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JAROSLAV HASLINGER, VACLAV HORAK
(Received November 15, 1988)
Summary. The paper deals with the problem of finding a curve, going through the interior

of the domain £, accross which the flux du/dn, where u is the solution of a mixed elliptic boundary
value problem solved in £, attains its maximum.
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INTRODUCTION

We look for a curve, going through the interior of the domain Q, across which
the flux du/dn, where u is the solution of a mixed elliptic boundary value problem
solved in Q, attains its maximum. The existence of at least one curve is proved for
an appropriate choice of the class of admissible curves. Sensitivity analysis is pre-
sented. By means of this approach, the mass movement problems having the im-
portance in stability analysis of constructions, can be solved.

1. SETTING OF THE PROBLEM

Let
Q = {(x;,x;) e R?| 0 < x, < h(x,), x;€(0, 1)}

be a bounded domain, the Lipschitz boundary Q2 of which is decomposed as follows:
0Q =T, uT,, where

Iy = {(xy, x;) € R*| x; = h(x,), x; €(0, 1)}

and h is Lipschitz continuous in [0, 1].
In  the following mixed boundary value problem (£') is given

—Au=f in Q

() u=0 on I,
du

— =g on I,
on
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with f € IX(Q), g € I*(I';). By V we denote the space
V={veH'(Q)|v=0o0nTI}.

The variational form of (2') reads as follows:

(9) FindueV:
(Vu, Vo)o.o = (f, V)00 + [r,gvds VoeV.

Here Vv = (0v/0x,, 0v[dx,) and (-, *)o.o stands for the usual scalar product in
I}(Q).

Let 0 <& < f < 1,5 >0 be given. By U,y we denote a subset of Lipschitz
continuous functions, defined as follows:

(L) U= f{o|3e[0.a] pe[f 1] o e ([ A,
o2) = () o(F) = ) 55 9 < b on [ 4],
lo(xy) = @(x,)] < Cy|xy — %] Vxy, X, €[, B],

meas Q(¢) = C,} ,

where
Q) = {(x1, x,) e R? | 0= x;, < h(x,) x,e[0,0]u[B 1]

0=x, = ‘P(xl) X1 € [“’ ﬁ]}

(see Fig. 1) and C,, C, are positive constants chosen in such a way that U,, + 0.

2
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r 2(¢) n
n
0 « B8 1 %
Fig. 1

Set

ou -
J((P) = <——— , 1> —_ Irzx((p) g dS —_ j‘[‘ZZ((P) g ds N
o [ea

where <, >20(s) denotes the duality pairing between H™/2(3Q(¢)) and H'/*(02(¢))
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(for the definition of these see [1] and
(o) = {(x;. x;) e R? | x5 = h(x,), x; €(0, a)}
I'3(¢) = {(xy, x,) e R? ] x, = h(x,), x; (B, 1)} .

Remark L.1. If du/on € I2(9Q(¢)), then the duality pairing ¢ ,
by a scalar product in I*(0Q(¢)) and

J(¢)=j Qb—tds+J- O—uds+f ﬂds+f ﬁtds
r(g) 0N r, on i) 0N rag O

where  I'(p) = {(x,, x,) € R? | X, = ¢(x;) Vx; € (o, B)}. Note that the term
{r, éulén ds does not depend on .
Next we shall study the problem

(P)

20(¢) 1s represented

Find ¢* € U,q such that
J(p*) = max J(o).
@eUaq

Applying Green’s formula

ou
(1.2) (Vu, Vo)o 0y = (—Au, 0)g,0p) +<—~ , v> VYo e H'(Q(p))
- [ oa)

with the special choice v = 1 and using the fact that u solves (%) we sce that J(o)
can be expressed as follows:

—H(9) = J(0) = = o fdx = [ruqp gds — fr22(¢)g ds.
Then (P’) is equivalent to
Find ¢* € U,4 such that
F(¢*) = min £(p).

@eUaa

(P)

2. EXISTENCE OF A SOLUTION OF (P)

The aim of this section is to establish the existence of at least one solution of (P).
We have

Theorem 2.1. Let U,y + 0. Then there exists at least one solution of (P).

Proof. Let {¢,}, ¢, € U,4 be a minimizing sequence of (P), i.e.
q = inf S(p) = lim #(p,) .

peUqpa n—o

Functions ¢, are defined on [«,, B,], %, € [0, &], B, € [B, 1]. There exist subsequences
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of {a,}7- 1, {B.}n=1 (denoted by the same symbol) and numbers a*, f*, a* € [0, &],
B* e [P, 1] such that

(2.1) w, >o*, B, p*, n—oo.
Denote

Q, = {(x1,x,)eR? [ 0 < x, < h(x,) x,€[0,0,]U[B,1]
0=x,= (P(xt) X1 € [O‘m ﬁn]} .

Let m be an integer and I,, the interval I, = [a* + 1/m, f* — 1/m].

