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CONSTRAINED OPTIMIZATION:
A GENERAL TOLERANCE APPROACH
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Dedicated to the Czechoslovak students who struck
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(Received May 10, 1988)

Summary. To overcome the somewhat artificial difficulties in classical optimization theory
concerning the existence and stability of minimizers, a new setting of constrained optimization
problems (called problems with tolerance) is proposed using given proximity structures to define
the neighbourhoods of sets. The infimum and the so-called minimizing filter are then defincd
by means of level sets created by these neighbourhoods, which also reflects the engineering
approach to constrained optimization problems. Moreover, an appropriate concept of con-
vergence of filters is developed, and stability of the minimizing filter as well as its approximation
by the exterior penalty function technique are proved by using a compactification of the problem.

Keywords: constrained optimization, level sets, minimizing sequences, penalty functions,
compactifications.

AMS Classification: 49A27, 65K 10, 54D35.

1. MOTIVATION AND DEFINITIONS

It can be roughly said that the paper has three aims. First it tries to suggest a pos-
sible way how to put right, by using proper definitions, a frequent misunderstanding
appearing in optimization theory in which sometimes an inadequate effort is exerted
on questions about the existence of optimal solutions and their stability. Indeed, in
optimization problems of technical origin, where the data themselves are not known
exactly, engineers certainly do not seek exact solutions, but only ¢-ones. Therefore,
from their point of view, problems concerning the existence of exact solutions look
somewhat artificial. Also the possible instability of the exact solutions, which is
mostly regarded as a bad property, may be rather a good one if the optimization
problems have a character of inverse problems. The instability means, roughly
speaking, that the solutions vary considerably while the data vary only little, or,
vice versa, the values of the cost fuction and of the mapping representing some
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constraints vary negligibly when the solutions change considerably. Yet it is actually
a good situation because such changed solutions are almost as good as the original
ones.

The philosophy of our “tolerance approach” is to replace the exact solutions not
by the ¢-ones (as has been often done already in the classical optimization theory),
but by a collection of these ¢-solutions arising when ¢ passes to zero from above.
It will be shown that such approach has a compactifying character and enables us to
treat problems posed ‘““with tolerance” by applying standard methods using a certain
“closure” of such problems, called compactification. The compactified problems
are then treated as classical optimization problems without tolerance. Besides, the
tolerance setting of optimization problems ensures apriori certain stability and ap-
proximative properties without any data qualification hypothesis (like compactness,
continuity, etc.), which cannot appear within the classical setting of the problems.

Of course, our tolerance approach has limited applicability; e.g. if the cost function
to be minimized were a potential of some equation, we would actually have to look
for exact solutions (=minimizers) because only such solutions can solve the original
equation. Yet, our standpoint will be that the function to be minimized is a cost
and then the ¢-solutions are almost as good as the exact ones (if the latter ones do
exist at all). In the presence of constaints treated also “with tolerance” we shall see
that they may be even better (i.e. they may achieve a strictly lower cost than the
infimum of the problem in the classical setting without tolerance).

As to the second aim, our tolerance approach can be readily applied to a study of
minimizing sequences. In the classical optimization theory we define minimizers,
and afterwards the set of all minimizers, to study stability behaviour of the mini-
mizers. If one takes, instead of the minimizers, the minimizing sequences as a more
advanced concept for solutions (see e.g. [3, 8, 13]), then one immediately realizes
the lack of any notion analogous to the set of all minimizers, which is schematically
shown by the following diagram:

a minimizer € the set of all minimizers
a minimizing sequence € ?777?

Roughly speaking, this gap will be filled in by our definition of the minimizing
filter (cf. Definition 1.1 together with Remark 1.3 below).

As for the third aim, our definitions of the minimizing and feasible filters may be
considered as a generalization of some (slightly modified) “principles of optimality”
due to D. A. Molodcov [4, 5]. In particular, our modification of these optimality
principles reduces considerably the ‘¢ — § gymnastics” and enables us to employ
systematically the standard methods of general topology, which makes all con-
siderations easier to understand (cf. [5]). On the other hand, the optimality principles
and especially their stability from above (see Sec. 2 below) contain a bit more in-
formation than our minimizing filters and a lower bound of a net of such filters.
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Besides, the compactified problems corresponds to what is called relaxed problems
in certain special cases (see e.g. J. Warga [13], cf. also Example 6.2 below). However,
since the compactified problems will serve only as an auxiliary tool, we will not
investigate them here in details (which makes the essential difference between this
paper and the former author’s works [9—11]).

We will systematically use the proximity space theory which is a propzr tool for
our approach to optimization problems; cf. also [9—11]. As this theory is not usual
in optimization, all notions needed will be defined here. Generally speaking, proximity
structures enable us to define neighbourhoods of subsets, being thus ‘“‘coarser”
than uniformities and “finer” than topologies. The proximity theory originated in
general topology by the works by V. A. Efremovich [2] and Yu. Smirnov [12] in
carly 1950’s. For a survey of this theory we refer e.g. to [7] or [1].

Hereafter we use the prefix notation whenever the structures in question may not
be clear, e.g. instead of saying that a mapping is continuous with respect to the
topologies 7 ; and 7, we say briefly that the mapping is (7 {, 7 ,)-continuous, etc.

Let us briefly recall some definitions. A proximity 6 on X is a binary relation on 2¥
(=the power set of X) such that

A04, = A,04, .

(4, U A,) 0B = A 6B or A,B,
A n A, £0=>A04,,

A6A, = A, 0 and A, +0,
A8A4,=3B: A 8B and (X\B)JA,,

where & means the negation of §. If 4,64, or 4,54,, the sets A, and A4, are said
to be near to each other or far from each other, respectively. We will also use the dual
relation to 3, denoted by > ; it means A; > A, iff (X \ 4;) 84,. If A, > A,, we say
that 4, is a d-proximal neighbourhood of 4,. Since the relation > has not got any
standard name in general topology, we dare call it tolerance here.

Every proximity & induces a topology, denoted by .7, by declaring {x; {x} 54}
to be the 7 s-closure of 4. A typical example of a proximity is the proximity J,
induced by a metric d on X: 4,5,4, iffd(A,, A,) = 0whered(A4,, A,) = infd(4,, 4,)
is the distance between the sets 4, and 4, with the convention inf® = + co. Then
A > B means that there is an ¢-neighbourhood B, of B such that 4 > B,, where
B, = {xe X:d({x}, B) < ¢}, ¢ > 0. Another example of a proximity is the discrete
proximity which makes near only sets with a nonempty intersection; the corre-
sponding tolerance is then called discrete.

Let us recall that o/ < 2¥is a filter base on X iff o/ + 0,0 ¢ o7, and A, A, e o =
= 3Be/:B < A, n A,. If, in addition, A > Be .o/ = A€ o/, then &/ is a filter
on X. For example, the collection A4, = {B; B > A} is a filter whenever A is non-
empty. For every filter base .o/ the collection {A4; 3B e o/: B = A} is a filter; we say
that it is generated by .&/. For two filters o/ |, .7, on X we say that .o/, is finer than .&/,
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(or o, is coarser than o) if o/, > o7,. A collection {.+#;},; of filters on X has an
upper bound iff (Vi) 4; + 0 for every finite subset J of I and A4; e «/;. Then the
filter generated by the base {(,., A;; J < I finite, 4; € =7} is called the upper bound
of {&7 i}iel'

Now we pose several “syntactic” rules by means of which we will write our opti-
mization problems in the “tolerance” notation.

Rules.

i) The optimization problem will be the following formula: “Minimize f(x) on X
with tolerance > subject to &/, where f is a function X —» R, R = Ru {+ 0,
— oo}, > is a tolerance on R, and & is a filter on X.

ii) For C * 0, by saying “C with tolerance > we will mean the filter C,,.

ili) For g: X — Yand & a filter on Y, by saying “g(x) meets o/ we will mean the
filter on X generated by the base g~ '(o/), ie. the filter {4 = X;3Be «:
g~ '(B) = A} (if it is a filter at all).

iv) The logical conjunction of statements representing filters on some set will mean

the upper bound of the corresponding filters (if it is a filter).

v) If > is the discrete tolerance, then instead of “‘with tolerance > we will say
“without tolerance”.

vi) “Minimize f(x) on X with tolerance > will mean “Minimize f(x) on X with
tolerance > subject to {X}”.

Now, we define notions analogous to the set of all feasible points, to the infimum
and to the set of all minimizers in the classical optimization theory.

Definition 1.1. Let (P) be an optimization problem according to Rule i), i.e.
“Minimize f(x) on X with tolerance > subject to 2/”. Then we put

F(P) = o,

inf (P) = sup e infees f(x), and

MP) ={AcX;3Aded, B> [—oo,inf(P)]: An f~'(B) = A},
and call them the feasible filter, the infimum, and the minimizing filter of (P),
respectively (provided .#(P) is a filter at all).

Remark 1.1. Obviously, #(P) and inf (P) do not depend on the tolerance with
which f is to be minimized. Since & is a filter and the mapping A inf f(4) is
monotone, we may define alternatively inf(P) = lim,,, inf,., f(x). If > is the
tolerance on R such that the corresponding proximity induces the standard compact
topology of R, then it is quite evident that inf (P) is the lowest value o for which &
and the filter generated by f~'([ — o0, «];.) have the upper bound (which is then
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equal just to .#(P)). On the other hand, .#(P) may contain the empty set and thus
need not be a filter on X if > would be, e.g., the discrete tolerance on R (i.e. if f(x)
would have been minimized on X without tolerance).

Example 1.1. Let us consider the problem in the classical notation:
minimize f(x) on X
subject to xe A and
g(x)eBn C.

