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EQUIVALENT FORMULATIONS OF
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Summary. The paper deals with the analysis of generalized von Karman equations which
describe stability of a thin circular viscoelastic clamped plate of constant thickness under a uniform
compressive load which is applied along its edge and depends on a real parameter. The meaning
of a solution of the mathematical problem is extended and various equivalent reformulations of
the problem are considered. The structural pattern of the generalized von Karman equations
is analyzed from the point of view of nonlinear functional analysis.
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1. INTRODUCTION

The analysis of von Karman equations has its own history. Since their derivation
in 1917 they have attracted attention of different groups of specialists. In the first
place they have been analyzed from the point of view of mechanics, because their
eigenvalues are the critical values at which a plate buckles, and when a load increases
above these values it is necessary to investigate its postbuckling behaviour. There
exist papers dealing with the approximate numerical analysis of postbuckling
behaviour of plates.

Also a great number of mathematicians have dealt with the analysis of mathe-
matical problems connected with von Karman equations. It would be difficult to
give the complete list of authors and papers. However, even now we are stil very far
from a fully successful analysis of solutions with “big” norms.

Von Karman equations were derived for elastic materials. However, many materials
exhibit mechanical behaviour different from the elastic ones, i.e., their deformation
under the loading which is constant in time increases. They exhibit an instant elastic
deformation followed by a viscous flow. They are called viscoelastic materials.

We deal with the mathematical analysis of generalized von Karméan equations for
viscoelastic plates. They were derived [1] similarly as the original von Karman
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equations. The analysis shows that the behaviour of viscoelastic plates under a pres-
sure along their edges exhibits some qualitatively different features as compared
with elastic ones.

We consider a thin circular viscoelastic clamped plate under a uniform compressive
load which is applied along its edge in its midplane and depends on a real parameter 2,
with zero initial conditions.

In this paper the physical problem to be considered is described. We extended the
meaning of a solution of the associated mathematical problem and consider various
equivalent reformulations of the problem. We analyze the structural pattern of
generalized von Karman equations from the point of view of nonlinear functional
analysis.

We will deal with the detailed analysis of this problem also in the following two
papers “‘Bifurcations of Generalized von Karman Equations for Circular Visco-
elastic Plates’ and ‘““Analysis of Postbuckling Solutions of Generalized von Karméan
Equations for Circular Viscoelastic Plates”.

2. FORMULATION OF THE PROBLEM

We consider generalized von Karman equations for viscoelastic plates of standard
materials [ 1]

(2.1) K(1 + aD)A*W = (1 + BD,) {A[W.F,] + [W, F]},
(2.2) (L + BD,) A’ F = —3hE(1 + aD,) [W, W]

where W(x, y, 1) is the transverse displacement of the plate, F(x, y, 1) is the stress
function, Fo(x, y, ) is the stress function corresponding to the given boundary
loading, E is the modulus of elasticity, A is the thickness of the plate, K is the stiffness
of the plate, «, 8 are positive viscous parameters such that o > 8, 4, is the positive
parameter of proportionality of the given boundary loading with respect to F, D,
denotes the differentiation with respect to time, A? is the biharmonic operator and

[f* g] = fxxgyy + fyygxx - zfxygxy .

In what follows we deal with an analysis of a viscoelastic buckling of a circular
clamped plate loaded with a uniform compressive load proportional to 4, and applied
in its midplane along its edge. We consider zero initial conditions. Then (2.1) and
(2.2) depend only on the polar coordinate r and assume the form

(2.3) K(1 +aD,) r di <l 4 <,d_V_"M>> _

r\rdr dr
dF(r, 1) dW(r, t) daw(r, z)}
=(1 + D) {——"~+ —"— = Jjr——1},
(1 +£D) { dr dr dr
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d /1d [/ dF(r,1)
2.4 1+ BD)r—(-—(r—-=
(24) ( AD) dr <r dr( dr ))
=~ Yhp(t 4 apy [0V
2 dr
with the boundary conditions
(235) W(r,1),-k =0 1€<0, T)
(2:6) F(r.t),.x =0 1e<0,T)
(2.7) vl g e 0, T
dr r=R
. F
(2.8) dF(r.1) =0  te<0,T)
dr r=R
(29) W0l _y o1
dr r=0
(2.10) dF(r, 1) =0  1e<0, T
dl' r=0
and the initial conditions
(2.11) W(r, t)];=o- =0  re<0.R)
(212) © F(r,t)]i=0- =0 re (0, R)
where R is the radius of the plate.
Using the relations
r = xR,
1/2
w(x, 1) = 1 .E_h d_W___(xR, 1) ,
x \2K dx
1 dF(xR,1)
x)t = 0 b
f( ) Kx dx
2
A= R Ae
K