Let m be fixed. Then ¢, are defined on I,, for n sufficiently large. As (,o,,’,m satisfy
all assumptions of the Ascoli-Arzela theorem one can find a subsequence {¢,:}
of {¢,} and a function ¢™ e C(I,,) such that
(22) ¢ 3 @™ (uniformly) in I,,.

Now, replacing m by (m + 1), one can find a subsequence {¢,:} of {¢,] and
a function ¢™*" e C(I,,) such that

(2-3) 02 3 "D in Ly
Clearly ™+ = '™ in I,,. Repeating the same procedure for any integer m and
passing to the diagonal subsequence determined by means of {¢,:}, {®,], ... one

can construct a sequence (denoted by {¢,}) such that
e, 3 ¢*, n—->o in I,,
for any integer m, where
o*=o™ in I,.
It is easy to see that ¢* € U,4. Indeed,
C, = meas Q, =
= Jodx — [o [oc) dx = fo = [r, [oi dx + fo,, [auivy dx
where meas 0,, —» 0 as m — oo. Keeping m fixed and n — oo, we have
(24) C, = fadx = [p, [35 dx = fo,, [ dx -
Letting m — oo, we finally obtain

C, = [odx — [5G0 dx = meas Q(¢*).

o%(x1)
Further,
o*(o* + 1/m) = lim (@, (a* + 1/m) — @,(x,)) + lim ¢,(x,) =
= lim (@,(a* + 1/m) — @,(x,)) + lim h(a,) = c(m) + h(«*),

where ¢(m)— 0 if m — co. Thus ¢*(a*) = h(a*) and similarly ¢* (8*) = h(B*).
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The other conditions, appearing in the definition of U.q4 are satisfied as well. Now
we will show that

(2.5) lim #(p,) = I (o¥) .
Indeed,
(2.6) lim fr,16,) g ds = lim forg V(@ + (W) dx, =
= [0 g V(1 + (W)?) dx; = [ry10m g ds .
Similarly,
le [ra2pn 9 ds = fra2eom 9 ds .
Further,
lim fo,, fdx = [ofdx — lim {8 ("0 rdx =
= Jaf dx = [ (060, F dx = fogpe S dx.
This together with (2.6) yields (2.5). a

Remark 2.1. The solution ¢* € U,y of (P) is non-unique, in general. Indeed,
let f be a constant in Q and g = 0 on I',. Then

I(¢) = Jaw fdx = f meas Qp) = C,f,

i.e. £ is constant on U,q.
It is possible to assume another choice of U,q, namely

(2.7) U = {9 |30 €[0,d], e [B, 1]: 9 € C"'([2, B])
o(6) = ha), 9(8) = H(B), 55 ¢ < h on [ 6]
lo'(xy)] < €y on (, ), lo"(x))] £ C, ace.
in (o, B) and I(p) = length (@) = C3},

i.e. U,q is a subset of functions which are Lipschitz continuous together with their
first derivatives in [, §] and have a constant length. C;, C,, C; are positive constants
chosen in such a way that U,4 #+ @. We assume the problem (P) with the same cost
functional # but with U,4 given by (2.7). Using the same approach as before, one
can prove

Theorem 2.2. Let U,y, given by (2.7), be non-empty. Then (P) has at least one
solution ¢*.

Proof. In the same way as in Theorem 2.1 one can find a sequence {(p,,},fil,
@, € U,q such that

@, — @*, n— o in Cl(Im)
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for any integer m. Let us prove that ¢* € U,q. It is sufficient to show that I(¢*) = C,.
Indeed,

(2:8) Cs = l{g,) = [ V(1 + (9)?) dx; =
= 51,,, \/(l + ((/’:-)2) dx; + jom \//(1 + (‘P:.)Z) dxy =
= [, V(1 + (9,)?)dx; + ¢(m),

where ¢(m) — 0, m — oo as meas 0,, > 0 for m — oo. Using the fact that ¢, =3 ¢*',
n — oo in I, for any integer m, one has

Jrn V(U (@0)%) dxy = Jr,, V(1 + (9*)7) dx; .

Finally, letting m — oo we obtain from this and (2.8) that I[(¢*) = Cj. O
Sometimes one wishes to identify a curve ¢* € U,4 for which #(¢) is either equal
to k or as close as possible to the given value k. In such a case we set

o) = (Ho) - k)
and define the problem

(Py)

{ﬁnd ¢*e U,y such that
I(o*) = () VYoeUy
with U,q given by (1.1), (2.7), respectively. Using exactly the same approach as before,

one can prove

Theorem 2.3. Let U,y + 0. Then (Py) has at least one solution.

3. SENSITIVITY ANALYSIS

Application of optimization methods for the minimization of # over U, usually
requires the knowledge of the gradient of . The aim of this section is to derive
the explicit form of the derivative of .#.

Let us assume a mapping F,: R? — R? given by

Fxy, x2) = (xp, %) + 17(x,x5), 1>0, (x.x)eQ, ¥Ved.
Here ./ denotes the family of vector fields ¥~ = (¥, ¥7,) satisfying

M ={¥e(H(Q)*|¥ =0o0nT,, F(I'y)=T, for t >0

sufficiently small} .