For simplicity suppose g(4) n B~ C # 0. Exploiting Rules i)—v), we can para-
phraze this problem in terms of tolerance as follows (using also the discrete proximity,
for example):
minimize f(x) on X with tolerance >,
subject to x meets A with tolerance > and
g(x) meets B with tolerance >, and
C without tolerance,

(P,

xample)

where >, >, and >, are some tolerances on R, X, and Y, respectively, g: X — Y,
B,Cc Y, AcX. By Definition 1.1, e.g. F(Poympe) = (D = X; 34>, A,
B>,B:Ang '(Bn C) < D}.

We will investigate the abstract optimization problem which would be written
in the classical notation as follows: minimize f(x) on X subject to g(x) e C, where
fiX—>R, g:X—Y, CcY. For problems of more complicated structure see
Sec. 6. To distinguish proximities (or other structures) on different sets, we will
employ a subscript (thus dy, dy, etc. will mean some proximities on X or Y, respec-
tively). As for the proximity Jg, in what follows we will confine ourselves to the case
when Jg induces the standard compact topology of R (thus g is determined uniquely),
and the corresponding tolerance on R will be denoted by > without causing any
discrepancy with the usual ordering of the extended real line; obviously, for a, b e R
we have [ — o0, a] > [—o0, b] ifand only if a > b or a = b = + 0. Furthermore,
given some fixed proximity dy on Y, > will denote the corresponding tolerance, if it
is not said otherwise. Using the just introduced tolerance notation, we will investigate
the optimization problem

P) minimize f(x) on X with tolerance >
subject to g(x) meets C with tolerance >.

To satisfy Rule i), “g(x) meets C with tolerance” must be a filter on X. This is true
if and only if
(1.1) g(X) and C are dy-near to each other, i.e. g(X) §,C .

Obviously, (1.1) is weaker than the classical feasibility condition g(X)n C = 0.
Being important for all the forthcoming results, (1.1) will be implicitly assumed in
what follows.
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Note that inf (P) depends on the proximity 8y in a monotone manner, namely the
finer the proximity dy (i.e. the smaller with respect to the ordering of binary relations
on 2' by inclusion), the greater the infimum of (P). In particular, for the finest
proximity on Y (i.e. for the discrete proximity) we obtain the greatest value for the
infimum of (P), namely inf f(g~*(C)), which is obviously the infimum of the problem
treated in the classical sense, that means without tolerance. Let us remark that, for
a general tolerance >, the non-negative quantity inff(g~'(C)) — inf(P) is just
what is called a duality gap in the classical optimization theory (of course, when the
perturbations by means of which a dual problem is constructed are taken in accord
with our tolerance), cf. [10; Sec. 6.2]. Note that if inf (P) # inff(g~'(C)) and C
is 7 5,-closed, then .#(P) is necessarily a free filter on X, which means () scup) 4 = 0.
Under some qualification hypotheses about the data f, g, C, and dy, we can even
ensure that the gap inf f(g~'(C)) — inf (P) is zero. Suppose that there exists a proxim-
-ity 0y on X such that

(1.2) AoyA, = f(A) 65 f(A;), and
(1.3) VB> g (C)3C>» C:g"(C) = B,

where the first tolerance > corresponds to J, while the second to . By definition,
(1.2) means that f is (dy, dg)-proximally continuous. In particular, (1.3) is fulfilled
if g7' is a singlevalued (8y, dx)-proximally continuous mapping. If the proximities
Jdy, 8y and Jg are induced by some metrics dy, dy, and dg, respectively, then (1.2)
means recisely that f is uniformly continuous in the usual sense and (1.3) is guaranteed
when the (possibly multivalued) mapping g~ ' is uniformly Hausdorff continuous;
it means Ve >0 In >0 Yy, y,e YVidy(y, y,) Sn=g""(y) = {xeX; dy({x},
g7 () £ ¢}. Also, (1.3) is valid when Jy induces a compact topology on X, g is
continuous and C is closed.

Realize that, for given data f, g, C, dy, (1.2) requires 0y to be fine enough, while
(1.3) requires 5y to be sufficiently coarse, hence (1.2) together with (1.3) represent
actually a qualification hypothesis about the data. It is clear that such d, does exist
only when Jy is fine enough (particularly, it always exists if dy is discrete).

Proposition 1.1. Let g~ '(C) # 0 and let there exist a proximity 3y satisfying
(1.2) and (1.3). Then inf (P) = inf f(g~'(C)).

Proof. It suffices to show that inf(P) = inff(g~'(C)). We may suppose that
inf f(g~*(C))> — oo, because the converse case is trivial. First, we treat the case
inf f(g7'(C)) + +oo. We will show that Ve > 0 3C, » C: inff(g”'(C,)) =
= inff(g~'(C)) — &. As g~ '(C) is nonempty, by (1.2) we can choose B, > g~ '(C)
such that inf f(B,) = inf f(g~'(C)) — &, and afterwards by (1.3) we can take C, > C
such that g~ '(C,) = B,. We get inf (P) = inf f(g~'(C,)) = inff(g~'(C)) — «.

In case inf f(g~'(C)) = +co we can show in the same way that Ve > 0 3C, > C:
inf f(g~'(C,)) = 1s. O
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If (1.2) and (1.3) cannot be satisfied by any 5y, a non-zero gap can actually appear.
It happens typically when X and Y are infinite-dimensional Banach spaces, f is
uniformly continuous with respect to the norm of X, dy is induced by the norm of Y,
and g is a compact operator. Then the problem with tolerance may offer “better”
solutions (i.e. at lower cost) than that without tolerance. The same situation occurs
in the relaxed-control theory [13] where g is typically governed by a differential
equation and the relaxed controls may achieve lower cost than the ordinary ones.

Let us illustrate Definition 1.1 for (P) by the case when §y is induced by a metric dy.
Then the feasible filter #(P) has a base

{{xeX; dy({g(x)}, C) £ &}; ¢ > 0}
and, if inf (P) = — o, the minimizing filter .#(P) has a base
{{xeX; f(x) £ inf(P) + ¢ dy({g(x)}, C) < &}; ¢ > 0} .

In particular, both #(P) and .//(P) have countable bases. Besides, they may be
considered as generalizations (after slight modifications) of some principles of
optimality in the sense of D. A. Molodcov [4, 5]. Let us confine ourselves to the
more illustrative case of .#(P). In the case Y = R", C = (R*)", R* = [0, + oo,
g =(gy, ..., gu), and 8y the Euclidean proximity on R", Molodcov [4] introduced
the principle of optimality which can be rewritten in our notation (with a discrete
proximity on X) as follows:

Min (Egs €1y «vus Eyp Ogy ey 0,) =
={xeX; f(x) £ ooy, ..., ) + &0, g1(x) + & = 0,...,g,(x) +
+ ¢, = 0},

where o(oy, ..., 0,) = inf {f(x); g,(x) + 2, 2 0,...,g,(x) + o, = 0}. It is easy to
see that oo, ..., o;,) converges from below to inf (P) if all a; \ 0. Clearly, for &; > 0
the sets of the form Min (&g, &y, ..., &, ...) With ¢(ay. ..., ;) replaced by inf (P)
generate just the minimizing filter .#Z(P). Such an approach to optimization problems,
admitting “‘e-tolerance’ both in the cost function and the constraints, is undoubtedly
very realistic from the viewpoint of applications in technical practice.

To justify our definition even more, we will show a connection with the standard
notion of minimizing or feasible sequences. For a sequence s = {s,},.y. Where
s, € X and N is the set of natural numbers, we define the so-called sequential filter
F(s) as a filter on X generated by the base {{s, e X; n = m}; me N}.

Defirition 1.2. A4 sequence s = {s,},y is called feasible or minimizing for (P) if
the corresponding sequential filter #(s) is finer than the feasible or the minimizing
filter, respectively.

If 6, is induced by a metric dy, a sequence s is feasible if and only if
lim,_,, dy({g(s,)}. C) = 0.
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Proposition 1.2. For any sequence s = {Sn},,eN the following statements are equi-
valent to each other.

(a) s is @ minimizing sequence for (P),
(b) s is feasible and lim sup,_, , f(s,) < inf (P),
(c) s is feasible and lim,_, , f(s,) = inf (P).

If, in addition, the filter C; has a countable base, then they are also equivalent
to the statements

(d) s is feasible and limsup,., f(s,) < lim sup,.,, f(5,) for every feasible
sequence § = {3,},cn>
(e) s is feasible and lim,.,, f(s,) < liminf,., . f(3,) for every feasible sequence

§= {gn}neN'

Proof. By the definition, (a) is equivalent to: Va > inf(P) VC> C ImeN
Vn = m: f(s,) < a and g(s,) e C, which is nothing else than (b). Suppose that
a = liminf,_,, f(s,) < inf (P). Then, for every a > o and C > C, there would
exists s, elev,fn g *(C), in particular the level set lev,fn g~ !(C) would be
nonempty, hence supgscinf,-1¢ f(x) < « < inf (P), which contradicts Defi-
nition 1.1. Therefore, (b) = (c). The converse implication is trivial. By the same
argument we obtain that lim sup,_,, f(s,) < inf (P) and liminf,_ , f(s,) < inf(P)
is not possible provided s is feasible, thus (c) implies (d) and (e). Moreover, if {C,},cx
is the countable base of the filter C,, we can take §, € leViypys1/af 0 g~ '(Co)s
which gives a feasible sequence {3,},.y with lim,_,, f(§) = inf (P). Then obviously
(d) = (b) and (e) = (c). O

Remark 1.2. The statements (d) or (e) are sometimes used for the definition of
minimizing sequences; we refer e.g. to J. Warga [13; II1.2] who used (e) or E. Polak
and Y. Y. Wardi [8] who used (d) for some special problems. However, somewhat
different terms are usually used (asymptotically or eventually feasible sequences
and asymptotically minimizing sequences or minimizing approximate solutions,
etc.). We also refer to E. G. Golshtein [3] who required, in addition, that the feasible
sequences mapped by f have a limit in R (and then called them generalized plans).
For the minimizing sequences this additional requirement is fulfilled automatically,
however; see (c) Of course, these standard notions will coincide with that of ours
only if the tolerance > is taken appropriately (namely if > is induced by the metric dy
used for the definition of these stadard notions).