the system (2.3)—(2.12) can be reduced to the
(2.13)

(2.19)
xe(0,1); te(0,Ty; T< o,

re(0.R),

form

te(0.Ty. T< o

(1 + aD,) [*w(x, )] = (L + BD,) x*w(x, 1) [f(x, 1) — 4],
(1 + BD) [X*f'(x, )] = —(1 + aD,) x*w?(x, t)



(2.15) [w(x, 1)|s=o| < 00 140, T
(2.16) |f(x, )]a=0] < 0 te<0, T
(2.17) w(x, t)=y =0 10, T
(2.18) [ )]i=1 =0 1e<0, T
(2.19) w(x, )| i0- =0 xe<0,1)
(2.20) f(x, 0)|i=0- =0 xe <0, 1>

where a prime denotes the differentiation with respect to the space variable.

3. VARIOUS DEFINITIONS OF THE SOLUTION

Definition 3.1. 4 classical solution of the problem (2.13)—(2.20) is a pair of
functions w(x, t), f(x, t) with the following properties:

a) w(x, 1), f(x, 1) e C'((0, T); C*(K0, 1))) for arbitrary T,0 < T < oo;
b) w(x, 1), f(x, ) satisfy (2.13)—(2.20) pointwise for some real number A.
Using the transformation

H g(x)K(t — 7y de = (1 + BD)* g(1)

0

for zero initial conditions where the kernel K has the form

K@—r»=wp{-§o—rﬂ

we get from (2.13) and (2.14) the following equations:

Gl W] - i(% - 1) J 0 [w(x, O] K(t — 1) de =

=§waowa~iL

32  [Ffx0] = %(% - 1) L xw(x, 1) K(t — ) de — % 2 w(x, 1)

xe(0,1); te0, Ty; T< .

Definition 3.2. A generalized solution in the time variable of the problem
(2.13)—(2.20) is a pair of functions w(x, t), f(x, t) with the following properties:

a) w(x, 1), f(x, t) € L (0, T; C*(K0, 1)) for arbitrary T,0 < T < oo;

b) w(x, 1), f(x,1) satisfy (3.1), (3.2), (2.15)—(2.18) pointwise for some real
number ).
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Let W'*((0, 1), x*) be the real Sobolev space with the weight x* and with the
inner product
(1, 0)y 20 = Jo x> u(x) v(x)dx + fox*uw'(x)v'(x)dx
and the corresponding norm
(33) lul e = [ w1202
We denote ’
M = {ue C*(<0,1>); u(1) = 0} .

Then we introduce a real Hilbert space H defined as the closure of the set M in the
norm (3.3). A more convenient inner product and norm for the space H is [3]

(34) Cu, vy = o x> uw'(x)v'(x)dx,

(3.5) ”u”H — [(u, u>]1/2 ]

In the sequel we equip H with the inner product given by (3.4) and with the norm
given by (3.5).

Let ¢, ¥ be smooth functions in H. Then integrating (3.1) and (3.2) by parts over
(0, 1) we obtain

(36w ed = l(; - 1) j (w(), 9> K(t — 7)dt +

1

+ lﬁf w(x, 1) o(x) dx — gj x*w(x, 1) f(x, 1) @(x) dx,

0

37 S = % f Wi, 1) Y(x) dx —

0
— % (% — 1) J: j; x*wi(x, 1) K(t — ) Y(x) dx dr
for a.e. te 0, T). »

Definition 3.3. 4 generalized solution of the problem (2.13)—(2.20) is a pair of
Sunctions w(x, t), f(x, t) with the following properties:
a) w(x, 1), f(x, 1) € L(0, T; H) for arbitrary T, 0 < T < o0;

b) w(x, 1), f(x, 1) satisfy (3.6) and (3.7) for all test functions ¢,y € H, some
real number A and a.e. t € 0, T).

