the point of view of mechanics, because their 
eigenvalues are the critical values at which a plate buckles, and when a load increases 
above these values it is necessary to investigate its postbuckling behaviour. There 
exist papers dealing with the approximate numerical analysis of postbuckling 
behaviour of plates. 

Also a great number of mathematicians have dealt with the analysis of mathe­
matical problems connected with von Karman equations. It would be difficult to 
give the complete list of authors and papers. However, even now we are stil very far 
from a fully successful analysis of solutions with "big" norms. 

Von Karman equations were derived for elastic materials. However, many materials 
exhibit mechanical behaviour different from the elastic ones, i.e., their deformation 
under the loading which is constant in time increases. They exhibit an instant elastic 
deformation followed by a viscous flow. They are called viscoelastic materials. 

We deal with the mathematical analysis of generalized von Karman equations for 
viscoelastic plates. They were derived [ l ] similarly as the original von Karman 
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equations. The analysis shows that the behaviour of viscoelastic plates under a pres­
sure along their edges exhibits some qualitatively different features as compared 
with elastic ones. 

We consider a thin circular viscoelastic clamped plate under a uniform compressive 
load which is applied along its edge in its midplane and depends on a real parameter X, 
with zero initial conditions. 

In this paper the physical problem to be considered is described. We extended the 
meaning of a solution of the associated mathematical problem and consider various 
equivalent reformulations of the problem. We analyze the structural pattern of 
generalized von Karman equations from the point of view of nonlinear functional 
analysis. 

We will deal with the detailed analysis of this problem also in the following two 
papers "Bifurcations of Generalized von Karman Equations for Circular Visco­
elastic Plates" and "Analysis of Postbuckling Solutions of Generalized von Karman 
Equations for Circular Viscoelastic Plates". 

2. FORMULATION OF THE PROBLEM 

We consider generalized von Karman equations for viscoelastic plates of standard 
materials [1] 

(2.1) K(l+aDf)A
2W= (1 + f]Dt){la[W,F0] + [W, F]} , 

(2.2) (1 + fiDt) A2F = -\hE(\ + ocDt) [W, W] 

where W(x, y, t) is the transverse displacement of the plate, F(x, y, t) is the stress 
function, F0(x, y, t) is the stress function corresponding to the given boundary 
loading, E is the modulus of elasticity, h is the thickness of the plate, K is the stiffness 
of the plate, a, p are positive viscous parameters such that a > /?, Xa is the positive 
parameter of proportionality of the given boundary loading with respect to F0, Dt 

denotes the differentiation with respect to time, A2 is the biharmonic operator and 

[J? gj = : JxxQyy ' JyyQxx ^JxyQxy • 

In what follows we deal with an analysis of a viscoelastic buckling of a circular 
clamped plate loaded with a uniform compressive load proportional to Xa and applied 
in its midplane along its edge. We consider zero initial conditions. Then (2.1) and 
(2.2) depend only on the polar coordinate r and assume the form 

d / l d / dW(r, t) (2.3) K(l + aD()rÍ(lA/ 
dr \ r dr \ dr 

v ! \ ár ár ár j 
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(2.4) (1+ÍC,),!(íi(AíM\ 
dr \r dr \ dr / 

- - -hE(\ + ocDt 

with the boundary conditions 

dW(r, r)]2 

dr j 
r є (0, R) , ř є (0. T> , T < 

(2.5) W(r, t)\r в К = o t є <0, T> 

(2.6) F(r, t)\r=R = 0 t є <0, T> 

(2.7) 
dW(ł% t) 

dr 
= 0 

r = R 

t є <0, T> 

(2.8) 
dF(r, t) 

= 0 ŕ є < 0 , T> 
dr r = R 

(2.9) 
dW(r, t) 

dr 
= 0 

r = 0 

t є <0, T> 

(2.10) 
dF(r, t) 

- 0 t є <0, T> 
dr r = 0 

and the initial conditions 

(2.11) W(r,t)\tss0- = 0 r є <0, K> 

(2.12) ' Ғ(r,ř) | ř =o- = 0 r є <0, R> 

where JR is the radius of the plate. 

Using the relations 

r = xR, 

f \ ^ÍEҺV'2 

^•'^ЛГк) 
dW(xR, t) 

dx 

/ ( * , * ) - l áF^R 
V ; Kx dx 

.») 
? 

