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Summary. If is shown that in linear regression models we do not make a great mistake if we 
substitute some sufficiently precise approximations for the unknown covariance matrix and 
covariance vector in the expressions for computation of the best linear unbiased estimator and 
predictor. 
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1. INTRODUCTION 

The theory of linear estimators and predictors in linear regression models belongs 
to the classical methods of mathematical statistics. The best linear unbiased estimator 
BLUE of an unknown mean value, as well as the best linear unbiased predictor 
BLUP of an unknown random variable generally depend on the covariance matrix 
of the observed random vector and on the vector of covariances between the observed 
vector and the predicted random variable. 

We will show that the BLUE and the BLUP do not change too much if we use 
some sufficiently precise approximations of the generally unknown real covariance 
matrix and of the vector of covariances in the expressions according to which they 
are to be computed. This property of the BLUE and the BLUP is called robustness. 

2. ROBUSTNESS OF THE BLUE 

Let us assume that the observed random n x 1 vector X follows the linear regres
sion model 

X = Fp + s , 

where E[s] = 0, E ^ ' ] = 2, I is regular, F is an n x k known matrix of the full 
rank. Let m* = Fp* = F(FI'1r)'1 F ' X ^ X = P*X be the BLUE of an unknown 
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mean value m = F/? of X. It is shown in [4] that m* minimizes the mean square 
integrated error MISE in the class of linear unbiased estimators of m in any (repro
ducing kernel) Hilbert space H(S). The MISE of m* is defined by 

MISE2[m*] = E2[||m* - m||2
(S)] , 

n 

where H(S) is the usual En with the inner product <a, h}H(S) = ]T O.b7.(S
_1)l7 and 

thus |O||H(S) = YJ aiaj(^~1)ij = ^°> a)H(S) f ° r a n y a G E" a n d any positive definite 
. , 1 = 1 

iz x ;? symmetric matrix S. 
Next, it is shown in [4] that for any linear unbiased estimator m~ = P~X of m 

we have 

E 1 [ | |m~-ml , 2 , ( S ) ] = t r ( P ~ I P ~ ' S - > ) , 

where tr denotes the trace of a matrix. 
Now let m* be the BLUE of m and let Z be some approximation (estimate) of the 

generally unknown actual covariance matrix 2". Let us denote by 

m = P~X = ғ^ғï-^ғ)-1 F'.?-łX 

the estimator of m based on I (we assume that Z is a regular n x n matrix). 
Then we can write 

|E x[| |m~ - m| |* ( 5 ) ] - E2[| |m* - m | | 2
( S ) ] | = 

= [tr (P^ZP-'S-1) - tx(P*£P*,S"1)\ = 

= |]P~IP~/ - P*ZP*'\\ . us-1! = 

= |(p~ - P*) I ( P ~ - p*y + p*r(p~ - p*') + 

+ (P~ _ P * ) I P * ' | , us-1! = 

= | p - __ p*|| . (|jp- _ p*|| + 2||P*[|). | |l | | . [[S"1! , 

where we have used the facts that tr (ABf) = (A, B) is an inner product in the 
n 

(Hilbert) space of n x n matrices and ||A|J2 = tr (AA) = £ A2
y is the square of 

-,1=i 
the (Euclidean) norm of a matrix A, for which the inequality ||-AB|| = ||_4[| . ||B[| 
holds for any matrices A and B. 

We will show now that | |P~ — P*|| is small if ||.£ — S\\ is small and hence, according 
to the above derived inequality, the MISEE[m~] does not differ too much from the 
MI5F 2[m*] of the best linear unbiased estimator m* of m. Thus, from the point 
of MISE, the actual unknown covariance matrix Z can be repleaced by its good 
approximation Z when computing a good estimator of m. 

A basis for deriving this result is the following lemma, the proof of which is given 
in [3]. 
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Lemma 2.1. Let F be an n x k matrix with rank (F) = k and let AI = I — -?, 
where I and I are regular matrices. Then we have 

( P I - i F ) - i = (F '2 - -F) - - + 

+ (FT^F)" 1 FS^AIQ + P-Aiy1 I-1F(F'I-1F)-1 

if ||Al|| is sufficiently small. Here P~ = I'1 - S'1F(F,I"1Fyi F'l'1. 