Theorem 3.1. Any generalized solution in the time variable of the problem
(2.13)—(2.20) is a generalized solution. Conversely, any generalized solution
of the problem (2.13)—(2.20) is a generalized solution in the time variable.

In the proof of this theorem we use the following results [5], [2].
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Assertion 3.1. A solution of the equation
t
v(x, 1) — l<g — l)j v(x, ) K(t — t)dt = u(x, 1)
a\p 0

where u(x, t) € L(0, T; B), B is a Banach space, belongs to the space L,(0, T; B)
and has the form

ofx, 1) = u(x, 1) +i<% - 1>L'exp[_ i(; - T)j]f(x, o) dr.

Assertion 3.2. Let u € H, then
§o xu(x)|? dx = [§ x*|u'(x)]? dx .

Proof of Theorem 3.1. The first assertion is obvious. We prove the second. Let
w(x, 1), f(x, 1) € L,(0, T; H) be the generalized solution of the problem (2.13)—(2.20).
From (3.6) and (3.7) it follows for a.e. t € €0, T that

(3.8) J ' {x3w’(x, -1 (% - 1) j 0 xw(x, ) K(t — 7) de +

0 o

o 0 0

(39) J ' {x:*f'(x, ) + gfo swi(s, 1) ds —

0

+ Elfxs3\v(s, t)ds — Efx s*w(s, 1) f(s, 1) ds} @'(x)dx =0,
x

l /o

- - <— - 1) -rJ‘l s*w(s, 1) K(t — 7)dt ds} Y(x)dx =0.
B\B 0Jo
We denote

pa(x, 1) = xw(x, f) = i (% - 1) J "W, 1) K(t — 1) de +

0

+ £, fxssw(s, f)ds — ij s*w(s, 1) f(s, 1) ds,,
x

o 0

pa(x, 1) = X*f'(x, 1) + %jx s*wi(s,t) ds —
0

_ /l}(; - 1>J:£s3w2(s,r)l<(z ~ 7)drds

o(x, 1) = [5 {ps(s, 1) = ex(1)} ds
Y(x, 1) = jg {py(s, 1) — ex(1)) ds

and let

242



where
ci(t) = fo puls, 1) ds,
) = 1 pafs, 1) s
Then (3.8) and (3.9) yield
x*w'(x, 1) — l(; - 1>J x*w'(x, 1) K(t — 7)dr =
o

[

X

- ﬁzf s, 1) ds + éjxs3w(s, O (s, 1) ds + ei(1),
o

0 %Jo

o

X*f(x, 1) = — ﬁfc s*w?(s, 1) ds +

v

fora.e. xe€<0, 1) and a.e. t e {0, T>. Then

hy(x, 1) = x3hy(x, t) =

— 3 )l'wf(x, f) — i(% - 1) J;w’(x, ) K(t — r)dr},

g(x, 1) = xX*f'(x, 1)
are continuous functions in the space variable x on <0, 1> for a.e. t e <0, T, and
according to Assertion 3.1

h(x, 1) = x*w'(x, 1)
is also a continuous function in the space variable x on 0, 1) for a.e. 1€ <0, TD.

We assert c,.(t) = 0;i =1,2fora.e. te0, T). If this were not true, we would have
(3.10) hy(0, ;) = lim hy(x, t;) = lim X*hy(x, t,) = ¢;(t;) * 0
+ x—=0+

for 1, € M, where M, < <0, T)> and mes M,, > 0. Without loss of generality we
may suppose ¢,(t;) > 0 for 1, € M,,. In virtue of (3.10) we have for ¢, € M,
Ve(ty) > 0 {cy(t;) > oty) > 0} 35(1,) < 1]0 < x < §(t,) =

=0 < ﬁ‘("w)}fﬁ!? < y(x, 1) < "_1(’_1)“:\8(’1).
X X

As hy(x, t) € L, (0, T; H) we conclude that for ¢, M,

> (03 - j 1

0

5(t1)