* - * 
K 

к 

the system (2.3) —(2A2) can be reduced to the form 

(2.13) (1 + aDt) [ x V ( x , t)]' = (1 + £I)f) x3w(x, t) [f(x, t) - X], 

(214) (1 + pDt) [x3f'(x, *)]' = - ( 1 + aDf) x3w2(x, f) 

x e (0, 1); t e (0, T> ; T < oo , 
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(2.15) И*,t)|*=o| < oo t є <0, T> 

(2.16) j(x, t)\x=0\ < co t є <0, T> 

(2.17) w(x,t)\x=1 = 0 t є <0, T> 

(2-18) j(*,t)|*=i = o t є <0, T> 

(2.19) w(x, í) | ,=0- = 0 x є < 0 , 1> 

(2.20) j(x,í)|t=0- = 0 x є < 0 , 1> 

where a prime denotes the differentiation with respect to the space variable. 

3. VARIOUS DEFINITIONS OF THE SOLUTION 

Definition 3.1. A classical solution of the problem (2.13) — (2.20) is a pair of 

functions w(x, t), /(x, t) with the following properties: 

a) w(x, r),/(x, t) e C*((0, T>; C 2 « 0 , 1»)/Or arbitrary T, 0 < T < oo; 

b) w(x, l),/(x, t) satisfy (2.13) —(2.20) pointwise for some real number X. 

Using the transformation 

-[ g(x)K(t-x)dx = (l + pD,)-1g(t) 
P J o 

for zero initial conditions where the kernel K has the form 

K(t-x) = cxp[--(t-x)\ 

we get from (2.13) and (2.14) the following equations: 

(3.1) [xV (x, »)]' - - (- - l\ 1" [x3w'(x, T ) ] ' K(t - T)dT = 

= ^ x 3 w ( x , 0 [ j ( x , 0 - A ] , 
a 

(3.2) [x3/'(x, 0 ] ' - i ^ - l ) j * x3w2(x, T) K(t - t) dx - 5 x3w2(x, r) 

x e (0,1) ; t e <0, T> ; T < oo . 

Definition 3.2. A generalized solution in the time variable of the problem 

(2.13) —(2.20) is a pair of functions w(x, t), /(x, *) with the following properties: 

a) w(x, r),/(x, 0 e L,,^, T; C 2 « 0 , 1»)/Or arbitrary T, 0 < T < oo; 

b) w(x, t), /(x, t) satisfy (3.1), (3.2), (2.15) — (2.18) pointwise for some real 

number X. 
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Let W1,2((0, 1), x 3) be the real Sobolev space with the weight x 3 and with the 

inner product 

(u> y)i,2,x3 = fo x3 u(x) v(x) ^x + f0 * 3 M'(X) v'(x) dx 

and the corresponding norm 

(3-3) Hli.2.,3 - [(u,u)it2fX3y
/2. 

We denote 

M = {uGC ° °«0,1»; u(l) = 0} . 

Then we introduce a real Hilbert space H defined as the closure of the set M in the 

norm (3.3). A more convenient inner product and norm for the space H is [3] 

(3.4) <w, v> = f0 x 3 u'(x) v'(x) dx , 

(3.5) |u | |H = [<„, u>Y'2 • 

In the sequel we equip H with the inner product given by (3.4) and with the norm 

given by (3.5). 

Let cp, \j/ be smooth functions in H. Then integrating (3.1) and (3.2) by parts over 

(0, 1) we obtain 

(3.6) {w(t), cp) = V - - l\ P <W(T), cp) K(t - r) dt + 

» r 1
 B r 1 

x3w(x, t) cp(x) dx x3w(x, t)f(x, t) cp(x) dx , 
: J o a J o 

+ J 

(3.7) <Дf), ф} = 

-Ҷi-i 
ß\ß 

^l 

x3w2(x, t) i/>(x) dx — 
o 

•t ЃІ 

x3w2(x, т) K(t — т) ф(x) dx dт 
o J o 

for a.e. t e <0, T>. 

Definition 3.3. A generalized solution of the problem (2.13) —(2.20) is a pair of 

functions w(x, t),f(x, t) with the following properties: 

a) w(x, i), f(x, t) e L^O, T; H) for arbitrary T, 0 < T < oo; 

b) w(x, t), f(x, t) satisfy (3.6) and (3.7) for all test functions cp,\j/EH, some 

real number k and a.e. t e <0, T>. 