Remark 1.3. It can be easily demonstrated that, if the filter C, has got a countable
base, then the feasible (or minimizing) filter of (P) is equal just to the intersection
of the sequential filters of all feasible (or minimizing) sequences for (P).Thus, in
this countable case, we have an alternative definition of #(P) and .#(P), and this
paper can be regarded as a study of the collections of all feasible or minimizing
sequences.
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Remark 1.4. If the filter C, has no countable base, inf(P) need not be attained
by any feasible sequence: Take a proximity space (Y, dy) and its subset C such that
(Y~ C) 6yC and the intersection of an arbitrary countable family of §y-proximal
neighbourhoods of C is again a dy-proximal neighbourhood of C (such situation
does exist). Then take X = Y, g the identity on X, f(x) = 0 for x ¢ C and f(x) = 1
for x e C. Since C » C is not true, inf (P) = 0. On the other hand, if a sequence
{S, ey s feasible, s, must belong to C for all sufficiently large n, hence lim,_, ,, f(s,) =
= 1. Thus we have got an example of a problem that does not possess any mini-
mizing sequence.

2. LIMES INFERIOR OF A NET OF FILTERS

In the classical optimization theory the solutions (minimizers) are understood as
points of X. Therefore, to treat stability or approximation of the set of minimizers,
a concept of convergence of subsets of X is needed, which is usually introduced by
means of some topology. In our tolerance approach we have defined the minimizing
filter instead of the set of minimizers, thus we need a concept of convergence of filters
on X. It should be emphasized that no topology on X will be employed.

Again we start with a motivation. Consider a filter .« on X having a countable
base {4}y and a sequence {7}y of filters on X such that each .2/’ has a countable
base {A;};cy. If & and /' are interpreted as some principles of optimality in the
sense of [4, 5], then “stability from above” by Molodcov [4; Def. 2] can be written
in our notation as: Vke N Ji,e N 3n, e N Vi = i: A, < A, 1t is evident that such
definition requires the indices of different bases to be comparable with each other.
If we do not suppose it, that means every base has indices of its own, we come to the
following condition:

VkeN Ji,eN Vi = i, 3n,e N: A} < 4.

Furthermore, if we replace N by a directed index set (I, <) and avoid the assumption
concerning the countable bases, we obtain the following simple condition:

(2.1) VAe.of Jigel Viz iy Aesst.

Definition 2.1. A filter o/ on X is said to be a lower bound for a net {sZ%} , of
Silters on X if (2.1) is fulfilled.

This definition has a simple interpretation: Let ./ and </ be filters corresponding
to an original and an approximate (or perturbed) problems, respectively, and let
A e of represent the set of approximate solutions (with a certain accuracy) of the
original problem. If o/ is a lower bound of the net {Mi} 1> then the elements of A
can be obtained by solving approximately the i-th problem with i € I sufficiently large
and also with accuracy sufficiently large (depending on i). Of course, in such a way
we can obtain only some elements of A, but it is the usual situation even in the clas-
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sical optimization: numerical methods yield only some minimizers, not the whole
set of them. However, such particular answer is entirely satisfactory for most
optimization problems in technical practice.

It should be also recalled that the ordering of filters on subsets of X by inclusion
has an opposite character to the ordering of subsets of X by inclusion (e.g. 4; = 4,
iff o/, o o/, where o/; = {4 €2%; 4 o A;}), thus the lower bound in Definition
2.1 corresponds freely to an upper bound in the classical concept of optimization
theory (cf. also Lemma 5.1 below).

It is evident that if .7 is a lower bound for a net of filters, then every filter coarser
than o is a lower bound, too. It encourages us to look for lower bounds that are as
fine as possible. It is interesting that, for any net of filters, there exists the finest
lower bound:

Proposition 2.1. Let {</'},, be a net of filters on X. Then there is exactly one
filter &, on X such that:

i) o, is a lower bound for {'} .,

it) if o is another lower bound for {a/'} ., then o < of,.

Proof. It is evident that there can exist at most one filter o7, satisfying i) and ii),
hence it suffices to construct some .7, that will satisfy i) and ii).

We will show that the set of all lower bounds for the net {.o/'} ., let us denote it
by £, has got an upper bound, that means for every n e N and every choice A4, €
e, e with k = 1,...,n, the intersection A, n A, n ... A, is nonempty. As
L, e 8,by(2.1) thereis i, eI suchthat 4, e o/ foralli = i,. As(I, =) isa directed
set, there exists j = iy, such that j = i, for all k = 1,...,n. Then all 4, belong
to the filter .2/’ and therefore their intersection cannot be empty, since otherwise .7/
would not be a filter.

Take for </, the upper bound of 2. As .o/ = o/, for every o ¢ £, ii) is immediately
satisfied. It remains to show that &/, ¢ £. By the definition of 7, for every 4 € &/,
thereisne N and A4, c ¥, e k=1,..,n,suchthat 4, n...n 4, = A. Taking j
asabovewe get A, € o/ foralli = jandk = 1, ..., n,and thus also 4 ¢ ./’ because ¢
are filters on X. This shows, in view of (2.1), that 7 is a lower bound for {=7'} ;. O

Definition 2.2. The finest lower bound for a net {s/'},, i.e. the filter o, from
Proposition 2.1, will be denoted by Lim inf,.; o7,

Corollary 2.1. A filter 7 is a lower bound for a net {o'},, if and only if o <
< Liminf,, 27"

Proposition 2.2. Let {o/%},; be a net of filters on X, let </ be its lower bound
such thatVicl 3j = it o/ < /. Then o/ = Lim inf,, o/".

iel

Proof. In view of Corollary 2.1 we are to prove that o/ is finer than any lower
bound 7' for {«/'} ;. By (2.1), for any A c o/’ there is i ¢ I such that A e <7/ for
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every j = i. Then A € o/ because of the assumption &/ = .o for some j = i. As this
holds for every 4 € /', we have proved o/’ < of. O

Definitions 1.2 and 1.3 and Remark 1.1 encourage us to study how the fact
&/ < Liminf,; /" is reflected by the sequences whose sequential filters are finer
than 7 or /'

Proposition 2.3. Let {</"}, .y be a sequence of filters on X, let s/ < Lim inf,_, <"
be a filter on X with a countable base, and let s* = {s},},..y be sequences on X such
that #(s") > " for all neN (recall that #(s") is the corresponding sequential
filter). Then there is a function u: N — N such that #(s) > o for every sequence
s = {sh buen with m, = p(n).

Proof. Let {4}y be a countable base of /. We may suppose 4; = X and
A; > A4y forallieN. By (2.1),Vie N 3l;e N Vn = I;: A; € o/". We may suppose
Iy =1and [; < I;;, for all ie N. Then, for every n e N, there exists exactly one
j(n)eN such that [;,) < n < I, ;. Obviously, the function n > j(n) is non-
decreasing and lim,,, j(n) = +c0. Put B, = Aj,. The collection {B,},.y is again
a base of &/ with B, © B, and, in addition, B, € &/" for all n € N. Since #(s") o
> /", there is p(n) such that s, € B, whenever m = pu(n). Choosing m, = u(n),
we get s, € B,, hence also s, € B, whenever n > m. Since {B,,},.y is a base of </,

we can see that #(s) > o for s = {s)},ey With m, = p(n). O

3. STABILITY OF THE INFIMUM AND THE MINIMIZING FILTER

The notions from Definition 1.1 can be reasonable only if they are stable, i.e.
if they vary only a little when the data on which they depend vary also little. We
will show in this section that the tolerance approach apriori ensures certain stability
whenever the perturbations of the data are “compatible” with the tolerance employed.
Let us suppose that (I, =) is a directed index set and, for i € I, we are given mappings
fi:X > R, g": X - Y, and subsets C' of Y. The proximity §, and thus also the
tolerance > does not depend on i. Then we consider the following perturbed
optimization problem:

(P) minimize f(x) on X with tolerance >
subject to g'(x) meets C’ with tolerance > .

Of course, we define #(P?), inf (P') and .#(P") again by means of Definition 1.1,
supposing the generalized feasibility condition (1.1) to be valid also for (P?), i.e.
g'(X) 6yC'. As we will need a uniform convergence of /* and g’, we need some uni-
form structures on R and Y, respectively. Recall that a filter  on Z x Z with the
properties YWe #: A =« Wand Ve ¥: VoV < Wis called a semiuniformity on Z;
see [6]. If, in addition, W ™' e % whenever We %, % is called a uniformity on Z.
Here 4 = {(z, z); z € Z} denotes the diagonal of Z x Z, W™ '{(z,, z,); z,Wz,} is
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the inverse relation to the binary relation W, and VoV = {(zy, z,); 3z3: z,Vz3,
z3Vz,} is the composite relation (as Vis a binary relation, we use the infix notation,
i.e. z,Vz, means (zq, z,) € V). For a (semi)uniformity on Z and mappings ¢, ¢":
X — Z, we say that ¢' converge %-(semi)uniformly to ¢ iff VVe % Jigel Vi = i,
Vx € X: ¢'(x) Vo(x). Any uniformity % induces a proximity, denoted by J,, by
declaring A84B iff (A x B)n V + 0 for every Ve %. Of course, the topology 7
induced by % is defined as the topology induced by the proximity J,.

We say that C is a §y-upper bound for a net {C'},; iff ¥V > C Jiel Vj = i:
C/ = C. Note that, if dy is induced by a metric, this fact is nothing else than the
upper Hausdorff semicontinuity of the set-valued mapping i — C'.