Pl 0} 0x 2 [ (e, 1))
0

5(11) 4

> {ey(1y) — e(tl)}’j o dx

0
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which is a contradiction. The same holds for ¢,(t). We have

(3.11) x*w'(x, 1) — i(% - l)jl *wi(x, 1) K(t — 1) dt =

0

= —[—3}.[ s3w(s, t}ds+ﬁ sw(s 1) f{s,1)d
% Jo

X

(3.12) 3f(x, 1) = - %j s?wi(s, 1) ds +

0

+ é(g - 1) J:J‘;ﬁwz(s, 1) K(t — t)drds.

The functions h(x, 1) and g(x, t) are continuous in the space variable on <0, 1) for
a.e. t€ €0, T), hence w'(x, t) and f'(x, t) are continuous in the space variable on (0, 1>
for a.e. te (0, T), and

(3.13) w(x, t) = [Tw(s, t)ds,
(3.14) f(x,0) = [T f(s,1)ds

are continuous functions in the space variable on (0, 1) for a.e. 1 € 0, T). Now we
show that for a.e. t € {0, T there exist

limw'(x, 1) and limf'(x, 1)

x=>0+ x=0+

and so the functions w'(x, ) and f’(x. t) are continuous in the space variable on
0, 1) for a.e. t€<0, T).
From (3.11)—(3.14) we get

(3.15) w(x, 1) —ie - 1) J w(x, 1) K(1, — 7)dt =

= lgj sl J‘sp w(p, t)dpds — J. j p*w(p, t)f(p,t)dpds,

x 0

(3.16) f(x, 1) = %-[1 S%J\& p*wi(p, t)dpds —

_ %(% - 1)J:S%J‘Zp3j;w2(p, 1) K(t — 1)drdpds

for x € (0, 1) and a.e. t € <0, T). From (3.16) using Assertion 3.2 we get for x € (0, 1)
and a.e. te<0, T)

(3.17) 0= |f(x 1)< —In x{% + (% - 1)[1 - exp(— ét)]}

. HW”iw(o,T;u) = —k;lnx < 0.

244



With help of Assertion 3.1 (3.15) can be written in the form

(3.18)  wn i) = g-[ ; Lp w(p. 1) dp ds — Eflg—jop w(p. 1)

x4

(p,t)dpds+1<E—l>J{ J fpwp, dpds —
_ gﬂéﬁ p*w(p, 7) f(p, 1) dp ds} exp{— i(r - r)} dr.

From (3.18) using the Cauchy-Schwarz inequality and Assertion 3.2 we get for
x€(0,1) and for a.e. 1€ 0, T)

(3.19) 0= |wix, )| £ —glnx{l + (75 - 1>[1 - exp(— it):l}

A
.{5 + f||Lm(O,T;,,)} W leorn = Kalnx < 0.
With help of Assertion 3.1 (3.11) can be written in the form

(3.20) wi(x, 1) = — b A 1—3-r s w(s, 1) ds + é—lg Jx s*w(s, 1) f(s, 1) ds +
o ax’ ),

X" Jo

+ 1(% _ I)Jv {_ El_l_fxﬁw(s, 7)ds +
a\p 0 a x> Jo
Bl (™5 !

+ 7-[ s7w(s, 7) f(s, r)} exp {— —(r - r)}dr.
ox o

From (3.20) using (3.17) and (3.19) and the ’Hospital rule we have for x € (0 1
and a.e. te (0, T) .

x
lim |w'(x, 1)] £ lim { - /k2 s*Insds +
x=>0* x=>0* X 0

+ k1k2—lgf s3lnzsds} =0.
X" Jo

Analogously from (3.12) using (3.19) and the I’'Hospital rule we get for x € (0, 1)
and ae. 1e<0, T)

2 X
lim |f(x, 1)| < k%(g lim L [ s*in2sds = 0.
x=0* ﬁ x—0* X3 0

Now we show that for a.e. 1 € {0, T there exist

lim w"(x, ) and llmf”(x 7).

x-0*
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Differentiating (3.20) and (3.12) with respect to the space variable on (0, 1) for a.e.
te <0, T) we have