Theorem 3.1. Any generalized solution in the time variable of the problem 

(2.13) —(2.20) is a generalized solution. Conversely, any generalized solution 

of the problem (2.13) —(2.20) is a generalized solution in the time variable. 

In the proof of this theorem we use the following results [5], [2]. 
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Assertion 3.1. A solution of the equation 

1 ÍOL 
v(x, t) ( 1 ) v(x, T) K(t - T) dT = u(x, t) 

*\P J Jo 

where u(x, t) e L^O, T; B), B is a Banach space, belongs to the space L^O, T; B) 
and has the form 

v(x, t) = u(x, t ) + - ( - - l \ \ exp Г - - ( 
x\ß jJo L « 

- - í - т f(x, т) dт . 

Assertion 3.2. Let u e H, then 

Jo x|u(x)| 2 dx S JJ x 3 |u r (x) | 2 dx . 

Proof of Theorem 3.1. The first assertion is obvious. We prove the second. Let 
w(x, t),f(x, t) e Loo(0, T; H) be the generalized solution of the problem (2.13) —(2.20). 
From (3.6) and (3.7) it follows for a.e. t e <0, T> that 

(3.8) C j x V ( x , t)--(--l\ P x V ( x , T) K(t - r) dT + 

+ ~X\ s3w(s, t) ds - - I s3w(s, t)f(s, t) ds i (?'(x) dx = 0 , 
a Jo a J o J 

( 3 , , j>t*,0 + |j s3w2(s, ř) ds -

- (- - Л Г Г s3w2(s, т) K(t - т) dт dsl ф'(x) dx = 0 

We denote 

P l ( x , () = x3w'(x, ř) - - (- - 1 

+ ^Я 

x3w'(x, т) K(t - т) dт + 

s3w(s, ř) ds - - s3w(s, t)f(s, t) ás , 
Jo a J o 

a Гx 

p2(x, t) = x3/'(x, í) + - 1 s3w2(s,t) ás -
ß J 0 

s3w2(s, т) K(t - т) dт ds 1 /a 

ß\ß oj 

аnd let 

<p(x,t) = H{Pl(s,t)- c,(í)}ds. 

iA(x, í) = JS {,p2(s, í) - c2(í)] ds 

242 



where 
c i ( 0 = Jo Pi(s, t) ds , 

c

2 ( t) = jo p2(*, t) ds • 

Then (3.8) and (3.9) yield 

X V ( J C , t ) - - f - - l ) r x3w'(x, T) K(f - T) dr = 

ЛJC 

l S3w(s, 
J 0 

t)ds + s3w(s,t)f(s,t)ds + C l ( / ) , 

x3f'(x, t) = - - s3w2(s, t) ds + 

+ i í - - l 
/Л/* 

^ ^ j s3w2(s, т) K ( í - т) dт ds + c2(ř) 
/ JoJo 

for a.e. x e <0, 1> and a.e. t e <0, T>. Then 

hx(x, t) = x3h'2(x, t) = 

= X3 \w'(x, t) - ^ (- - l\ f W'(x, T) K(t - T) dT 1 , 

g(x, t) = x3f'(x, t) 

are continuous functions in the space variable x on <0, 1> for a.e. t e <0, T>, and 
according to Assertion 3.1 

h(x, t) — x3w'(x, t) 

is also a continuous function in the space variable x on <0, 1> for a.e. t e <0, T>. 

We assert ct(t) = 0; i = 1, 2 for a.e. t e <0, T>. If this were not true, we would have 

(3.10) hx(0, tt) = lim hj(x, t x) = lim x3h2(x, tj) = cfa) + 0 
x-+0 + x->0 + 

for tj G M r i where Mu cz <0, T> and mes Mu > 0. Without loss of generality we 
may suppose cx(tt) > 0 for tx e Mu. In virtue of (3.10) we have for tx e Mu 

Ve(ti) > 0 {ci(ti) > e(rx) > 0} 3S(tx) < 1 | 0 < x < S(tt) => 

•> Q < fMlLgfe) < h2(x, t) < £ife) + *&) . 
x3 x3 

As /z2(x, t) e L^O, T; H) we conclude that for tx G M r i 

oo > ||h2(r)||
2 = Cx3{h'2(x,h)}2dx ž r* ,)x3{Ai(x,.'1)}2dx 

Jo Jo 
/•<5(*i) | 

> {CJ(ÍI) - <*i)} - 3
d x 

Jo * 

> 
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which is a contradiction. The same holds for c2(t). We have 

(3.11) x V ( x , t) - - (- - l\\ x V ( x , T) K(t - T) dr = 

= - - A I s3w(s, t) ds + - J s3w(s, r)/(s, t) ds , 
a Jo ^ J 0 

s3w2(s, t) ds + (3.12) x3f'(x,t) = 

1 / a _ i 2(s, т) K(í - т) dт ds . 

