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A NOTE ON IMPULSIVE CONTROL OF FELLER PROCESSES 
WITH COSTLY INFORMATION 
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Summary. The paper deals with the optimal inspections and maintenance problem with 
costly information for a Markov process with positive discount factor. The associated dynamic 
programming equation is a quasi-variational inequality with first order differential terms. In this 
paper we study its different formulations: strong, viscosity and evolutionary. The case of impulsive 
control of purely jump Markov processes is studied as a special case. 

Key words: Markov jump processes, Feller process, inspections and maintenance, quasi-
variational inequality, viscosity solutions. 
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1. INTRODUCTION 

In this paper we study problems of impulsive control of a Markov process with 
costly information available only in inspection and renewal periods. In Section 2 
we give auxiliary results concerning different formulations of the first-order vari­
ational inequalities: strong, evolutionary and viscosity. In Section 3 we solve a prob­
lem of optimal inspections and renewals for a Markov process with positive discount 
factor. We apply the technique of quasi-variational inequalities. In Section 4 we 
solve this problem for Feller jump processes. Here the value function is a strong 
solution of a quasi-variational inequality. 

Optimal inspections and maintenance with discounted cost for Wiener processes 
was studied by Anderson and Friedmann in [1], and for Feller processes by Robin 
in [9]. This paper generalizes results of Anderson, Friedmann and Robin. 

2. AUXILIARY RESULTS FOR FIRST-ORDER VARIATIONAL INEQUALITIES 

Let E be a locally compact topological space. Denote by Cb(E) the space of all 
continuous bounded functions on E. Denote by || • || the "e ssup" norm reduced 
to the norm "sup" on Cb(E). In this section we study the following two formulations 
of variational inequalities: 
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(1) 

Let x e E and s, t e R+. 

a) Evolutionary formulation: 

(i) v(x, s) S v(x, t) e- a«~ s ) + $1 g(x, u) e - a ^ " s ) du , t ^ s , 

(ii) v Sh , 

(iii) — v(x, t) - a v(x, t) + g(x, t) = 0 if v(x, t) < h(x, t) . 
дt 

b) Strong formulation: 

(2) | — v(x, t) - a v(x, t) + a(x, *)) A (h(x, t) - v(x, t)) = 0 . 

We use the notation a A b = min {a, b} and a v b = max {a, b}. We will say that 

v e Cb(E x /j7 )̂ is an evolutionary solution of (2) if v satisfies (1). 

Let us recall the definitions of strong and viscosity solutions of a variational 

inequality: 

Definition 1. [2, 3] 1. We call ve Cb(E x R+) a strong solution of (2) if v(x, •) is 

absolutely continuous on R+ and (2) holds for almost every t e R+ and every xe E. 

2. We call ve Cb(E x R+) a viscosity solution of (2) if 

(i) (p — a v(x, t) + g(x, t)) A (h(x, t) — v(x, t)) rg 0 for any xe E, t e R+ and 

pe D~ v(x, t), where the subdifferential D~ v(x, t) is given by D~ v(x, t) = 

= {p e R: Urn inf \s\~1 {v(x, t + s) - v(x, t) - ps] ^ 0} ; 
s-»0 

(ii) (p — a v(x, t) + g(x, t)) A (h(x, t) — v(x, t)) J> 0 for any xe E, teR+ and 

pe D+ v(x, t), where the super differential D+ v(x, t) is given by D+ v(x, t) = 

= {pe R: lim sup | s | - 1 {v(x, t + s) — v(x, t) - ps] S 0}. 
s-+0 

Here we consider x only as a parameter. 

R e m a r k 1. If v is a viscosity solution of (2) and v(x, •) is absolutely continuous 

then v is a strong solution of (2). 

Proposition 1. Let g, he Cb(E x R+). Then there exists a unique evolutionary 

solution v e Cb(E x R+) of the variational inequality (1), namely 

(3) v(x, s) = inf ea5{jj g(x, u) e" a w du + h(x, t) e~a'} . 