The collections g and #g of all (7 x 7 g)-neighbourhoods of the sets 4+ =
= {(a,b)eR x R; a= b} and 4 = {(a,b)eR x R; a = b} form a semi-uni-
formity on R and the standard uniformity on R, respectively (g is the standard
compact topology on R). Let us suppose that we have got a uniformity %y on Y
inducing the given proximity 8. In applications, when (Y, dy) is a metric space and
Sy = Jg4, it is natural to take the uniformity %y = {Ve 2"*Y; 3¢ > 0: dy(yy, y2) <
< ¢ = y,Vy,}. Now we can impose assumptions on the perturbed data:

(3.1) S converge % -semiuniformly to f,
(3.2) g’ converge %y-uniformly to g,
(3.3) C is a §y-upper bound for the net {C'} ;.

Theorem 3.1. If (3.2) and (3.3) are valid, then
(3.4) #(P) < Lim inf #(P') .
iel
If, in addition, (3.1) is valid, then
(3.5) inf (P) < lim inf inf (PY).
iel

The proof of this theorem as well as of the following ones is postponed to Sec. 5
where it will be performed by a suitable compactification. To obtain an estimate
also for the minimizing filter, we must strengthen the assumptions:

(3.6) f¥ converge %g-uniformly to f .

Theorem 3.2. If (3.3), (3.6) are valid, C' = C, and g' = g, then

(3.7) Z(P) = Lim inf #(PY),
iel
(3.8) inf (P) = lim inf (P"), and
iel
(3.9) AM(P) = Lim inf #(P").

iel
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It should be emphasized that the above stability results hold for arbitrary data
(without any continuity requirement for f or g, etc.), which is caused by admitting
tolerance in the definition of the problem. This feature has no analogy in the
classical optimization theory. On the other hand, to ensure stability with respect
to another perturbation of the data (e.g. stability of inf(P) and .#(P) when C'
converge to C regarding the Hausdorff uniformity of %y) we would have to impose
some qualification hypothesis on the data.

Theorems 3.1 and 3.2 together with Proposition 2.3 can be used for minimizing
or feasible sequences. Roughly speaking, taking minimizing or feasible sequences
for the perturbed problems, we get a minimizing or feasible sequence for the original
problem by means of the diagonalization procedure whenever the members of the
sequences in question are chosen large enough:

Corrolary 3.1. Let I = N, (3.4) or (3.9) be fulfilled, let the filter C,. have a count-
able base and, for all ne N, let s* = {s}},..y be a feasible or minimizing sequence
for (P"). Then there is u: N — N such that every sequence s = {s% },.y with m, =
> p(n) is feasible or minimizing for (P), respectively.

4. NUMERICAL APPROXIMATION OF THE MINIMIZING FILTER

The tolerance approach to optimization problems, being realistic from the technical
standpoint and stable as shown in § 3, is moreover closely related with the usual
numerical methods. It may offer better understanding how these methods actually
work in the general case when the traditional conditions are not fulfilled.

We will confine ourselves to an exterior penalty function method, which is the
simplest method how to treat the constraint g(x) e C, though most of the results
stated below are preserved also for more advanced methods like the augmented
Lagrangean ones. As usual in the penalty technique, we approximate (P) by a family
of unconstrained problems (P,) (again considered here with tolerance) with the cost
function augmented by a penalty term multiplied by a parameter r € R* = [0, + oo[:

\ (P) minimize f,(x) = f(x) + r h(g(x)) on X with tolerance > ,

where h: Y — R is a penalty function compatible with C and with the proximity &y
in the following manner:

(4.1) h(C) =0,
(4.2) h is (8y, 5g)-proximally continuous ,
(4.3) VE> C 3e> 0: h(Y~C) =z ¢.

As R is compact, (4.2) is equivalent to the (%y, %g)-uniform continuity of h provided
Uy induces dy. Note that if a function with the properties (4.1)—(4.3) does exist,
the level sets lev, h = h™'([ — oo, ¢]) with ¢ > 0 form a base of the filter C,,, hence
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we must confine ourselves to the case when this filter has a countable base. Never-
theless it does not represent any restriction for most problems arising in technical
applications. In a typical case when 6§, is induced by a metric dy, we can obtain
a function h satisfying (4.1)—(4.3) if we put h(y) = q(dy({»}, C)), where g: R —> R
is an arbitrary continuous, increasing function with g(0) = 0.

Furthermore, we assume f to be bounded from below, i.e.

(4.4) IM > -0 VxeX: f(x) = M.

Of course, we define inf (P,) and .#(P,) again by means of Definition 1.1. As (P,)
is unconstrained (i.e. #(P,) = {X}) we now have simply inf (P,) = inf f,(X) and
MP,) = {4 < X; e > 0: leViypysofs = A}

Theorem 4.1. Let (4.1)—(4.4) be valid and inf(P) # + . Then the function
r > inf (P,) is nondecreasing, and

(4.5) inf (P) = liminf(P,),
r— oo
(4.6) JA(P) < Lim inf .#(P,) .
r—o

For the proof see again § 5.

There are simple examples showing that generally #(P) + Liminf, .//Z(P,).
However, the penalty-function approximation of the tolerance constrained opti-
mization problem is so natural that, when used carefully, this method can even
yield precisely the minimizing filter. Put &, , = {4 €2%; lev,f, = A}. Clearly,
&, is a filter on X if a > inf(P,) (particularly if @ > inf(P)), and #(P,) =
= U{ZL, . a > inf(P)}].

Theorem 4.2. Let (4.1)—(4.4) be valid, inf (P) # + o0, and let a: R —> R be an
arbitrary decreasing function such that lim a(r) = inf (P). Then

reow

(4.7 A(P) = Liminf %, ,,, .

r—=om

It should be pointed out that the penalized problem (P,) can be handled by digital
computers only when X is a subset of a finite-dimensional linear space. If it is not,
we must perform further approximation: instead of X, which is infinite-dimensional,
we take some (finite-dimensional) subsets X* of X, k € N, such that

(4.8) X"t < X = X whenever k, <k, .

Besides, to ensure convergence we must suppose some data qualification, namely:
there exists a topology 7 y on X such that

(4.9) Miew X* is T y-dense in X, and

(4.10) fand g are (7, T g)- and (7 y, 7 y)-continuous, respectively,
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where J ¢ is the standard compact topology on R and J7 is the topology induced
by Jy. It is clear that (4.9) requires 7 y to be coarse enough, while (4.10) conversely
requires .7 y to be fine enough, therefore existence of a suitable topology J y may
be understood actually as a certain data qualification.

Usually we have to approximate also the cost function f and the mapping g,
say by methods like numerical quadrature, finite-difference or finite-element methods,
etc. Thus we get some mappings f*: X* — R and g¢*: X* — Y. For simplicity, we
suppose that the penalty function h is simple enough to be evaluated exactly, which is
a frequent case indeed. We will assume the following approximative property
(% and %y are the uniformities already used in (3.2) and (3.6)):

(4.11) VYVeUg Ikye N Vk = ko Vxe X f{x) Vf(x),

(4.12) VVeWUy IkgeN Yk = ky Vx e X*: g*(x) Vg(x).

Now we can approximate the penalized problem (P,) by the problem:

(PY) minimize fi(x) = f*(x) + r h(g*(x)) on X* with tolerance > .

We could also define this problem as: “Minimize f%(x) on X with tolerance > subject
to x meets X* without tolerance”, which would require formally to define f* and g*
on the whole space X, however. Thus we have preferably defined (P}) as done above,
which causes, on the other hand, that .#(P}) is a filter not on X (if X # X*) but

on X* and thus we are forced to modify it by introducing .# x(P}) as the filter on X
generated by the base .#(PY).

Theorem 4.3. Let (4.1)—(4.4), (4.8)—(4.12) be fulfilled and inf(P)+ +co.
Then there exists a function x: Rt — N such that

(4.13) inf(P) = lim inf (PY), and
k= w,r—=w k=x(r)
(4.14) A(P) < Liminf . (P)).

k= 00,r— 1,k 2 x(r)

We observe that the convergence is ensured only under a “stability condition”
k = (r). In other words, k must approach infinity sufficiently quickly in comparison
with r. We can easily construct examples where the convergence is violated when
only k — oo and r — oo. However, in concrete problems the choice of the function »
may require fine knowledge of the properties of the data (cf. Example 4.1 below),
and therefore it is surely useful to state an additional data qualification that guarantecs
the unconditional convergence: Let us suppose that there exist a proximity dy on X
(then Jy in (4.9) and (4.10) is induced by Jy), a set Cy = Y, and a point x, € X
such that:
(4.15) £ f* an'd g, g" are (8, 9g)- and (8, dy)-proximally continuous,

respectively,

(4.16) Cy is T y-open and g(x,) e Cy = C < cl,C, ,
(4.17) VB > g~'(C,) 3C > Cy: g~1(C) = B,
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where cl,C, means the I y-closure of C, in Y. Let us remark that (4.16) is ensured
il Y is a linear topological space, C is a convex set with a nonempty interior int,C
and g(x,) € int,C for some x, € X (then (4.16) is satisfied with C, = intyC). Such
condition appears very often in classical optimization theory where it is called the
Slater constraint qualification. Similarly as (1.3), the condition (4.17) is guaranteed
if g7' is a singlevalued (Jy, 6y)-proximally continuous mapping, or, in the case
that 6y and &y are induced by some metrics, if the (multivalued) mapping g~ ' is

uniformly Hausdorff continuous.