The functions h(x, t) and g(x, t) are continuous in the space variable on <0, 1> for 

a.e. t e <0, T>, hence w'(x, t) and/'(x, t) are continuous in the space variable on (0, 1> 

for a.e. t e <0, T>, and 

(3A3) w(x,t) = ftw^s^^ds , 

(3.14) /(x, t ) = K / ' ( s , t ) d s 

are continuous functions in the space variable on (0, 1> for a.e. t e <0, T>. Now we 

show that for a.e. t e <0, T> there exist 

lim w'(x, i) and lim/'(x, t) 
x-*0+ x^0 + 

and so the functions w'(x, t) and /'(x, t) are continuous in the space variable on 

<0, 1> for a.e. t e <0, T>. 

From (3.11)-(3.14) we get 

(3.15) v v ( * , t ) - i ^ - l v(x, т) _(ř, - т) dт = 

(3.16) f(x 

=^ - Í \ r ^M?. o dpds - - Í 4 r PM*. o/(p. o ̂ ds. 
« J x s Jo « J * 5 Jo 

•O-íf-. 
Č J , S S J 

P3w2(p, t) dp ds 

- ^ - i ) D I > J [ / J ( p - ) K ( ' - * ) d t d p d s 

for x e (0, 1> and a.e. t e <0, T>. From (3.16) using Assertion 3.2 we get for x e (0, 1> 
and a.e. t e <0, T> 

(3.17) 0 = \f(x, 0 | * S - I n _ [ | + g - l ) [ l - e x p ( - 1 t ) ] } . 

• ||HIL(o,T;H) = - k i l n x < 00 . 
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With help of Assertion 3.1 (3.15) can be written in the form 

(3.18) w(x,t) = Л° 
« J - î 

P3w(p, t) dp ds "Я 
x Å J o 

P3w(T, t) 

. /(p, í) dp ds + - (- - l)[' h Ě- f 1 f V»<P, T) dp ds 
*\P / J o l «J*s Jo 

1 1 л. р3vv(р, x) f(p, т) dр ds l exр J (ř — тH dт . 
o 1 ( a 

From (3.18) using the Cauchy-Schwarz inequality and Assertion 3.2 we get for 

x e ( 0 , 1> and for a.e. t e <0, T> 

(3.19) 0 ^ |w(x,ř)| á - - l n x i l + ( - - 1 1 - exp ( t 
0Í 

+ 1/1 Loo(0,T;Я) IІLooío.TîЯ) = k2\nx < 00 . 

With help of Assertion 3.1 (3.11) can be written in the form 

(3.20) Ąx, t) = - 11 1 Cx 

- s3
W(s,t) 

x J o 

«\)8 / J o l « * 3 

ds + £ — 
a x 3 

s3w(sђ t)f(s, t)âs + 

s3w(s, т) ds + 

+ --; 
a x 

s3w(s, т)/(s, т) í exp J - - (t - т)t dт . 

From (3.20) using (3.17) and (3.19) and the PHospital rule we have for x e (0, 1> 

and a.e. t e <0, T> 

lim |w'(x, t)\ S i i m \ — ^k2 — s3 In s ds + 

+ kxk2 

Analogously from (3.12) using (3.19) and the l'Hospital rule we get for x e (0, 1> 
and a.e. t e <0, T> 

s 3 l n 2 s d s l = 0 . 

l im | / ' ( x , í ) | S k\(-\ lim 
:c~+0+ \f}J x->0 + 

s3 ln s ds = 0 . 

Now we show that for a.e. t e <0, T> there exist 

limw"(x, t) and lim/"(x, t) . 
x->0 + x-*0 + 
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Differentiating (3.20) and (3.12) with respect to the space variable on (0, 1> for a.e. 

t e <0, T> we have 

(3.21) w"(x, t) Ц-ß-x 
X QC 

s3w(s, t) 
Jo 

ds+Л 
a 

s3w(s, t)f(s, t)ás + 

+ 4( - -> í j - Я í s3w(s, т) ás + í S3w(5, т)f(s, т) dsi . 