Moreover, v is a viscostty solution of (2). 

R e m a r k 2. We put h(oo)e"ao° = 0 for any bounded function h on l£P+. 

Continuity of v is implied by the following lemma: 

Lemma 1. [9] Let g,he Cb(E x R+) and let v be defined by (3). Then 

veCb(E x R+),and ' 

(4) v(x, s) = eas{JJ(x's) g(x, t) e~au du + h(x, t(x, s)) e"af^'s)} , 
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where t(x, s) = inf {t e R+: t ^ s, v(x, t) = h(x, t)} (t(x, s) = + oo if v(x, t) < 
< h(x, l)for any t >. s), • 

P r o o f of Proposition 1. Uniqueness. By (1) (i) and (l) (ii), v(x, s) ^ 
^ h(x, f) e" a ( ' " s ) + jl g(x, u) e"a(M~s) du for any t >. s. 

Let V= {(x, t)eE x !J?+: v(x, t) < h(x, t)}. Notice that V is open. By (1) (iii), 
for any t < t(x, s) we have 

(5) v(x, s) = v(x, t) e~a ( f~ s ) + $1 g(x, u) e~
a(M~s) du . 

Since v is continuous, 

v(x, s) = e a s{Jf 's) g(x, u) e~a" du + h(x, t(x, s)) e~a'(*'s)} . 

Hence v(x, s) = inf eas{J* #(x, u) e~aa du + h(x, t) e~a'} and the solution of (1) is 
unique. ' - s 

Existence. Let v be given by (3). Obviously v satisfies (l) (ii). Besides, 

v(x, s) = inf eas{J< g(x, u) e~aM du + h(x, t) e~a<} ^ 

g inf eas{j^ g(x, u) e~aw du + h(x, t) e~ar} = v(x, r) e ~ a ( , - s ) + 

+ J' a(x, u) e~a("~s) du , where r ^ s . 

Therefore v satisfies (l) (i). 
Let (x, s) be any point from V. There exists an e > 0 such that {(x,u) e E x R +: 

u e (s — e, s + s)} e V. Then 

v(x, s) = v(x, t) e~a( '~s) + £ g(x, u) e~a (u~ s ) du 

for any s ^ t ^ s + s and 

v(x, t) = v(x, s) e - a ( s - ° + j s a(x, u) e~a("~ r ) du 

for any s — e ^ t ^ s. 
Letting t tend to s and dividing by |* — s\ we get (l) (iii). To prove that v is a visco­

sity solution of (2) notice that either v(x, t) = h(x, t) or v is differentiable at the 

point (x, t) and D~ v(x, t) = ) — v(x, *). I Hence and by (l), (p — av + g) A (/? — v) ^ 
[dt j 

^ 0 for any p e D v(x, t). 
To prove that (p — ccv + g) A (h — v) *> 0 for any pe D+ v(x, t) suppose that 

p < a v(x, t) - g(x, t). By (l) (i), 

p < lim inf s~1{v(x, t + s) — v(x, t)} . 
s-*0 + 

Hence 

(6) 0 < lim inf s_1{v(x, * + s) - v(x, t) - ps] ^ 
s->0 + 

^ lim sup |s|_1{v(x, t + s) — v(x, t) — j?s} . 
s - 0 

Therefore p$D+ v(x, t) and (p - av + a) A (h - v) ^ 0 for any p e D + v(x, t). 

53 



3. OPTIMAL INSPECTIONS AND RENEWALS FOR FELLER PROCESSES 

The aim of this section is to solve an optimal inspections and renewals problem, 
i.e. to characterize the value function and to find the optimal impulsive policy (if 
it exists). Controller's interventions will be described as follows: Dynamics of a pheno­
menon is described by a Markov process. The controller does not observe this 
phenomenon directly, he can only choose certain time periods to make an inter­
vention: to shift the process to a new state or to make an inspection. 

