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PROPERTIES OF SPACE MOTIONS WITH TWO
STRAIGHT TRAJECTORIES
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Summary. The paper is devoted to Euclidean space motions with two straight trajectories on
two given skew straight lines. It describes all motions from this class which have one more planar

trajectory in a plane not parallel to the given lines. In the conclusion it gives conditions under
which such motions have further planar trajectories in planes not parallel to the given skew

straight lines.
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Every one-parametric motion in the Euclidean space E; can be expressed in the

form
1’ 0’ O’ O
(1) o(t) = ti, ag + a7 — a3 — a3, 2(aja, + a,a;), 2a,ay — agay)
olt) = \ ; : ,
t,, 2((1102 - (l0(13), a; — ay + a, — as, 2(11203 + a0a1)
13, 2(61002 + 01613), 2(a2a3 — aoal)’ a(l) _ a% _ ag " a;

3
where a; = a(t), t; = t,(t)and ) a} = 1 (see [1] or [2]).
i=0
We shall consider only motions which have two straight lines as trajectories,
assuming these lines to be skew. Then we have

Proposition 1. Consider a space motion ¢(t) such that the points X, = (1,0, 0, ¢,,)7,
e = +1 have the straight lines z = ¢r, x + ey = 0 as trajectories. Then

(2) ty =—22m(aya; + agay), t, = — 27m(a1a3 — apaz), t3 =0,
(w,): (ag + a3) (1 - L) — (a + ag)(l + L) =0
m m
where 2r is the distance of the trajectories (m > r > 0) and . = —¢ cotg B2

(B is the angle of the trajectories).
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Proof. Let us choose the frame in the fixed space as the symmetry frame of the
trajectories (this means that the z-axis is the common perpendicular of the two
trajectories, the origin is in the middle of the common perpendicular, the x-axis has
the same angle with both trajectories), the Z-axis in the moving space lies on the
line X, X _,, the origin is in the middle between the points. The trajectory of X must
satisfy the equation of the line trajectory. We get

10 0 0 1 1 1
t, ayq Ay, ag; 0 |t +a;em x
Iy Gz1 Gz Az3 0| |t2+ayem| |y
t3 azy az, dsz em t; + as; em z

where a;; are given by (1), i,j = 1,2, 3.
Therefore we have

t; + asyem = ¢r,
ty + agsem + el(t, + ayzem) = 0.
This yields the statement.
Proposition 2. Let us have a motion from Proposition 1. Then the trajectory of

any point on X X_, different from X, X_, is an ellipse in a plane parallel to
both straight trajectories.

Proof. The frames are chosen as before. For the trajectory of the point X =
= (1.0, 0, Z,)" we have z = (r/m) Z,, so it lies in a plane.
Further, ’

X = +a;3Zy — az3Am,
m -
y= —da; n + az3Z¢ .

We express x and y using (1) and obtain
x2(zg + m + y¥(A*m?* + z3) + 2xy [ Amz, + Z ig I
0T y 0 ¥ Zo o7

2
= (25 — m?)? <1 - r_2> ,

m

which is an ellipse as Z, + em, rr < m.
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Denote

1 - =
m

Proposition 3. Let us have a motion (p(t) as in Proposition 1. Let us suppose that
this motion has another point (1, %, 0, )" with a plane trajectory, which lies in
the plane Ax + By + Cz + D = 0. Then ¢(t) lies on a quadratic surface

o,: (A% + %) (a] + ad) + (—AX + %) (a5 + a3) +

+ 2aga,(BZ — Aim) + 2aa, <—AZ +BZ 4 cx) _
A

— 2aya;B% + 2a,a, (AZ - B% cx) +

+ 2a;a,BX + 2a,a3(Bz — AAm) = 0.

Proof. For the trajectory we obtain
Aty + a1 X + ay3Z) + B(ty + a X + a53%) +
+ C(t3 + a3;X + as3zZ) + D=0.

Substitution from (1) and (2) gives the equation of w,. In what follows we shall
consider only algebraic motions. Such motions are given by algebraic equation in
parameters ag, a,, d,, a;. In Proposition 3 we have shown that there exist motions
with two straight and one plane trajectory. For such motions we prove the following
theorem.

Theorem. Let us have an algebraic motion from Proposition 3. Then there exist
further points with plane trajectories iff B = ¢AL. If A*> + B> + 0, then these
points lie on the line 2%, = Z,X + em(Xy — X), y = 0, if A = B = 0, they are all
the points of the plane j = 0.