. exp - (t - т) dт i - - Åw(x, t) + - w(x, t)f(x, t) + 
oí J a a 

£(-- l) f {-H*, T) + "(*, *)/(*» *)} expV i(. - T)ldr , 

s3w2(s, f) ds + (3.22) / " ( x , / ) = - V 
/U 

1/a + Л г Ш s M s ' ) к ( ' - t ) Љ d Г 
- - w2(x, ř) + Ц- - Л Г w2(x, т) K(ř - т) dт . 

č ß\ß jJo 
Let 

M = ess sup max {w(x, t),f(x, t)} . 
te<0,T> xe<0, l> 

From (3.21) and (3.22) we get for x e <0, 1> and a.e. t e <0, T> 

|w"(x, ť)| ^ - M(X + M), 

\f"(x,t)\í7
4M>(2«n-

hence 
lim \w"(x, t)\ < co , lim |/"(x, í)| < co . 

Now differentiating (3.11) and (3.12) with respect to the space variable we obtain 
the desired result. 

Using (3.15) and (3A6) we have 

Definition 3.4. A w-generalized solution of the problem (2A3) —(2.20) is a pair 
of functions w(x, t), f(x, t) with the following properties: 

a) w(x, t),f(x, t)eL^(0, T; ^ ( ( 0 , l)))fOr arbitrary T, 0 < T < oo; 

b) w(x, t),f(x, t) satisfy (3.15) and (3.16) for some real number X. 

246 



Theorem 3.2. Any generalized solution of the problem (2.13) — (2.20) is a w-
generalized solution. Conversely, any w-generalized solution of the problem 
(2.13) —(2.20) is a generalized solution. 

The proof of this theorem follows from the proof of Theorem 3.L 

4. OPERATOR FORMULATION OF THE PROBLEM 

Theorem 4.1. Any generalized solution of the problem (2.13) —(2.20) is a solution 
of the pair of operator equations of the form 

(4.1) w(t) = X -? Lw(t) - C[w(ij] + 
a 

+ w« _ A r {W(T) + G[w(0, W2(T)]} K(( _ T) dT, 
a\0 /Jo 

(4.2) j(() = 5 BK»), w(0] - J g - l ) £ B[W(T), W(T)] K(t - T) dT 

defined on the space L^O, T; H). Conversely, any solution of the pair of operator 
equations (4.1) and (4.2) is a generalized solution of the problem (2.13) —(2.20). 
Here 

<Lu(t), <p> = JQ X3U(X, t) (p(x) dx , 

<B[u(t), v(t)], </>> = Jo x3u(x, t) v(x, t) cp(x) dx , 

C[u(ij] = B[u(t), B[u(t), u(t)]] , 

G[u(t), u2(x)] = B[u(t), B[U(T), U(T)]] 

for a.e. t e <0, T> and for cp e H, u, v e L^O, T; H). L is a linear bounded self-
adjoint compact operator mapping H into itself for a.e. t e <0, T>, B is a bilinear 
bounded symmetric compact operator defined on H x H with the range in H 
for a.e. t e <0, T>, C is a bounded compact operator mapping H into itself for a.e. 
te(0,T}, 

Proof of this theorem is analogous to the stationary case (see for example [3]). 

5. INTEGRO-OPERATOR FORMULATION OF THE PROBLEM 

Using the notation 

(5.1) Lxu(x,i L з. p3u(p, t) dp ds , 

f1 1 
(5.2) Bxlu(x9t)9v{x9t)\ = ~ 

J X S 

p3u(p, t) v(p, t) dp ds , 
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(5.3) 

(5.4) 

z3u2(z, t) áz dy dp ds 

ci[u(x> 0] = вiíu(x> 0> #i[м(x> 0> u(x> 0]] 