Theorem 4.4. Let (4.1)—(4.4), (4.8)—(4.12), (4.15)—(4.17) be fulfilled, and let
inf(P) & +oo. Then

(4.18) inf(P) = lim inf(P}), and

k= .r=>o

(4.19) M(P) = Lim inf /,(PY).

k= o r—oc

Note that (4.15)—(4.17) imply (1.2) and (1.3), hence Theorem 4.4 cannot be used
in case inf (P) < inf f(g~'(C)).

Example 4.1. From the proof of Theorem 4.3 in §5 it is evident that, if one
knows an estimate of the discretization error:

[inf (Pf) — inf (P,)| < &(r, ko) forall k =k,

then for x from Theorem 4.3 one can take arbitrary »x: N - N such that
lim,_,, &(r, #(r)) = 0. This error estimate can be typically obtained as follows:
let X and Y be normed linear spaces, let |[*[x and ||y be their respective norms,
and let f, g, and h be Holder continuous, i.e. for every x,, x, € X, y, y, €Y

lf(xl) - f(XZ)I = L“"‘t - xz”y 8
lg(x:) = 9(x2)]ly = Lix; — xa[|%
Ih(y;) = h(y,)| = Ly, = ya|%,

hold for some positive constants Land o’s. Moreover, let the following rate-of-error
estimates be known:

[f(x) = f4(x)| £ L k77, Jg(x) — g*(x)|y £ L. k7P
for every x € X* and some positive f’s, and finally let
(4.20) supinf ||x — %[y S L. k77, y>0.

xeX XeXk

The following situation can serve as an example for (4.20) (the notation is standard):
Let Q be a polygonal domain in R", X a bounded subset of the Sobolev space
W'2(Q), but let X be endowed by the norm |- | of the space I*(Q). Let X* = X
be spaces of the finite-element type, constructed, say, by means of linear triangular
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elements (1/k is the mesh parametr). Then (4.20) with y = 1 follows by the well-known
inequality inf |x — %]y < (1/k) [x][y1.2c0)
XeXk

Now the following estimate can be easily verified:
inf(P,) — Lo(k™"" + r. k™™ < inf (P}) <
< inf(P,) + Lo(k™" + k7P + r. (k77" 4 k~"Pa))

with some L, > 0, and we can obviously put x(r) = r" with v > max {1/(ynz,),
1/(2,8,)}. Note that neither o, nor 8, occur in this estimate of v.

5. COMPACTIFICATIONS OF THE PROBLEM (P)

The above introduced features suggest that the optimization problems resulting
from admitting tolerance behave like classical problems without tolerance but on
a compact space X. In this section we explain this fact by constructing a “closure”
of the problem (P), which yields, in addition, simple and elegant proofs of the above
stated assertions. It may also help to obtain further results for problems posed with
tolerance because behaviour of the compactified problems introduced below gives
a good hint for behaviour of the original problem with telerance.

Let (X, 7x) be a topological space, (Y, %y) a uniform space, C = Y, f: X - R,
and g: X —» Y. We consider the constrained minimization problem in the classical
sense, i.e. without tolerance:

( minimize f(x) on X
| subject to  g(x)e C.

We will use the following assumptions:

(5.1) Ty is compact and X is 7 g-dense in X,
(5.2) Y = Y and the trace on Y of %y is a uniformity %y inducing the given
proximity Jy,
(5.3) C is the closure of Cin (Y, %y),
(5.4) fis Ls.c. (lower semicontinuous), f(x) = f(x) for all x € X, and f(x) =

= liminf;, sy f(x) for every x € X (of course, ¥ — x stands for the
convergence in the topology Jy),

(5.5) g is continuous and g(x) = g(x) for all x € X,
(5.6) f is continuous.

Clearly, if f(x) = f(x) for x € X, then (5.6) implies (5.4).
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Definition 5.1. The problem (P) is said to be a compactification of the problem
(P) if (5.1)—=(5.5) are valid. If also (5.6) is valid, the compactification is called
regular.

The minimum of any compactification (P) is obviously attained, and we may
define min (P) = min f(g~*'(C))and Argmin (P) = {x e X; f(x) = min (P), g(x) e C}.
First we show that, as for the ability to study the problem (P), all (regular) compac-
tifications (P) are equivalent to one another.

Proposition 5.1. Let (P) be a compactification of (P). Then min (P) = inf (P).

Proof. Denote by %y the unique uniformity on X inducing the compact topology
T g, and by Uy and T y the trace on X of %y and Ty, respectively. Then f/: X — R
is (7 x, 7g)-ls.c. and g is (%y, U,)-uniformly continuous. Then we may use the
arguments of the proof of Theorem 2 in [10] to show that the collection
{lev,, . f N g " (V(C)); & > 0, Ve Uy} is a filter base on X if and only if & = min (P),
where V(C) = {x e X; 3xq € C: xVx,} with Ve %, is a #y-uniform neighbourhood
of C. Since %, induces Jy, the #-uniform neighbourhoods of C coincide with the
dy-proximal ones. In view of Definition 1.1 we get min (P) = inf (P). O

Let us denote by A7(S) the collection of all 7 y-neighbourhoods of a set S = X
(the dependence on 7y will not be explicitly indicated). If S is nonempty, then 47(S)
is a filter on X, and, since X is J x-dense in X, the trace on X of A7(S), i.e. the
collection A(S)|y = {4 " X; A e A(S)}, is a filter on X.

Proposition 5.2. Let (P) be a compactification of (P). Then .t'(5~'(C))|x is the
feasible filter F(P). If the compactification (P) is regular, then 4°(Arg min (P))|¢
is the minimizing filter J{(P).

Proof. First we prove that g~ '(C) is nonempty. Suppose the contrary, i.e.
g(X)n C = 0. Since g is continuous and X compact, §(X) is compact, too. Since C
is closed, §(X) and C are Sy-far from each other (see [1; (5.3.24)]), where Jy is the
proximity on Y induced by #y. Since the trace on Y of dy is just 3y, g(X) and C are
dy-far from each other, which contradicts (1.1).

As the assertion concerning the feasible filter can be obtained from the assertion
concerning the minimizing filter if f = + co, we will prove only the latter one. It is
now evident that, in view of (1.1), (5.1)—(5.5), Arg min (P) is nonempty. Taking
again %y as the trace on X of the only uniformity on X inducing the compact topology
T x, we may use the arguments of the proof of Theorem 3 in [10] together with the
fact that %, induces &y to show that 4" (Arg min (P))|, coincides with the filter
o = {V(A); Ve Uy, Ae 4(P)}. By definition, .o/ is coarser than .#(P). Exploiting
the regularity of the compactification used, hence the (%y, #)-uniform continuity
of f, we will show that <7 is finer than .#(P). Let A€ .#/(P).i.e. A = f ' ([— 0, a]) n
n g '(C) for some € » Cand[—o0, a] > [ — oo, inf(P)]. Thanks to the properties
of the tolerances > and », we can take B = f ([ — 0, b]) n g~'(C) with some b
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and Csuchthat C > C > Cand [~ 0, a] > [—o0, b] > [— 0, inf (P)]. Obviously
Be .#(P). Because of the (%y, #g)- and (%y. Uy)-uniform continuity of f and g,
respectively, there exists Ve % such that V(B) < 4, thus A € /. O

Of course, if we desire to use the compactifications for proofs it is necessary to
guarantee the existence of at least one compactification. For this reason we must
recall what the Smirnov compactification of a proximity space (Z, 8) is; see [12]
or also e.g. [ 1, 7]. It is quite evident that the filter base on Z x Z

{UA; x A3 A< Z, néN, Vi <n 3IB;: A; > B, and |J B, = Z}

i=1 i=1
(with > related to §) generates a uniformity on Z, let us denote it by #;, which
is precompact (i.e. VV'e %, Ja finite set A = Z: V(A4) = Z) and induces the prox-
imity 6. Moreover, it is the only precompact uniformity on X inducing o, which
Justifies the notation %;. As %; is precompact, the completion of the uniform space
(Z, Us) is compact and it is called the Smirnov compactification of the proximity
space (Z, §), or briefly 6-compactification of Z.

Proposition 5.3. Every problem (P) admits at least one regular compactifica-
tion (P).

Proof. Let 5y be the discrete proximity on X, i.e. A46yB only if An B =+ 0.
As 8y is the finest proximity on X, f and g are (3, 8g)- and (S, dy)-proximally
continuous, respectively. Therefore there exist (even unique) continuous extensions
f:X - Rand §: X — Yof fand g, respectively, where X and Y are the 6~ and dy-
compactifications of X and Y, respectively; note that f and g are also (%, Usy)-
and (%, #;,)-uniformly continuous, respectively, and f and § are nothing else
than their continuous extensions to the corresponding completions, (cf. [ 1; (6.2.11)]).
Of course, R, being compact in its standard proximity Jg, coincides with its Smirnov
compactification, which is important to preserve the standard ordering of R. Finally,
take the closure of C in Y for C. One of the regular compactifications of (P) has
“been just constructed. O

Remark 5.1. The compactification (P) used for the above proof is the “largest”
one in the sense that it uses the finest compactification X of X (X can be identified
there with the set of all ultrafilters on X). This compactification does not require
any continuity properties of f and g. If f and g do satisfy some continuity require-
ments. “‘smaller” compactifications can be admitted. For instance, if f and ¢ are
continuous with respect to some completely regular topology on X, then there is
a regular compactification (P) for which X is the well-known Stone-Cech compactifica-
tion of the completely regular topological space X. It is even the “‘smallest” regular
compactification, in general. If f and g are uniformly continuous with respect to
some uniformity on X, then there is even a smaller compactification (P). It uses
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for X the Smirnov compactification of X regarding the proximity induced by the
uniformity considered, and it is again generally the smallest possible regular com-
pactification under these uniform continuity requirements. Such compactification
has been used in [10]. Of course, if f and g are continuous with respect to a compact
topology on X, then (P) admits the absolutely smallest compactification, using X = X.