Proof. Let us choose a point M = (1, X, j,, Z,;)" and let its trajectory lie in the
plane A;x + B,y + C;z + D, = 0. We express the trajectory of M and obtain
a quadratic equation w; given by the symmetric matrix
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[A1X + By, + », —Am + Bz, — Cij,  C X, — AZ; + Bym|4

X A Xy — By + % Ay + BiX,

X X —AX; + B,y + %,

X X X
—BX; + Ay

Ci%y + Az, — Bym/A
C,j;, — AAm + B Z,
—AX; + B,y + x4

The motion must satisfy all three quadratic equations w,, w,, w;. Therefore w; =
= pw; + yw, with p,ye #. If y = 0, we get a point on the Zz axis. So y * 0; let
y = 1, hence w; = pw, + w,. We obtain a system of ten equations:

AX + %+ p = AX; + Bij + %,
AX + % — pPp = AX — By + ¥,
—AX + % — u’p = —A; X, + By, + %,
—AX +x+p = —A;X, — By + ¥y,

—Az+3%’- +CR= —A5, + Bla’f+ Ci%y s

Bz — Alm = —AAm + Bz, — C,y,,
—BXx = Ay, — Bix,,
Bx = Ay, + Bx,,

A7 - By cx= Az -B" 4+ Cx,,
A A
Bz — Aim = —A4AAm + Bz, + C,j, .

By taking linear combinations of these equations we obtain A1 = BiJ,
=C,y;, =0,s0 y; =0.
Further,
X+p =x
=p=0, x=uxu.
¥ — up= %1} !

As a consequence we obtain

) A% = A%, Az—-B" = Az -B",
A P
B% = B,%, BZ — Aim = —Adm + B,Z,,

Cx = C/%, .
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As X + 0 and 4A® + B* + C* # 0 we have X1 % 0. Denote X[%, = 6. Then A, =
= A8, B; = BS, C; = C§, and from (2) we obtain

4) —A(l = 8)im + B(z — 6z,) =0,

m

—42—&J+B7

(1-38)=0.

a) The determinant is —m?(6 — 1)> + (Z — 62Z,)%. Let it be nonzero. Then
A=B=0.

b) Let m*(6 — 1)> = (£ — 6Z,)?, then
1

m

6 —1=—(z -9z

and
- Zo+em(6 — 1)
5 3

_ X
Xy =7
o

from (4) we have B = ¢4 and Z,%, = Z,X; + em(X, — X,).

Remarks. If we consider ay, a;, a,, a; as homogeneous coordinates in the
elliptic space, we see that the spherical motion which corresponds to the motion with
two straight trajectories lies on the quadratic surface w,. This quadric is exceptional
in the elliptic geometry, it is called Clifford’s quadric and has two rotational axes.
It contains two systems of straight lines and these lines are images of elliptic motions.
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Souhrn

VLASTNOSTI PRIMKOVYCH POHYBU
SE DVEMA PRIMKOVYMI TRAJEKTORIEMI

MARIE KARGEROVA

Prace se zabyva euklidovskymi pohyby v prostoru, které maji dvé pfimkové trajektorie leZici
na danych mimobé&Znych primkach. Jsou nalezeny ty pohyby, které maji jesté navic jednu rovinnou
trajektorii v roving, ktera neni rovnob&Zna s danymi mimob&zkami. Nakonec jsou nalezeny
podminky, za kterych takovy pohyb ma jeSt& dalsi rovinné trajektorie neleZici v rovinach rovno-
béZnych s danymi mimob&Zzkami.
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Pe3ome

CBOVICTBA ITPOCTPAHCTBEHHOI'O JIBVDKEHUS
C ABYMS JIMHEVHBIMU TPAEKTOPUSMU

MARIE KARGEROVA

IToka3zano, 410 B E3 CYLIECTBYIOT ABUKEHHS C IBYMS JIMHEHHBIMHU TPAEKTOPUAMM, JIEXKALIUMH HA
3a/]JaHHBIX CKPEIIMBAIOUIMXCS UPSMbBIX, U HalICHbI BCE JBMXKEHHst M3 3TOro kijacca, obrnajarouue
[JIOCKOM TPaeKTOPUEN, JieKalleil B TUIOCKOCTH, KOTOpast He I1a pajieibHa 3TUM NpsMbIM. TTpuBeaeHbI
TaKXKe YCJIIOBUSA, P KOTOPBIX TAKOE JIBUXKEHLE 06anaeT emé ApyriMHu TUICOKMMH TPAeKTOPUSIMHU
3TOro poaa.
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