(3.21) wi(x, 1) = — %{— Eijxsj’w(s, t)ds + EJX s*w(s, 1) f(s, £} ds +
x o a

0 0

Lo o)

.epr'— i(t - 'c)] dr} - Blw(x, ) +§w(x, 0 f(x, 1) +

o

+ %(% — 1) ﬂ{—zw(x, 1) + w(x, 7) f(x, 7)} exp[— i(’ - T)]df’

(3.22) f”(x, t) = — %{— aj‘x s3w2(s, t) ds +
X BJo

e ames el

_ %Wz(x, 0+ /%(% - 1) L w(x, ) K(t — 1) d.

Let
M = esssup max {w(x, 1), f(x, 1)} .

te{0,T) xe(0,1)

From (3.21) and (3.22) we get for x €0, 1) and a.e. te {0, T

’w"(x, t)]

IIA
ENIES N

M. + M),

M2(25—1>,
B

lim lw"(x, t)‘ < w, lim lf”(x, t)l < 0.
0+ X0+

If”(x, t)| <

hence

Now differentiating (3.11) and (3.12) with respect to the space variable we obtain
the desired result.

Using (3.15) and (3.16) we have

Definition 3.4. 4 w-generalized solution of the problem (2.13)—(2.20) is a pair
of functions w(x, t), f(x, t) with the following properties:

a) w(x, 1), f(x, t) € L (0, T; L.((0, 1))) for arbitrary T, 0 < T < oo;
b) w(x, 1), f(x, t) satisfy (3.15) and (3.16) for some real number A.
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Theorem 3.2. Any generalized solution of the problem (2.13)—(2.20) is a w-
generalized solution. Conversely, any w-generalized solution of the problem
(2.13)=(2.20) is a generalized solution.

The proof of this theorem follows from the proof of Theorem 3.1.

4. OPERATOR FORMULATION OF THE PROBLEM

Theorem 4.1. Any generalized solution of the problem (2.13)—(2.20) is a solution
of the pair of operator equations of the form

@1 ow() = ;.ng(z) — C[w(0)] +
# 15 1) [ 09 + D0 w00} -
o 1/a ("
(42) 7 = Blv(o),w(0] - B(E - 1) JO Bw(e), w(2)] K(1 — 7)ds

defined on the space L, (0, T; H). Conversely, any solution of the pair of operator
equations (4.1) and (4.2) is a generalized solution of the problem (2.13)—(2.20).
Here

CLu(t), 9> = [o X u(x, t) o(x) dx,

(Blu(t), v(t)], @> = [o x*u(x, 1) v(x, 1) o(x) dx,

Clu(1)] = Blu(t), B[u(1), u(t)]] ,

Glu(?), u*(x)] = B[u(t), B[u(v), u(x)]]
for a.e. 1€<0, Ty and for ¢ e H, u,ve L,(0, T; H). L is a linear bounded self-
adjoint compact operator mapping H into itself for a.e. t € {0, T), B is a bilinear
bounded symmetric compact operator defined on H x H with the range in H
for a.e. t €0, T), C is a bounded compact operator mapping H into itself for a.e.
te 0, T,

Proof of this theorem is analogous to the stationary case (see for example [3]).

5. INTEGRO-OPERATOR FORMULATION OF THE PROBLEM

Using the notation
1

(5.1) Liu(x, t) = J‘ %J. plu(p,1)dpds,
ST Jo

X

(5.2) By [u(x, 1), v(x, 1)] = jl ;I—SJ: p*u(p, 1) v(p, t)dp ds,
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(5.3) C,[u(x, )] = B [u(x. 1), B,[u(x, 1), u(x, 1)]] =

11 K 1 1 ¥y
:I ?I p*u(p, f)'[ 3{ 22u*(z,1)dzdydp ds,
xs 0 py 0

(5.4) G, [u(x, 1), u*(x, 1)] = By[u(x, 1), B,[u(x, 1), u(x, 1)]] =
= J glgj\s pu(p, I)J :vl—sji} 2’u*(z,7)dzdy dp ds

we can rewrite (3.11) and (3.12) from Definition 3.4 of the w-generalized solution
to the following so called integro-operator formulation of the problem (2.13)—(2.20):