Proof. It follows directly from the proof of Theorem 2A in [3], 

Corollary 1. Let P* = F(F'I~1F)-1 F'l"1 and P~ = F(F'T~1F)-1 F2~l. Then 
P* = P~ - P-AII-1 + P~AI(\ + P 2 A I ) - 1 P~'I~\ 

Proof. From Lemma 2A we immediately get the equality 

P* = F(F'l-1F-1)F'I-1 + P~AI(\ + P~AI)~1 P-'I-1 . 

The proof is completed by using the equality 

2;-1 = j ; - 1 - I-1 AH-1 . 

Now it will not be difficult to prove the following theorem. 

Theorem 2.1. For any positive definite symmetric matrices S and I we have 

lim IK^Hro- - m\\2
H(S)] - Es[\\m* - ro||*(S)]| = 0 . 

||X-ff||-0 

Proof. Using Corollary 1 and the basic properties of a norm we can write the 
inequality 

IIP~ - P*H s (i|p~i + i|p~i2.11(1 + p ^ - r i ) . r MI • 1* - n 
and, as follows from the inequality derived before Lemma 2.V the theorem will be 
proved by showing that 

lim ||(l + P~Al)-'\\ < 00 . 
Il-tfll-o 

However since ||A|| = n . |A||0 and |A||0 = |A||, where ||A||0 denotes the operator 
norm of an n x n matrix A defined by 

||A||0 = inf {c: ||Ax|| = cflxfl for all x s En} 

see [6], we can write the inequality 

||(f + P;AI)-1\\ gn|(l + P 2 ^ I ) - ) | | 0 . 

Using I-4-2?10 = \\Al\\ and Theorem 8.7.3 in [6], we get the inequality 

lim ||(l + P2~zll)~1lj = n 
ll-iil!-0 

and the theorem is proved. 
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Corollary 2. Lei m~ = P~X and m* = P*X. Then we have 

lim Ejfjm* - m~| | | ( 5 )] = 0 . 
||i-£||->o 

Proof. Since 

E,[flm* - m~||2
(S)] = E,[||(P* - P~) Xfl2

(S) = 

= tr((P* - P~) I (P* ' - P ^ S " 1 ) ^ ||P* - P~||2 . flS-1!] . fllfl , 

the proof follows from the proof of Theorem 2.L 

3. ROBUSTNESS OF THE BLUP 

Let us formulate now the problem of a linear prediction in a linear regression 
model. Let X be an n x 1 observed vector with possible mean values 

m = E0[X] = Fp , p e Ek, 

where F is a given n x k matrix rank (F) = k, and let I be the regular covariance 
matrix of the vector X. Next, let U be a random variable with mean values 

E/i[U] = f'P, PeEk 

where f is a known k x 1 vector, and let r denotes the vector of covariances between 
the random variable U and the random variables Xt: i = 1 , . . . , n — components 
of the vector X. 

Then it is well known that the random variable U* given by 

U* = f'P* + r'I-\X- Fp*), 
where 

p* = ( F T ^ F ) - 1 FI^X, 

is the best linear unbiased predictor of U based on X 
This means that 

E^[U*] = Efi[U] for every p e Ek and 

E(M)[tf* - Uf = E(/M)[# ~ UY 

for all p, I and for any linear unbiased predictor U of U. 
We will show now that the predictor U* is robust with respect to small changes 

of the covariance vector r and the covariance matrix I. More precisely, let I and r 
be the true values of the covariance matrix and the covariance vector and let I and r~ 
be their approximations, then we will show that 

lim EI[t7 - U*]2 = 0 , 
||.dr||-*0,||-4I||-»0 

where s 
U = ffi + r-'S'^X- F^), p = (FZ-'F)-1 FZ-XX, 

I and I are regular, I — I = AI and r — r~ = Ar. 
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We can write 

U* = (f, P*)Eu + (-.-1r, MX)En and 

U =(fJ)Eu + (2-lr~,M~X)E„, 

where (•, •),;„ = (•, •) is the usual inner product in E", 

M = I - F(FI-1F)-1 FI'1 = I - P* and 

M~ = / - F(F'T-'F)-1 F'S'1 = / - P~ . 