After each intervention the controller determines: 
(i) when to make the next intervention; 

(ii) type of the next intervention (renewal or inspection). 
Formal description is the following: 

Let X = (Q, 3F, J%, xt, Px) be a Markov process on a locally compact state 
space E describing the dynamics of a phenomenon without controller's interventions. 

Denote the transition semigroup of X by $, i.e. (Ptf(x) = Exf(xt) for anyf e Cb(E). 
Let X be a Feller process, i.e. the semigroup $ satisfy: 

1. $tf(x) ->f(x) as t -» 0 for any fe Cb(E). 
2. $tfe Cb(E) fox any feCb(E). 

The generator of <Pt in Cb(E) will be denoted by (A, @(A)). 
Let (QN, SF%N

9 x?) be the control reference probability space, where x^(co) = 
= (x\(co), x](co),...) = (^(cOi), xt(co2),...) for co = (cot, co2, co3, ...) e QN, and let 
#"? = cr(A1 x A2 x ...: Ate ^ t for i __ n and At e {0, __} for i > n). A sequence 

% = (zn, £„) will be called an impulsive control policy, if 

(i) in = ?n-i andT„-> co , 
(ii) T.. is a a(xl, T_, x2

Xl,..., T„__, x"n^-measurable random variable on R+, 

(iii) £„ is a a(xJ, T_, X ^ , ..., T„__, x"n_1)-measurable random variable on U1 = 
= U u {<5}, where U __ E is the set of the admissible starting points after each 
renewal and S $ E, E>neU means that the n-th intervention is a renewal to the 
point £n, while £w = d means that the n-th intervention is an inspection. 

Denote by 17 the set of all impulsive control policies. For any impulsive policy n e 17 
there exists a probability measure Px such that (see [8]): 

(iv) (QN, <F%N, <F\, X \ , Pn
x) is a Feller process with transition operator $t, 

(v) Pn
x(x

n = Cn-i for t __ TB__) = 1 for n __ 2, where 

if ^ [ / , 
otherwise. 

(vi) w(x") — J*n_lAf Aw(x") ds is an #""-martingale for any w e £^(A) and n __ 2 
(in other words xn is a Markov process with the generator A and birth time 

Let f (holding cost) be a bounded, continuous function on E and let c (inspection 
or switching cost) be a bounded continuous function on E x U1. Recall that U1 = 
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= U u {8}, where U £ E and (5 <£ E. Define the cost function J by 
00 

j(s, n) = e-{j-/(y.) e " " dn + £ c(x\i, Q e""'} , 
i = l 

where 
00 

y. = Z . X T / { T f _ 1 ^ t < T i } ' 
i = l 

Our aim is to characterize the value function w(x, t) = inf Ex j(t, n) and to find 
nєП 

тi = * 

an optimal policy (if it exists). As we know from the theory of impulsive control 
the value function w yields the complete characterization of the optimal policy. 
The tool is the following quasi-variational inequality: 

f (i) w(x, s) ^ w(x, t) e - a ( t " s ) + $1 <Puf(x) e - a ( " - s ) dw , 

(7) I (ii) w(x, t)£M w(x, t), 
[(iii) d/dt w(x, t) - a w(x, t) + <Ptf(x) = 0 if w(x, *) < M w(x, r) , 

where 

(8) M w(x, t) = M 0 w(x, f) A M1 w(x, t) , 

(9) M 0 w(x, t) = Fx[c(x„ 8) + w(x„ 0)] . 

(10) Mt w(x, t) = inf {Ex c(xt, y) + w(y, 0)} . 
yel7 

Theorem 1. Let Al. U1 = U u {<5}, where U ^ E is a compact set and 8 <£ E, 
and let a be a positive number and f and c given functions, satisfying 

A2. feCb(E) and/= 0. 

A3, c e Cb(E x U1) and c ^ y > 0. 