Although for some purposes a particular choice of a compactification of (P) is not
important (and thus we can use universally the largest compactification from the
proof of Proposition 5.3), sometimes we need smaller compactification because some
properties of the data cannot be transferred to compactifications which are too
large; cf. the proof of Theorem 4.4 below. Small compactifications are also advan-
tageous to study neccesary and sufficient conditions of optimality; for the un-
constrained case we refer to [9] where the Smirnov compactification of a normed
linear space together with the Ekeland ¢-variational principle has been used.

Now we go on to the proofs of the results stated in §§ 3, 4 by exploiting the com-
pactification. The idea is very simple: first transfer the properties of the data from the
orignal problem to its compactification, then exploit good behaviour of the com-
pactified problem by standard techniques (only we must realize that the extended
spaces need not satisfy the first countability axiom), and afterwards return to the
original problem. As for the infimum, the return to the original problem is straight-
forward thanks to Proposition 5.1, while for the minimizing or the feasible filter
we need the following assertion:

Lemma 5.1. Let (X, 7 y) be a compact space, X a T y-dense subset of X, let
A < X be T x-closed and nonempty, and let {A‘},—e, be a net of nonempty subsets
of X. Then

A > Limsup A" = #(4)|x = Liminf (A7(4")[x) -

iel iel

If, in addition, A’ > Lim sup A’ for all jcl, then

iel

A(Lim sup A')|yx = Lim inf (47(47)],),
iel iel

where Lim sup;e, A’ has the usual meaning, i.e. it consists of all T g-cluster points
of all nets {x'} iy with x'e A",

Proof. Take Se 4'(4)|y, hence S =S5 X for some Se.#(A). Since 4 is
compact, the set X \ S and A are disconnected, and thus there is B € 47(4) such that
Se #(B); in other words, § > B > A with > related with the only proximity
inducing the compact topology 7 x. In addition, we may and will suppose B to be
open, hence X \ B compact. We show that A° = B for sufficiently large i € I. Suppose
the contrary. Then for every i el there would exist j(i) = i and x/V e 47"\ B.
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Thanks to the compactness, the net {x/®},_; would have a cluster point x® € X \ B;
therefore x” ¢ A, but simultaneously x® e Lim sup;; A" = 4, which is a con-
tradiction. Thus A4’ = B for i el large enough, hence S € A7(4%)|x. Since S has
been taken arbitrarily, we have proved that ‘/V(A)ix is a lower bound of the net
{N#(A")|x}ier due to Definition 2.1. If A = Limsup,,; A’ = A’, then A(A)|x 2
> A(4%)|x, and the second assertion to be proved follows immediately from
Proposition 2.2. O

Now we will prove the assertions from §§ 3, 4. To transfer the properties (3.1),
(3.2), and (3.6) to the extended functions, we need still the following lemma:

Lemma 5.2. Let (X, 7x) be a topological space, (Y, #y) be a (semi)uniform
space, X a T x-dense subset of X, §,g': X — Y continuous mappings, iel, and
let g"lx converge %7-(semi)uniformly to ﬁ[x, where g"]x and g|x are the restrictions
to X of §; and g, respectively. Then g’ converge U y-(semi)uniformly to .

Proof. The assertion follows from the facts that the closed elements V from
AUy form a base of %y, and, if g'(x) Vg(x) for all xe X and Vis Ty x T g-closed,
then §'(x) Vg(x) for all xeX because the mapping x — (g'(x), g(x)) from X to
Y x Y is continuous. O

Proof of Theorem 3.1. We take such compactifications (P) and (P') of (P)
and (PY), respectively, that use the common spaces (X, 7y) and (Y, %y), and,
moreover, the trace on Y of the uniformity %y is coarser than the uniformity #,
from (3.2). For simplicity we may suppose them to be regular. Such compactifications
do exist, cf. the construction via the discrete proximity on X used in the proof of
Proposition 5.3 (note that the uniformity %;_, being the coarsest uniformity inducing
Oy, is surely coarser than %,. Then (3.2) implies the % -uniform convergence of
g'|x to G|y, and by Lemma 5.2 we can see that

(5.7) g' converge #y-uniformly to § .
From (3.1) we get again by Lemma 5.2 that

* (5.8) f converge %} -semiuniformly to .
Now we will prove that

(5.9) VVedly igel Vi = iy: C' < V(C).

Take some We %y such that Wo W < V, and put D = W(C) n Y. Since the trace
on Y of %y induces 8, we have D > C, and then C' = D for all i €I large enough
because of (3.3). Then C' = cly D = V(C).

Now we will prove that §7'(C) = Lim sup,, (3°)"' (C). Take x'e(g)~' (C)
and a 7 g-cluster point x* of the net {x'},.,. In view of (5.7) and the continuity of §
we can see that g(x*) is a 7 y-cluster point of {g(x)},.,, and by (5.9) we have §(x*)e C,
from which (3.4) follows by Lemma 5.1 and by Proposition 5.2.
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As (3.5) is trivial if min (P) = — oo, we suppose min (P) > —oo. First we treat
the case min (P) # -+ 0. Suppose, for a moment, that lim inf,,, min (P) < min (P).
Then there are ¢ > 0 and a cofinal subset J of I such that min (P’) < min (P) — ¢
for all i € J. Take x' e Arg min (P’), and a cluster point x* of the net {x'},.;. We
have clearly f(x') < min (P) — ¢, and by (5.8) and the continuity of f, also f(x*) <
< min (P) — &. On the other hand, we have already shown that §(x*) e C. Therefore
f(x®) = min (P). a contradiction. Thus lim inf,;; min (P") = min (P), from which
(3.5) follows by Proposition 5.1. In the case min (P) = + o0 we obtain a contra-
diction analogously, supposing min (P) < 1/¢ for some ¢ > 0 and all i € J. O

Proof of Theorem 3.2. Take the regular compactifications (P) and (P’) as in
the previous proof. As C' o C and g’ = g, we have (g)"' (C') > g~ '(C), which
implies (3.7) again by Lemma 5.1 and Proposition 5.2. By (3.6) and Lemma 4.2
we get that

(5.10) St converge %g-uniformly to f.

Take some x € Arg min (P). Then g(x) e C' for all i I, and for every ¢ > 0 we have
Ji(x) < f(x) + ¢ provided i is sufficiently large and min (P’) + —oo. Therefore
min (P‘) < min (P) + &, which shows that lim sup,, min (P’) < min (P). Since
lim inf;.; min (P') = min (P), which has been already proved above, we obtain
(3.8) again by Proposition 5.1. In case min (P) = —oo we get from (5.10) that
min (PY) £ —1/e, and (3.8) follows analogously.

We will show that
(5.11) Arg min (P) = Lim sup Arg min (PY).
iel
Take x" e Arg min (P') and a 7 y-cluster point x* of the net {x'},.,. Since gi(x') =
= g(x') e C', due to (5.9) and the continuity of § we again obtain g(x*) e C. Since
Fi(x") = min (P7). by (5.10) and the continuity of f we can see that f(x*) is a cluster
point of {f¥(x")},,. Therefore f(x”) = min (P) because lim,, min (P‘) = min (P).
In other words. x” € Arg min (P), and (5.11) has been proved. Then (3.9) follows

from (5.11) again by Lemma 5.1 and Proposition 5.2. O

Proof of Theorem 4.1. Let us take a regular compactification (P) of (P) and
denote by §y the trace on X of the (unique) proximity on X inducing the compact
topology 7 y. Then f and g are (8, 6g)- and (S, dy)-proximally continuous, respec-
tively. Thus f, = f + r. h o g is (8, dg)-proximally continuous because of (4.2) and
the proximal continuity of the binary operation “extended addition™ +: [M, + o] x
x [0. + =] - R: cf. (4.4) and observe that i = 0 as a consequence of (4.1)—(4.3).
Therefore we can extend f, to f,: X — R by continuity, obtaining the problem:

(P, minimize f(x) on X,

which is a regular compactification of (P,) in the sense of Definition 5.1. Thanks to
(4.2), h: Y > R is (%y, %g)-uniformly continuous (note that %y is the coarsest
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uniformity on R inducing dg), and we can extend h to h: Y — R by continuity. As
a consequence of (4.1)—(4.3) we have i(C) = 0 and h(Y\ C) > 0. Since the function
f+r.ho.5:X — Ris continuous and coincides with f, on the 7 g-dense subset X,
we can see that f, = f + r. h o 7.

Since i = 0, the function r > min (P,) is nondecreasing, and therefore the limit
L = lim,,, min (P,) does exist. Obviously, f,(x) = min (P) for every x € Arg min (P)
(which is nonempty), thus min (P,) < min (P) and L < min(P). We take x, €
€ Arg min (P,) and a 7 y-cluster point x,, of the net {x,},.z+. By the assumptions
inf(P) + +o0 and M > —oo (see (4.4)) we can estimate: h(g(x,)) < (L— M)[r <

< (inf(P) — M)[r = 0(1/r) for r— +co. Thus ﬁ(g(\cw)) =0, and therefore
J(xoo) e Cand f(x,) = min (P). Moreover, f(x,,) is a 7 g-cluster point of { f(x,)},cg +
and f(x,) < f(x,) = min (P,) £ L < min (P), which gives L = min (P). By Propo-
sition 5.1 we get (4.5). It is also clear that x,, € Arg min (P), hence we have de-
monstrated that Arg min (P) = Lim sup,_,, Arg min (P,), from which (4.6) follows
immediately by Lemma 5.1 and Proposition 5.2. O

Proof of Theorem 4.2. Take again a regular compactification (P) of (P). As
leVyy fr 0 X = levy,, f,, the filter 2, 4, is just the trace on X of the filter {4 € 2%;
A > lev,,, f,}. We show that Arg min (P) > Lim sup,_,, leV,, f,- Take x, € lev,, f,
and a 7 y-cluster point x,, of the net {x,},.z+. By (4.4) and the assumption inf (P) =+
4+ +0o0 we obtain the estimate i(g(x,)) < (a(r) — M)[r = 0(1]r) for r - + oo,
hence A(g(x,)) = 0 and thus g(x.,)e C. Moreover, f(x,) < f,(x,) < a(r), which
implies f(x,) < min (P) because a(r) \ min (P) and f is continuous. Thus x, €
e Argmin (P). By Lemma 5.1 we obtain .#(P) < Lim inf,_, , &, ..