From the definition of .# we easily deduce that F ,(Q) = Q for t > 0 sufficiently
small. Denote by (¢) = F(Q(¢)), I's, = F(I'y()) the images of Q(¢) and I'y(p),
i = 1,2, respectively, and

I{®) = Jaun S dX + [0 945 + Jrap g ds.
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Our aim will be to calculate

S, V) = %ﬂ((p)

t=0

It is known (see [2]) that

d
G- a(f,,,mfd’?

where f denotes the material derivative of f, given by

f=?f+Vf.~/f=Vf.«/f
ot

= fdx + fdiv ¥ dx,

t=0 2(e) Q(e)

Here we have made use of the fact that f does not depend on t. Applying Green’s
formula to the second term of (3.1) and using the definition of .#, we see that (3.1)
reduces to

d

2 - [ d
¢-2) dt <¢ mw)f x)

Let us calculate d/df ({1, 9 ds)[,=0. We have

i .1
g( gds) = lim —(f gds—J‘ gds):
dt J I2e'(9) t=0 =0+ 1 T2l () r2'(e)

~ lim 1( J T 0+ ) ax, - rg V(i + () dx1> -

=0+ 1 0

~
=j ands+J f“Vnds+J v, ds.
I'(e) I2'(p)

t=0 r22(e)

1 a+ 19 (a,h(a)) N
= lim —J g V(1 +(1)?)dx, =

t=0+1 J,

= g(@) V(1 + (F(®)*) ¥"s(e k() -

1
i(J gds)=11m —( gds—J‘ gds):
dt\J r,e) =0+ 1 \r, 29 r:2(¢)

= lim £<j1 g1+ () dx, — J g /(1 + (1)) dxl> =
B+ t¥1(B,h(B))

=0+ 1 B

Similarly

B
~ lim 1J g V(1 + (W) dx, =
B+t 1(B,h(B))

t-0+
= —g(B) V(1 + (W)* (B) ¥"+(B, h(B)) -
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From this and (3.2) we finally obtain
(33) H(@, V) = [ry /¥ nds +
+ Jra /7w ds + [rap [0 ds — g(B) V(L + (W(B))*) ¥"1(B, h(B)) +
+ g(a) (1 + (W(@)*) 7"y (a, h(ex)) .
If Q is a rectangle, then h' = 01in (0, 1), ¥" = (¥, 0) and (3.3) takes the simpler
form
(3.4) I(@,7) = =[rp fo' [N + (0)?) ¥ 1 ds — g(B)7"1(B. h(B)) +
+ g(o) 74 (a, h(a)) ,
as n; = —@'[J/(1 + (¢)?) on I'(¢) and n; = 0 on I'j(p) U I'y(e).
Let U,, be given by (1.1) and let a solution ¢*: [a*, f*] — R! of the problem (P)
be such that there exists a constant 0 < C} < C,: .
|o*(x,) — (p*()?1)| < C’1|x1 - .Yl‘ Vxy, Xp € [a*, B¥]
and
8 < @*(x;) < h(x;) Vx;e(a*, p*).
The remaining constraint (constant volume) can be removed by introducing the
lagrangian
(3.5 ZL(p) = H(p) — A(meas Q(¢) — C,), ieR'.
Denote
Z (o) = F{¢) — Ameas Q) — C,), t>0.

A necessary condition for ¢* to be a olution of (P) with the above mentioned
property is

. d .
Lo* V) ==L o*)| =F(e*¥)—2| ¥,ds=0
de 1=0 I(o%
for any vector field ¥~ € ./ satisfying supp ¥; < [a*, B*] x [0, h(x,)]. x, € [o*, B*],
i = 1,2. This and (3.3) lead to

f

o+ = A = const.
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Souhrn

IDENTIFIKACE KRITICKYCH KRIVEK
JAROSLAV HASLINGER, VACLAV HORAK
V praci je feSena Gloha nalézt ktivku ¢ z jisté mnoziny pripustnych ktivek, podle niz ktiv-
kovy integral z du/on, kde u je feSenim smiSeného eliptického problému, nabyva svého maxima.

Je ukazano, Ze za jistych predpokladu alespon jedna takova krivka existuje a je dana jeji charak-
terizace.

Pesome

OTOXAECTBJIEHME KPUTUYECKNX KPUBBIX

JAROSLAV HASLINGER, VACLAV HORAK

B pabote usy4aercs 3ajaya HaXOXIAEHUSA KPUBOM ¢ U3 JAHHOTO MHOXECTBA JOMYCTHMBIX KPH-
BbIX, BIOJIb KOTOPO# KPMBOJIMHEHHbIN HHTETPAJIb OT du/0n, T 1€ U — PELUEHHE STUTHIITHYECKOM 3a1a4u,
JIOCTUTAeT CBOETO MAaKCHMAaJIbHOTO 3HayeHMs. IToxa3aHO, YTO NPU HEKOTOPLIX TNPEANOTOKEHUAX
TakKasi KpuBast CylleCTBYeT.
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