The/? lhere exists a unique solution w e Cb(E x R+) of the quasi-variational ine-

qualtiy (7), namely 

(11) w(x,t) = inf E%
x J(t,n). 

TteU 
Tl = t 

Moreover, there exist two functions T*: E -> ff+ and £: F -> U1 given by 

(12) T*(x) = inf {s ^ 0: w(x, s) = M w(x, s)} 

and 

(13) M w(t;(x), T*(x)) = Ex{c(xT^x), £(x)) + w(C(x), T*(x))} , 

where 

SMC/I rhaf 
w(x, 0) = inf E* j (0 , TC) = £** J(0,7i*) 
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where* = {z(l),$,t(2), ft,...}, 

r(0) = 0 , t(n + 1) = T*(x"x+I) and ^ + 1 = ti<U) • 

R e m a r k 3. The assumptionf ^ 0 is not restrictive since we can add any constant 
to f and w without changing the optimal policy. 

The proof is based on the following lemma: 

Lemma 2. [7, 10] Lei* T be a nondecreasing and concave operator on 

Cb(E x R+)+ = {g e Cb(E x R+): g = 0} and let u e Cb(E x R+) + . Assume that: 

(i) there exists af}e(0, 1) such that Pu = T(0), 
(ii) T(u) g u. 

Then there exists a unique solution ve Cb(E x R+)+ of the equation T(v) = v and 
Tn(u) -* v uniformly. 

P r o o f of Theorem 1. 

Define an operator Ton Cb(E x R+)+ by 

(15) T(u) (x, s) = inf eas{j^ <2>rf(;c) e"a r dr + M u(x, t) e~a '}. 

The operator T is concave and nondecreasing as an infimum of affinic functions. 
Let 

(16) u(x, s) = eas Jf <Puf(x) e~au du . 

Notice that 

u(x, s) = eas{j^ <Puf(x) e"aM du + u(x, t) e~a'} for any 5 S t S + oo. 

Thus T(u) g u. Since u is bounded, there exists a /? G (0, 1) such that /?u ^ y (y from 
assumption A3). Obviously pf = f. Therefore Pu S T(Q). 

Hence there exists a unique fixed point w of the equation T(w) = w. By the same 
argument as in [9], for any n e 17 we obtain 

w(x, 0) = Ex J(0, n) and w(x, 0) = Ex J(0,71*) 

by iterating the operator T 

This completes the proof. 

Corollary. By Proposition 1, under the assumptions of Theorem 1, w is a viscosity 
solution of the following quasi-variational inequality: 

(17) (— w(x, t) - a w(x, t) + <Ptf(x) ) A (M w(x, t) - w(x, t)) = 0 . 

For certain classes of Markov processes (studied in the next section) this quasi-
variational inequality has a strong solution. 

56 



4. THE CASE OF FELLER JUMP PROCESSES 

Let X be a purely jump Markov process with a finite number of jumps on every 
bounded interval on E — a closed subset of Rn. A jump Markov process X is de­
termined by a following pair (k, /x), where 

1. k is a nonnegative, bounded function on K, 
2. fi(x, •) is a probabilistic measure on E\ {x} for x e E. 

Denote the jump periods of the process by Tl9 T2, ...,. The process X is a Markov 
process with the following dynamics: 

(i) xt = x for t < Ti P* - a.s., 
(ii) Px(Tl>t) = c-«*»9 

(iii) Px(xTieB) = ii(x9B). 

Lemma 3. [5] Let the following conditions be satisfied: 
Bl. keCb(E)9 

B2. \E w(y) fi(% dy) e Cb(E) for any w e Cb(E). 
Then X is a Feller process. • 

Lemma 4. [4, 5] Let Bl and B2 be satisfied. Then 

(18) (Bjdt) 0t g(x) = A<Pt g(x) for any g e Cb(E) and t ^ 0 , 

where 

(19) A u(x) = k(x) \E (u(y) - u(x)) fi(x9 dy). • 

R e m a r k 4. 