(5.5) w(x, 1) = »ngw(x, ) = Ci[w(x. )] +

N l(% _ 1> L (w(x, ©) + Gy[w(x, 1), wi(x, O]} K(1 = <) de.,

(5.6) f(x 1) = ; By [w(x. 1), w(x, 1)] —

1

_ B(% _ 1) j 0 B,[w(x, 7), wx. )] K(i — 7)de

defined according to Theorems 3.1 and 3.2 in the space L_,(0, T; C*€0, 1))). Equations

(5.5) and (5.6) are uncoupled in the sense that w can be determined independently

of f. Thus it is sufficient to consider only (5.5) if we wish to determine w.
Summarizing Theorems 3.1, 3.2 and 4.1 we have:

Corollary 5.1. Solutions of the problem (2.13)—(2.20) generalized in the time
variable, generalized solutions, w-generalized solutions and solutions of the
operator and integro-operator formulations are equivalent.

Lemma 5.1. The operators L,, C, and the integral Volterra operators
fo w(x, 7)K(t — t)dt and [§ G[w(x, 1), w(x,7)] K(t — 7)d7

are monotone on the positive cone of the space L(0, T; C*(€0, 1)).
Here we use the concept of the monotone operator in the following sense:

Definition 5.1. An operator S mapping L,(0, T; C*(<0, 1))) into itself is mono-
tone if

u(x, 1) = o(x, 1)
for xe {0, 1) and a.e. t e {0, T) implies
S[u] = S[v]

for x€<0,1) and a.e. te {0, T).
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The proof of Lemma 5.1 follows from the definitions of the operators.
In the proofs of the next lemmas we use the following assertion [4].

Assertion 5.1. A sequence of functions f,(x) € C((a, b)) is compact if the functions
fA(x) are differentiable and

LX) £N; ’5‘&‘) SN
dx

Lemma 5.2. For arbitrary t; € {0, T), L, is a linear bounded compact operator
mapping the space C*(0, 1)) into itself.

Proof. Linearity and boundedness follow from (5.1). Compactness we show
with the help of Assertion 5.1. Let

P(ty) = {u(x, 1;) € C*(0, 1>)| Jult)] 2o,y = N(11)}

then using (5.1) we have

|Lu(x,1,)] = §N(1y),
HLyu(x, 1)} < 5 N(1),
{Lyu(x, 1)} = g N (1),
{Lyu(x, 1)} = N(ty) + Noft)

for all u{x, t;) P(t,), where
3 12 (~*
Nty > ’ Suxny) - 2 j Pulp. 1) dp}
x x> J,

because the I'Hospital rule implies

x—=0+ | X x>0+

. 3 12 (~ .3
lim | = ux, t;) — 12 plu(p,1;)dp| = lim = u/(x, t,).
x* ), 5
So, according to Assertion 5.1 the operator L; is compact.

Lemma 5.3. For arbitrary t, €0, T) the operator B, mapping the space
C*(<0, 1)) x C*(<0, 1)) into C*(0, 1)) has the following properties:

a) it is symmetric operator, i.e. for every u(x, t,), v(x, t;) € C*(<0, 1)
B,[u(x, t;), v(x, ;)] = B,[o(x, t,), u(x, t,)] ;
b) for every u(x, ), v(x, t,) € C*<0, 1))

1B [u(t1), v(t:)]llcxco,15) = Blut)]cxco, i ot ) exco.ny 3
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c) for every u(x, t), vy(x, t;), v,(x, t;) € C*(<0, 1))
|B:[u(ty), vs(t:)] — Ba[u(ts), v2(t)] | 20,15y £
< #u(t)lcaco13 [o1(t) = va(t)caco,1 3
d) it is a compact operator;
e) the equality
By[u(x, ty), u(x, t,)] =0, u(x,t,)e C*0,1))
holds if and only if u(x, t,) = O_for every x € {0, 1>.