On the other hand, for a > min (P) we have lev, f, € #"(Arg min (P)) because
lev, f, € A (IeVyinep) f,). Which is a consequence of the continuity of f,, and
Arg min (P) < leVy,;p) f,. It implies &, ,(,, = #(P), and, by Proposition 2.2, also
(4.7). O

Proof of Theorem 4.3. Take a regular compactification (P) of (P) such that f*
and g* are proximally continuous with respect to the trace on X* of the proximity
. of the compact space (X, 7 x); such (P) does exist, the compactification used in the
proof of Proposition 5.3 can serve as an example for it. Furthermore, take the closure
of X*in X for X*. We can extend f* and g* continuously to X*, denoting the extensions
respectively by f*: X* — R and g*: X* — Y, and consider the problem

(PY) minimize f4(x) = f4(x) + r. h(g*(x)) on X*.

By the way, (P¥) is a regular compactification of (P}) according to Definition 5.1.
Now we will show (4.13). Suppose for a moment, that r is fixed. Take some
x; € Arg min (P}) and a cluster point x;" of the net {x}},.y. Thanks to (4.10) and (4.2),
1eVine(p,y +o fr IS @ 7 y-open nonempty subset of X for every ¢ > 0. By (4.9) with (4.8),
X" leviyp,y 1+, /, is nonempty provided k is large enough. In other words, there
is x, € X* (for k large enough) such that f,(x,) < inf(P,) + ¢. The condition (4.12)

121



remains valid if %y is replaced by the (unique) precompact uniformity % inducing oy
because %y < Uy. Due to (4.2), h is (%}, Ug)-uniformly continuous, and by (4.11)
and (4.12) we can see that f% converge for k — oo to f, g-uniformly on every X*
(recall that r is fixed). In particular, fi(x) — f,(x) converge for k — co to zero
Ug-uniformly on {x; |f(x)| £ L or Vk: |f¥(x)] < L} where L+ +oo (the bound L
had to be introduced due to the fact that, thanks to the points —oo and + oo, ¥
restricted to R is strictly coarser than the standard additive uniformity %y on R).
We obviously have the following apriori estimates: M < f,(x,) < min (P) + ¢
(for M see (4.4)) and M — 1 £ J¥(x}) < f¥(x,) £ min (P) + & + 1 (we have used
also (4.11), (4.12) and min (P,) < min (P)) provided k is large enough. Take L =
= max (|[M|, |min (P) + ¢|) + 1. Then from these estimates we obtain respectively
Fix,) — fi(x,) = 0 and fi(x}) — f,(x!) > 0 for k — co. Taking into account also
the estimates f,(x,) < inf(P,) + ¢ and fi(x}) < fi(x,) stated above and the con-
tinuity of f,, we get eventually f,(x*) < min (P,) + e. As e > 0 is arbitrary, f,(x{°) =
= min (P,). As this holds for every cluster point x° of {x\},.y, there exists the limit
lim,,,, min (P¥) and equals min(P,). In particular, Vr 3x(r) Vk = x(r):
min (P,) — 1/r < min (P}) £ min (P,) + 1/r. By Theorem 4.1 and Proposition 5.1
we then obtain (4.13).
Now we want to prove (4.14). First we prove
(5.12) Argmin(P) >  Limsup  Argmin (P}).
k= 0,r 00 k2 %(r)

Take x; € Arg min (P¥) and a  y-cluster point x,, of the net {x}, .y ,er+ uzuir- W
know an apriori estimate: M — 1 < f*(x¥) < min (P) + 1 for k and r large enough,
hence (4.11) implies similarly as above that f*(x¥) — f(x¥) - 0 for k — oo. Since
FH(x}) < min (PY) » min (P), we get limsup,., ,., iz f(x) < min(P), and
therefore f(x,.) < min (P) thanks to the continuity of f. Similarly, from the apriori
estimate 0 < h(g*(x})) < (min (P) — M + 1)/r we obtain h(g(x,,)) = 0. Therefore
we get x,, € Arg min (P), hence (5.12) is proved. By compactness, for any 7 g-neigh-
bourhood A4 of Arg min (P}) there is a > min (P}) such that 4 > lev, f%, hence
also A n X o lev, f}, which shows that the trace on X of the filter 4" (Arg min (PL))
is coarser than .#x(P¥). Then (4.14) follows from (5.12) by Proposition 5.2 and
Lemma 5.1. O

Proof of Theorem 4.4. Thanks to (4.15) there exists the regular compactification
(P) of (P) such that X is the §y-compactification of X (Jx is the proximity used in
(4.15) and (4.17)). Moreover, we can define (P) as in the proof of Theorem 4.3.

Put C, = inty C, where inty denotes the interior in the topology induced by #y.
From (4.16) and the fact that %y induces on Y the topology 7, we can easily show
that C < cly C,. As g is continuous, the set 4, = §~'(C,) is open in X. Besides,
we will show that 4, = g~ !(C) = cly 4. The first inclusion is evident. To verify
the second one, suppose that there is x € §~'(C)\cly A,. Then there are 4, > 4,

and 4, > {x} with 4; n A, = 0, where > is related with the unique proximity of
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the compact space X (which is just the prolongation of dx). As g(x)e C and g is
continuous, A, N g~ *(C) is nonempty for every C > C. On the other hand, we
can put B = A, 0 X into (4.17), thus obtaining C » C such that g~ '(C) = B < 4,,
which contradicts 4; N A, = 0, however. Therefore we have proved g~ '(C) =
< cly Ap.

In the proof of Theorem 4.3 we have shown in particular that lim inf,_, , min (P%) =
= min (P,), and it is quite clear that it holds uniformly with respect to re R*. In
view of (4.5) we then obtain lim inf,_,, ,_,, min (P}) = min (P). Thus we have to
show that min (P) = lim sup, ., ,.., min (P}). Take ¢ > 0 and put 4, = {xeX;
f(x) < min (P) + ¢}. We will prove that §~'(C) n 4, # 0 for some Jy-open C
such that C, > C. As C, is open, the union of all open C with Co, > C is just C,,
and therefore the union of g~ '(C) is just 4,. Due to (4.16), A, is nonempty because
X € Ag. Also Ay N A, is nonempty because any x € Arg min (P) belongs simulta-
neously to the interior of A, and to the closure of 4, (since we have already proved
g !(C) = cly A). Therefore there is an open C = C, such that C, > C, and
g"(CE) N A, = A, is nonempty. The set A, is open due to the continuity of fand g.
As the trace on X of Iy is just the topology 7y used in (4.9), the union Uy X*
is 7 y-dense in X. By (4.8) there is k, € N such that X* intersects A, whenever k = k,.
In other words, for k = k, there exists x € X* such that f(x) < inf(P) + ¢ and
g(x)e C, » C. Moreover, due to (4.12), we have g*(x) e C provided k, is chosen
sufficiently large, because the proximities induced on Y by #y and %, are the same,
namely dy. Taking k, large enough, by (4.11) we obtain f*(x) < inf (P) + 2¢. Thus
f4(x) = f*(x) < inf(P) + 2¢, and we can see that inf (P}) < inf(P) + 2¢. As ¢ > 0
is arbitrary, we have proved lim sup;_,, .., min (P}) < min (P,). Hence (4.18) is
proved.

The assertion (4.19) can be proved analogously as (4.14), but using (5.12) without
the stability condition k = 3(r). O

6. MISCELLANEOUS REMARKS AND EXAMPLES

Remark 6.1. Although the general structure of (P) may cover all constrained
optimization problems, it is worth noticing how the tolerance approach can be
applied to problems with a more concrete structure because some specific phenomena
can appear there. Let us consider a minimization problem with a collection of func-
tional constraints:

. {minimize f(x) with tolerance >
(P) . . . .
subject to g;(x) meets C; with tolerance >, iel,

where /1 X - R, g: X = Y, C; = Y, I is an index set and >; are the tolerances
corresponding respectively to some given proximities dy, on Y;. In view of Definition
1.1, this problem is equivalent to the problem (P) in the sense #(P)= #(P),
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inf (P) = inf (P), .#(P) = .#(P) provided one takes the data for (P) as follows:
Y = [Tier Yoo C = [lict Ci» 9 = (9:)ier> and Sy = []er Sy, (by the standard definition
of the product of proximities, dy is the coarsest proximity on Y that makes all
canonical projections ¥ — Y; proximally continuous). If I is not countable we can
get an example for Jy non-metrizable (except trivial cases such that Y; are singletons
ete.).

Suppose dy, are induced by some metrics dy, and I is countable, say I = N. It is
then natural to endow also Y by some metric, e.g. by dy = Y ..y 27/dy [(1 + dy,).
Yet, it is known (see [1; (7.3.39)]) that, even if I were finite, dy would not induce
the proximity &y defined above provided at least two of the metric spaces (Y, dy,),
i €1, are not precompact. Nevertheless, we can use the proximity induced by d,,
although in general it is strictly finer than dy, with the same effect as 6y because both
the proximities generate the same proximal neighbourhoods of the set C, which is
caused by the fact that C is not a general subset of Y but has got the special form of
the product 1., C..