(20) \\Ag\\ ^ 2 | k j | .\\g\\ for any g e Cb(E). 

Proposition 2. Let Al — A3 and Bl —B2 be satisfied. Let w be defined by (l l)-
Then w(x9 •) e WlfCC(R+)for any xeE and sup \\w(x, -)||1>00 < oo, where WU^(R+) 

xeE 

is the space of Lipschitz continuous and bounded functions on R+ and || • [|i,oo *s ^e 

norm in WUcc(R+). 

R e m a r k 5. We will use the following property of the space Wi*co(R+): Let z be 
a function z: R+ x K -+ R, where K is an abstract set. If ||z(*, k)||i,oo ^ Lfor a^Y 
kGK then ||infz(-,fc)[|lf00 ^ L. 

keK 

The proof of Proposition 2 is based on the following lemma: 

Lemma 5. [9] Let g e Cb(R+) and h e W1 'co(R+). Let 

v(s) = inf eas{f< g(u) e"a" du + h(t) e~a'} . 
t^s 

Then veW1>co(R+) and ||v'f ^ 3\\g\\ + |fe'||. 
We give here a new simple proof of Lemma 5. 
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Proof of Lemma 5. Let t > 0. Compute that 

(21) (d/ds) {eas Jj+* g(u) e"a" du} = a eas J j + ' a(u) e"a" du + a(s + t) e~af - g(s) . 

Denote L(s,t) == Js
s+t g(u) e" a ("- s ) du + h(s + f)e" a f. By (21), L(^t)eW1'co(R+) 

and |(3/3s)L(s, 0 | = % l + M f o r a n y M > 0. Further, by continuity of L, 

v(s) = inf L(s, t) = inf L(s, t ) . 
ř > 0 ř > 0 

Hence veW1^(R+) and | v ' | 5| 3|g|| + | h ' | . Q 

Proof of Proposition 2. Denote w0(x) = w(x, 0) and cy(x) = c(x, y) for y e U1. 
Compute that 

|(3/30 *- CX*)I = |<M cy(x)\ = M • H f o r a n y y e U1 and ^ 0 , 
|(3/30 *- wo(*)| = M *o(*)| ^ a" 1 . | k | . |f| for any t ^ 0 . 

Moreover, 
(22) M w(x, 0 = min {<£, c3(x) + <l>, w0(x), inf [<f>, cy(x) + w0(y)]} . 

ye U 

Thus 

||(3/30 Mw|jS («" 1 - | / | + H ) - W -

Since |w| £ a ' 1 . |f| then |Mw|| S a"1 . |f| + |c||. Hence M w(x, •) e PV1 '00^^ 
and |Mw| l j00 ^ (a - 1 . |f| + |c |) (1 + | k | ) . By virtue of the relation 

w(x, s) = inf eas{\l <Pu(x) e~a" du + M w(x, 0 e~af} 

and by Lemma 5 we have w(x, •) e W1,co(R+) and |Mw| l o o ^ K, where the constant 
K is independent Of x. 

Corollary. By Remark 1 w is a strong solution of the variational inequality (17). 
Proposition 2 generalizes the results obtained by Robin in [9] (section 5) for 

Markov processes with countable state space. 

Acknowledgment. I would like to thank the referee for his very helpful comments. 
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S o u h r n 

POZNÁMKA O IMPULZNÍM ŘÍZENÍ FELLEROVÝCH PROCESŮ 

DARIUSZ GAJAREK 

Článek pojednává o problematice optimálního režimu prohlídek a údržby systému, jehož 
vývoj je popsán markovovským procesem. Příslušná soustava kvazivariačních nerovnic obsahuje 
diferenciální člen prvního řádu a autor se zabývá třemi typy jejích řešení — silným, viskózním 
a evolučním, Pozornost je věnována speciálnímu případu, že výše uvedený markovovský proces 
je po částech konstantní. 
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