Gjftфc, í), u2(x, т)] = ^ [ и l x , f), Bi\u(x, т), u(x, т)]] = 

1 1 
p3u(p, t) — z 3u 2(z, T) dz dy dp ds 

o J p y J o 

we can rewrite (3.11) and (3A2) from Definition 3.4 of the w-generalized solution 

to the following so called integro-operator formulation of the problem (2.13)-(2.20): 

l 
a 

(5-5) v(x, t) = Å^LiW(x, t) - C,[w(x, ř)] + 

1 
- - Л Г {w(x, т) + G ^ x , í), w2(x, т)]} K(í - т) dт , 
P / Jo 

(5.6) Дx, ř) = - ß ^ K x , í), w(x, ř)] 

]9 
- - Л ľ B.[w(x, т), w(x, т)] K(t - т) dт 

defined according to Theorems 3.1 and 3.2 in the space L^O, T: C2<0, 1 >)). Equations 

(5.5) and (5.6) are uncoupled in the sense that w can be determined independently 

off. Thus it is sufficient to consider only (5.5) if we wish to determine w. 

Summarizing Theorems 3.1, 3.2 and 4.1 we have: 

Corollary 5.1. Solutions of the problem (2.13) —(2.20) generalized in the time 

variable, generalized solutions, w-generalized solutions and solutions of the 

operator and integro-operator formulations are equivalent. 

Lemma 5.1. The operators Ll9 C x and the integral Volterra operators 

Jo w(x, T) K(t - T) dT and $*0 Gx[w(x, t), w2(x, T)] K(t - T) dT 

are monotone on the positive cone of the space L^O, T; C2(<0, 1>)). 

Here we use the concept of the monotone operator in the following sense: 

Definition 5.1. An operator S mapping LrjO(0, T; C2(<0, 1>)) into itself is mono­

tone if 

u(x, t) ^ v(x, t) 

for x € <0, 1> and a.e. t e <0, T> implies 

S[u] = S[v] 

for x E <0, 1> and a.e. t e <0, T>. 
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The proof of Lemma 5A follows from the definitions of the operators. 
In the proofs of the next lemmas we use the following assertion [4]. 

Assertion 5.1. A sequence of functions fn(x) e C(<a, b>) is compact if the functions 
fn(x) are differentiahle and 

|/-(*) | ^ lV ; 
d/„(x) 

dx 
< . 

Lemma 5.2. For arbitrary tt e <0, T>, Lx is a linear bounded compact operator 
mapping the space C2(<0, 1 » into itself. 

Proof. Linearity and boundedness follow from (5.1). Compactness we show 
with the help of Assertion 5.1. Let 

P(tl) = {U(X, r . ) g C 2 « 0 , 1 » | UuWIcawo.l)) = M t l ) } > 

then using (5.1) we have 

iL^x,.,)! ^ % ) , 
\{LlU(x, tl)}'\ SkN(tl), 

|{L.u(x, .•.)}"! ^lN(tl), 

\{LlU(x,t,)}'"] ^ N(tt) + iVB(tj) 

for all u(x, tj) P(li), where 

Nn(h) > 
3 . x 12 

u ( x , ř j ) 
X X 

because the ГHospital rule implies 

p3u(p, ti) dp 

lim 
x-+0 + 

3 / ч !2 
- ф , *i) ~ - p3u(p, ti) dp = lim - u'(x, ti) . 

:ç-+o + 5 

So, according to Assertion 5.1 the operator Fi is compact. 

Lemma 5.3. For arbitrary t1 e <0, T> the operator Bt mapping the space 

C 2 «0 , 1 » x C2(<0, 1 » into C2(<0, 1 » has the following properties: 

a) it is symmetric operator, i.e. for every u(x, ti), v(x, tj) e C2(<0, 1>) 

Bi[u(x, ti), v(x, ti)] = Bi[v(x, tj), u(x, ti)] ; 

b) for every u(x, tj), v(x, tj) e C2(<0, 1>) 

||Bi[u(ti), v(li)]||c2«0.i» = ilK l i) | c 2«0 , i» IK^i)lc2«o.i»; 
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c) for every u(x, tx), vx(x, tx), v2(x, tx) e C2«0, 1 » 

H B i M O ^ i W ] - BMti),v2(t1)]\\CH<0tl>) ^ 

= i|K'l)l|c-(<0,l>) K ( ' l ) - *>2V'l)||c~«0,l» J 

d) it is a compact operator; 

e) the equality 

B,[u(x, tx), u(x, tj] = 0 , u(x, tj) e C2«0, 1 » 

holds if and only if u(x, tt) = 0 for every x e <0, 1>. 