Remark 6.2. Let us mention the situation that occurs in optimal control problems.
Let X, Y, Z be the sets of controls, observations and states, respectively, let fo: X X
x Z — R be a cost function, 4: X — Z a state operator, and g,: X X Z — Y an
observation mapping. Furthermore, the observation space Yis endowed by a proxim-
ity oy (> will again denote the corresponding tolerance on Y). We will write briefly
“z = A(x)” instead of “(x, z) meets the graph of 4 without tolerance™, and consider
the following optimal control problem with tolerance:

minimize fo(x, z) on X x Z with tolerance > .
(Py) {subject to z = A(x) and
go(x, z) meets C with tolerance > .

Such a formulation of the optimal control problem is in harmony with the very
realistic approach of J. Warga [ 13; Sec. III.1] who distinguishes, on the one hand, the
“absolute™ constraint formed by the state equation z = A(x) which is supposed to
be governed by the laws of nature and should be fulfilled exactly (i.e. without toler-
ance) because otherwise we would move “out of the world””, and, on the other hand,
the “desired” constraint gy(x, z) € C given by some technical or engineering requi-
rements which may be satisfied only with a certain accuracy (in our notation, with
tolerance). The optimal control problem is effectively treated after a transformation
into the problem (P), representing then a mathematical programming problem on
the space of controls X, by means of the substitution

(6.1) f(x) = fo(x, A(x)) and g(x) = go(x, A(x)).

It is not difficult to see that, if f and g defined by (6.1) are taken for (P), this mathe-
matical-programming transformation actually leads to the problem (P) which is
equivalent to the original optimal control problem (P,) in the following sense:
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F(P) = Pry #(P,), inf(P) = inf(P,), and #(P) = Pry #(P,), where Pry: X x
x Z — X denotes the canonical projector.

Nevertheless, the problem (P,) possesses certain specific features. Although the
state operator should be treated without tolerance, sometimes it is sensible to con-
sider an approximation A’ of 4, which can arise from numerical evaluation of the
state operator, or from errors in coefficients appearing in the state equation which
may be obtained, say, by some measurements, etc. Then the above stated results
will be preserved under the following data qualification: there exists a uniformity %,
on Z such that A’ converge % -uniformly to 4 and simultaneously fo(x, *): Z - R
are (%, Ug)-uniformly equi-continuous with respect to x € X (i.e. VVe Ug IWe %,
Vx e X Vzy,z, € Z: 2, Wz, = fo(x, z,) Vfo(x, z,)), and similarly go(x, *): Z - Y are
(%4, Uy)-uniformly equi-continuous. From these assumptions we immediately
obtain (3.6) and (3.2) for f and g given by (6.1) and f' = f, - A", g' = go - A'. We
may conclude that the tolerance admitted for the constraint and the cost function
allows us to admit some “tolerance” also for the state operator, originally considered
without tolerance.

Remark 6.3. Some of the conditions used above may be sometimes too strong,
e.g. (3.2) or (4.12) provided X and X* are unbounded subsets of a normed linear
space. However, often it is possible to employ a certain coercivity of the problem using
some concept of boundedness of the subsets of X, and to weaken the mentioned
conditions by restricting them to bounded subsets only. We will not deal with this
idea in detail because it is rather standard.

Example 6.1. Though in applications the tolerances will be mostly metrizable,
it is worth giving a simple and quite natural example in which the tolerance need not
be metrizable. Combining the problems from Remarks 6.1 and 6.2, we will consider
the state-constrained optimal control problem for a dynamical system:

minimize fy(x, z) on X x Z with tolerance >
subject to dz/dt = F(x(t), z(¢), t) for a.a. 1[0, T],
(Po) z absolutely continuous, z(0) = z,,
. z(r) meets C with tolerance > for all 1€ [0, T),
z(T) meets {z,} with tolerance > ,

where X = {x: [0, T] — B measurable}, B is a bounded subset of R", Z = (R")!*""],
F:R™ x R" x [0, T] > R" determines the dynamics of the controlled system (we
will suppose F(x, z, +) measurable, F(+, -, 1) Lipschitz continuous, and |F(x, z, )| <
< const. (1 + |z|)), C c R", z,e R", T > 0 is a finite time horizon, z, is a desired
final state, and > is the Euclidean tolerance on R" (i.e. the tolerance corresponding
to the proximity induced by the Euclidean metric). By Remark 6.1, the collection of
the state constraints is equivalent to one constraint ““z meets C, with tolerance>,”
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where C, = C!%" x {z,} and >, is the tolerance on (R")\®" corresponding to the
proximity obtained by the product of the Euclidean proximities on R" parametrized
by 1€ [0, T]. As [0, T] is not countable, this proximity is not metrizable.

However, the non-metrizable tolerance is rather formal here. Realizing that
admissible trajectories z are equi-Lipschitz continuous (note that F has at most
linear growth in z independently of x and ¢, and B and [0, T'| are bounded), we can
easily see that, if restricted to the subset of Z containing admissible trajectories only,
the tolerance > yields the same proximal neighbourhoods of C as the tolerance
induced e.g. by the Chebyshev metric dy(z;, z,) = sup, <y |z,(t) — z,(1)]-

Although we can use equivalently the metrizable tolerance in this particular
example, from the viewpoint of numerical solution the non-metrizable tolerance >
seems to be more advantageous: we need not check the constraint within the whole
trajectory, but only at a finite number of time levels (not prescribed in advance,
however).

Example 6.2. It may be said that the well-known relaxed-control theory (see
J. Warga [13]) can serve as a very concrete example of compactification of optimal
control problems. If we confine ourselves to the preceding example, the set of controls
X is then imbedded in a natural way into the space (L'(0, T; C°(B)))* by assigning
to x a linear continuous functional on L'(0, T; C°(B)) defined by ¢ — [¢ o(t, x(t)) dt,
where B denotes the closure of B in R", C°(+) the space of all continuous functions,
L'(0, T; -) the space of all Bochner integrable functions on [0, T], and the star
denotes the topological dual. Then X is precompact in the uniformity related with
the weak-star topology of (L'(0, T; C°(B)))* and, under some additional assumptions
on F, the state operator x — z from Example 6.1 is uniformly continuous when taking
the uniformity on the space of states Z coarse enough, say that induced by the
Chebyshev metric d, from the Example 6.1. Moreover, this weak-star uniformity is
metrizable on X and we can obtain a compactification simply by forming the comple-
tion of X with respect to this metric. The elements of X, called relaxed controls, can
be then identified with the functions on [0, T] whose values are random measures
on B, i.e. positive Borel measures g on B such that u(B) = 1. Moreover, this com-
pactification is generally the coarsest (i.e. smallest) one. On the other hand, the cases
when the compactification can be constructed as a metric completion and the elements
of the compactified sets can be indentified in a similar manner as it was done for the
relaxed controls are rather exceptional and in general the compactified spaces will
not be metrizable (their elements being called generalized solutions in the author’s
former works [9—11]).
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Souhrn

OPTIMALIZACE S OMEZENIMI: OBECNE TOLERANCNI PRISTUP

ToMAS RouUBICEK

Pro prekonani ponékud umélych tézkosti v klasické teorii optimalizace, tykajicich se existence
a stability feSeni, se navrhuje nové pojeti optimaliza&nich iloh s omezenimi (nazvanymi ulohami
s toleranci) za pouZiti danych proximitnich struktur pro zadani okoli mnoZin. Infimum a takzvany
minimalizujici filtr se potom definuji pomoci Groviiovych mnoZin indukovanych té€mito okolimi,
coZ také odrazi inZenyrsk¢ chapani optimaliza&nich uloh s omezenimi. Navic je rozvinut odpovi-
dajici koncept konvergence filtri, a dokazana stabilita minimalizujiciho filtru jakoZ i jeho apro-
ximace technikou vnéjsi pokutové funkce pouzitim kompaktifikace dlohy.

Pe3rome
VCIIOBHAST OITTUMUBALIA: OB TOJIEPAHTHOCTHBIN ITOAXO/
TomAS ROUBICEK
IIJ]}I NIPEeOAOJICHUA HECKOJIBKO MCKYCTBEHHbBIX TPYAHOCTEH’ B KJIACCHYECKOM TCOPHUH OIITUMHU3ALUH,

KACAIOLMXCS CYIIECTBOBAHMS U yCTOWYMBOCTH PEILEHUM, IPE1IaraeTCsL HOBast IOCTAHOBKA NMPOGJieM
YCNOBHOM onTuMM3anuu (Ha3BaHHBIX 3€Ch NPODIEMAMH C TOJEPAHTHOCTHIO), MCIOJB3YOImasn
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CTPYKTYPBI OJIM30CTH [Uisi OIPEJENICHHS OKPECTHOCTEH MHOXKeCTB. HWKHSAS IpaHp H Tak-Ha3bi-
BAEMBlii MEHHMH3MPYIOW(HH (UIBTP ONPEAECSISEOTCS 3aTeM ILOCPEACTBOM MHOXECTB YPOBHS IIO-
POXIEHHBIK 3TUMHM OKPECHOCTSIMM, YTO TOXE OTPaXaeT MHXEHEPHOe IIOHMMAaHKe IpobJeM yCIoB-
HO¥ onTumMu3auuu. [lanee pasBUBaeTCs IOAXOMAIIAST KOHUEILMS CXOOUMOCTH (GUIBTPOB M IPH
MOMOIIK KOMIIAKTHUKALMK IIPOGIIEMBI TOKA3bIBAETCS YCTOWINBOCTh MUHUMHU3HPYIOIIETO GUIIBTpa

M ero npubIMKEeHHe MeTOIOM BHelnHero mrTpada.
Author’s address: Ing. Tomds Roubicek, CSc., Ustav teorie informace a automatizace

CSAV, Pod vodarenskou v&zi 4, 182 08 Praha 8.
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