Next, we have 

EX[U - U*]2 = Es[(f, p" - p*) + (M'Z'r - Al- ' f - ' r - , X)]2 = 

= E2[(f, /5 - P*) + ((M'l'1 - M- ' I - 1 ) r~ + M T^ / i r , X)]2 = 

= Er[(f, p - p*) + ((l~'M - f - ' M - ) r~ + I'MAr, X)f = 

= E£[(fJ - p*) + (Z~\(M - II-lM~) r~ + MAr], X)]2 = 

= E,[ (JT 1 (2; r i P~'-P ' 1 ) f ,X) + 

+ (iT'rjAI - i f ^ / W r ) r~ + /Vizir], X)]2 , 
where 

Pj = (FI-'F)-1 F and P~ = (F'f- 'F)-1 F . 

Let <•, •>«(!) be the inner product in E" defined in part 2. Then we can write 

E I [ U - U * ] 2 = | ( i r i P r ' - p ' 1 ) f | 2
/ ( I ) + 

+ \\(M - I!'1 M~) r~ + /VUr||2(I) + 

+ 2<( i r - 'P r ' - P'O f, (/M - - T ^ A T ) r~ + MArym). 

Using the expression I = S + AI we get 

E,[U - U*]2 = | ( P ; - p~ - AiS-^Dflf^ + 

+ \\(M - M~ - zHl-JA1~)r~ + AUr ! 2 ^ -

- 2 < ( P ; - P ~ ' - J i f -^rOf. 

(M - M~ - AIE-1M~)r~ + MAr}H(I) . 

Now, the inequality 

|H 2 +| |b | 2 -2<a , fa> |^ (H + H ) 2 , 

which holds for any elements a, b of any Hilbert space, implies 

(E,[U - u*YY12 ^ ||(Pi - PV - AiS-'p;')f\\ll(I) + 
+ \\(M - M~ - All-1M~)r~ + MAr\\m) ^ 

^ l(p; - T')f|Uw + yii-'p;'f\\ll(i) + 

+ \\(P* - P~)r~[|//(I) + \\All-1M~r~\H(S) + \\MAr\\H(l) . 
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Since 

HW-IÍ-TI^I 
for any vector h e E" and any n x n matrix A, we can see that all members, except 
the first, on the right hand side of the above inequality for the mean square error 
of prediction, converge to zero if j |Al | | -> 0, ||Ar[| -> 0 (see also Theorem 2A). 

For the first term we get from Lemma 2A the equality 

p; - PI' = P~AZ(\ + p-Aiy1 f - 'p- ' , 

from which it can be seen, as follows from the proof of Theorem 2A, that 

lim ||Pi - Pi"| | = 0 and thus lim ||(P; - P~') f ||H(I) - 0 . 
I I .411| -o II---511-0 

We can formulate these results as a theorem. 

Theorem 3.1. If I and 1 are regular matrices, then 

lim E£[tJ - U*]2 - 0 . 
||,4r ||-+0,|1J2;||-»0 

Proof. It was done before the statement of the theorem. 
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S ú h r n 

ROBUSTNOST NAJLEPŠIEHO LINEÁRNEHO ODHADU A PREDIKTORA 
V LINEÁRNYCH REGRESNÝCH MODELOCH 

FRANTIŠEK ŠTULAJTER 

V článku je dokázané, že v lineárnom regresnom modeli sa nedopustíme velkej chyby, ak 
neznámu kovariančnú maticu a neznámy kovariančný vektor nahradíme pri výpočte optimálneho 
lineárneho odhadu a prediktora ich dostatečné přesnými aproximáciami. 
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P e з ю м e 

УCTOЙЧИBOCTЬ OПTИMAЛЬHOЙ ЛИHEЙHOЙ OЦEHKИ И ПPEДИKЦИИ 
B ЛИHEЙHOЙ PEГPECCИOHHOЙ MOДEЛИ 

FRANTIŠEК ŠTULAJTER 

B cтaтьe пoкaзaнo, чтo мы нe cдeлaeм cepeзнoй oшибки ecли мы в выpaжeнияx для вычиcлe-
ния oптимaльнoй линeйнoй oцeнки и пpeдикции пocтaвии кaкиe нибyдь дocтaтoчнo тoчныe 
aппpoкcимaции для нeизвecтнoй кoвapиaциoннoй мaтpици и кoвapиaциoннoro вeктopa. 

Лuthoŕs address: Doc. RNDr. Frantisek Štulajter, CSc, Katedra teórie pravedepod. a mat. 
ătat. MFF UK, Mlynská dolina, 842 15 Bratislava. 
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