Proof. a), b), c) follow from (5.2), d) is analogous to the proof of compatness
of the operator L.

e) If u(x, t,) = 0 for xe €0, 1) then (5.2) yields that B,[u(x, t,), u(x, t,)] =0
for x€ {0, 1. Let now B,[u(x, t;), u(x, ;)] =0 for xe<0, 1). Since u(x,t;)e
€ C*(<0, 1)) hence also u(x, t,) € H and for every ¢(x) € H we have

(B, [ul(ty), u(ty)], 0> = fo x*u?(x, 1;) o(x)dx .
If we put ¢(x) = 1 — xe C*<0,1)) = H we get

x*(1 = x)u*(x,t,) =0
for a.e. x€ (0, 1) and so u(x, t,) = 0 for a.c. x € €0, 1. Since u(x, t,) € C*0, 1)
hence u(x, t;) = 0 for x € <0, 1.

Lemma 5.4. For arbitrary t, € {0, T) the operator C; mapping C2(<0, 1)) into
itself has the following properties:

a) for every u(x, t;) e C*(<0, 1))
1€ [t )]l c2co,19) = 2 [u(t)[E2co,159 5

b) for every u(x, t), v(x, t;) € C*<0, 1))
IC:[u(t)] = Culo(t)] 2o,y S g max {u(t)[Eacco, 1300
lo(t)lEacco.10) - Jults) = v(t)caco1 5

c) it is a compact operator.

Proof. a), b) follow from (5.3) and c) is analogous to the proof of compactness
of the operator L.

6. CONCLUSION

We have derived different formulations of the problem of buckling and post-
buckling behaviour of circular viscoelastic plates. We will use the results of this
paper in forthcoming papers.
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The operator formulation of the problem will be used in the paper “Bifurcations
of Generalized von Karman Equations for Circular Viscoelastic Plates” which will
deal with an analysis of relations between the critical points of the linearized problem
and the bifurcation points.

The integro-operator formulation of the problem and the relations between
different concepts of solutions of the problem will be used in the paper ““Analysis
of Postbuckling Solutions of Generalized von Karman Equations for Circular
Viscoaleastic Plates”. In this paper we shall derive results concerning the number and

properties of solutions of the problem in the neighbourhood of the first critical
point 4,.
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Sahrn

EKVIVALENTNE FORMULACIE ZOVSEOBECNENYCH VON KARMANOVYCH
ROVNIC PRE KRUHOVE VAZKOPRUZNE DOSKY

IGOR BRILLA

Clanok sa zaobera analyzou zovieobecnenych von Karmanovych rovnic popisujucich stabilitu
tenkej kruhovej viazkopruznej dosky na okraji upzsvnenej a radialne symetricky zataZene;.

V ¢larku st zavedené rdzne pojmy rieSenia uvazovaného matematického problému a st ukazané
vztahy medzi tymito rieSeniami.

Pesrome

SKBUBAJIEHTHBIE #OPMYJIMPOBKN OBOBLEHHBIX YPABHEHUI
®OH KAPMAHA [JIS KPYTJIBIX BA3KOVIIPYTUX TTJIACTUHOK

IGOR BRILLA

PaccmatpuBatorcss 0600LIzHHbIe ypaBHenus (on Kapmana [ 0CECMMMETPUYHOTO H3ruba
TOHKOM KPYTJIOH XKECTKO 3allSMJIEHHON BS3KOYNPYTOH IJIACTUHKHU NMOCTOSIHHOW TOJILIWHBI, IOABEP-
raroleics 10 CBOEMY KOHTYPY JA€HCTBHIO PABHOMEPHBIX COKMMATOLLUX CHJI, HHTEHCMBHOCTb KOTOPBIX
TIPONOPUMOHAJIbHA BEIECTBEHHOMY NapamMeTpy. PacluinpaeTcs NOHATHE PSLICHUS MAaTeMaTH4eCKOM
npo6ieMbl. PaccMaTprBaroTCs YXBUBaJIEHTHBIE HOPMYJTMPOBKHM NPOBIEMBI C TOUKHU 3PSHHMS HETUHE -

HOTrO ()YHKLIMOHAJILHOTO aHAJIM3a.
Author’s address: RNDr. Igor Brilla, CSc., Ustav aplikovanej matematiky a vypodtovej
techniky UK, Mlynska dolina, 842 15 Bratislava.
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