Proof, a), b), c) follow from (5.2), d) is analogous to the proof of compatness 
of the operator Lv 

e) If u(x, tx) = 0 for x e <0, 1> then (5.2) yields that Bt[u(x, tx), u(x, tj] = 0 
for x e <0, 1>. Let now Bx[u(x, tt), u(x, t t)] = 0 for x e <0, 1>. Since u(x, tx) e 
e C2(<0, 1>) hence also u{x, tx) e H and for every cp(x) e H we have 

<B![u(t!), u(tx)], q>> = Jo x3u2(x, tx) <p(x) dx . 

If we put cp(x) = 1 - x e C2«0, 1 » c H we get 

x3(l - x) u2(x, tj) = 0 

for a.e. x e <0, 1> and so u(x, tx) = 0 for a.e. x e <0, 1>. Since u(x, tx) e C2(<0, 1 » 
hence u(x, tx) = 0 for x e <0, 1>. 

Lemma 5.4. For arbitrary tx e <0, F> the operator Cl mapping C2(<0, 1>) into 

itself has the following properties: 

a) for every u(x, tx) e C2(<0, 1 » 

llCl[U(fl)]||c2«0,l» ^ 64 IK r i)l lc-«o,i»; 

b) for every u(x, tt), v(x, tt) e C2«0, 1 » 

||Ci[u(?i)] - C1[v(r1)]||C2(<0,i» ^ 6lmax{UM(fi)llc2«o,i», 

ll^i)ll^«oPi»} • IK'O - ^i)||c-«o,i»; 

c) it is a compact operator. 

Proof, a), b) follow from (5.3) and c) is analogous to the proof of compactness 
of the operator L1. 

6. CONCLUSION 

We have derived different formulations of the problem of buckling and post-
buckling behaviour of circular viscoelastic plates. We will use the results of this 
paper in forthcoming papers. 
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The operator formulation of the problem will be used in the paper "Bifurcations 

of Generalized von Kármán Equations for Circular Viscoelastic Plates" which will 

deal with an analysis of relations between the critical points of the linearized problem 

and the bifurcation points. 

The integro-operator formulation of the problem and the relations between 

different concepts of solutions of the problem will be used in the paper "Analysis 

of Postbuckling Solutions of Generalized von Kármán Equations for Circular 

Viscoaleastic Plates". In this paper we shall derive results concerning the number and 

properties of solutions of the problem in the neighbourhood of the first critical 

point At. 
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S ú h r n 

EKVIVALENTNĚ FORMULÁCIE ZOVŠEOBECNENÝCH VON KÁRMÁNOVYCH 
ROVNÍC PRE KRUHOVÉ VÁZKOPRUŽNÉ DOSKY 

IGOR BRILLA 

Čiánok sa zaoberá analýzou zovšeobecnených von Kármánovych rovnic popisujúcich stabilitu 
tenkej kruhovej vázkopružnej dosky na okraji upevnenej a radiálně symetricky zaťaženej. 
V člárku sú zavedené rózne pojmy riešenia uvažovaného matematického problému a sú ukázané 
vztahy medzi týmito riešeniami. 

Pe3K)Me 

3KBMBAJ1EHTHBIE OOPMYJIHPOBKH OEOEIHEHHBIX yPABHEHHÍÍ 
OOH KAPMAHA J\JI# KPyrJIBIX BiBKOynPYrHX nJIACTHHOK 

IGOR BRILLA 

PaccMaTpHBaBDTca o6o6ui?HHbie ypaBHeHHH <j)OH KapMaHa AJIH ocecHMMeTpHMHoro H3rn6a 
TOHKOM Kpyrjioří acecTKo 3aui3MJieHHOH Bíi3KoynpyroH nnacTHHKH HOCTOHHHOH TOJiuiHHbi, noABep-
raromeMCH no CBoeMy KOHTypy fleňcTBHK> paBHOMepHbix OKHMaioninx CHJI, HHTeHCHBHoCTb KOTopwx 
nponopuHOHanbHa Bem.ecTBeHHOMy napaMeTpy. PacuinpaeTCH noruiTHe psuieHHH MaTeMaTHHecKOH 
npoÓJieMbi. PaccMaTpHBaBDTca 3KBHBajieHTHbie (JopMynnpOBKH npo6jieMbi c TOMKH 3pemiH HejiHHeň-
Horo 4)yHKHHOHajibHoro aHajiH3a. 
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