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ON THE GENERALIZED RICCATI MATRIX
DIFFERENTIAL EQUATION.
EXACT, APPROXIMATE SOLUTIONS AND ERROR ESTIMATE

Lucas JODAR, E. NAVARRO

(Received February 11, 1988)

Summary. In this paper explicit expressions for solutions of Cauchy problems and two-point
boundary value problems concerned with the generalized Riccati matrix differential equation
are given. These explicit expressions are computable in terms of the data and solutions of certain
algebraic Riccati equations related to the problem. The interplay between the algebraic and the
differential problems is used in order to obtain approximate solutions of the differential problem
in terms of those of the algebraic one.

Keywords: Generalized Riccati matrix differential equation, Cauchy problem, two-point
boundary value problem, algebraic Riccati equation.

1. INTRODUCTION

In recent papers [8], [9], Cauchy problems and boundary value problems con-
cerned with the generalized matrix differential equation

(1.1) d/dt X(t) = A + BX(t) — X(t) C — X(r) D X()

are treated, but solutions are given in terms of the entries of the matrix function

S(t) = exp ([j l;] t) =(S(1), 15i, j£2
without the explicit knowledge of the entries S;;() in terms of the data. The aim
of this paper is to present an explicit expression for the solutions of the problems
(1.2) d/dtX(f) = A + BX(t) — X(t) C — X(1) D X(t); X(0) = P,
and
(1.3) d/dt X(1) = 4 + BX(t) — X(t) C — X(1) D X(1) ;
EX(b)—X(0)F=G; 0<t=<b

*) This paper has been partially supported by a grant from the Accion Integrada Hispano-
Francesa no. 69/1 (1987).
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where 4, B, C, D, E, F, G, P, and X(t) are square matrices from Crxnand t lies
on the real line. Solutions of problems (1.2) and (1.3) are given in terms of the data
and solutions of generalized algebraic Riccati equations of the type

(1.4) M + NX — XP — XQX = 0.

Different methods for solving algebraic equations of the type (1.4) may be found
in the literature, for example in [1], [5], [7], [14], [15] and [16].

The interplay between the solutions of the problems (1.2) and (1.3) and the
solutions of algebraic equations of the type (1.4) may be used for obtaining approx-
imate solutions of problems (1.2) and (1.3), and error estimates of them, in terms
of approximate solutions and error estimates for solutions of the algebraic problem.
So, any approximate method for solving equations of the type (1.4) provides a method
for obtaining approximate solutions of problems (1.2) and (1.3), and depending
on the problem we can choose the most convenient resolution method for the equation
(1.4), so that the error of the approximate solution of problems (1.2) and (1.3)
be as little as possible.

Because of the interplay between the solutions of algebraic and differential pro-
blems, this paper may be regarded as a continuation of [10], [11] and [12]. The
paper is organized as follows. Section 2 deals with the explicit expression of the solu-
tion of problem (1.2), as well as with finding approximate solutions and error esti-
mates of them, in terms of the data and a solution of the algebraic equation

(1.5) A+ BX —XC — XDX =0.

Also it is proved that this explicit expression of the solution of problem (1.2) is
stable with respect to the Cauchy condition, and the variation of the solution with
respect to the change of the Cauchy condition is presented. Section 3 deals with the
explicit solution of the two-point boundary value problem (1.3). Sufficient conditions
for its resolution and an explicit expression for solutions in terms of solutions of
the equation (1.5) and a solution of a certain algebraic equation of the type (1.4)
is given. Starting from approximate solutions of equation (1.5), approximate solu-
tions of problem (1.3) are presented. Also, error estimates for the approximate
solutions of problem (1.3) in terms of error estimates of the approximate solutions
of problem (1.4) are given.

In order to clarify the presentation we recall some concepts and results that will

be used in next sections. If A is a matrix in C™", we represent by | 4| its operator
norm, defined by

"Aﬂ = sup Mﬂl_z
x+0 ”xHZ
where | |, denotes the usual euclidean norm in C". If A is an invertible matrix

in €™, and B is a matrix in C"" gych that |B — 4] < (|a™*])7", then B is in-
vertible and

430



(1.6) [B7 — a7 < 4] |4 - B] |[B~]
and for any pair of matrices C and D in C™, one gets [[C D] < [[C| | D], see [4],

and [6].
Finally, if f is a differentiable matrix function acting on C" and A, B are matrices

in C™, then the mean value theorem, [3], p. 158, implies that

() |74 + B) = f(4)] = [B] sup |54 + B)]

2. CAUCHY PROBLEMS: EXPLICIT, APPROXIMATE SOLUTIONS
AND ERROR ESTIMATE

We begin this section with the Cauchy problem (1.2) under the existence hypo-
thesis of a solution X of the algebraic equation (1.5).

Lemma 1. Let us suppose X is a solution of equation (1.5), let U, By and C, be

defined by
(2.1) Uy=Py—X; By=B—XD; C,=C + DX.

Let J be a neighborhood of t = 0 on the positive real line such that
(22)  forall teJd, thematrix I+ [fexp(—vCy) D exp (vB,)dvU,
is invertible .

Then the only solution of the problem (1.2) on J is given by the expression

(2.3)

X(t) = X + exp (tBo) Up(I + [§ exp (—vCy) D exp (vB,) dv Uy) ™" exp (—1C,) .

Proof. Let us consider the change of variable

(2.4) Uty =X(1) - X.
Then the problem (1.2) is equivalent to
(2.5) dde U(1) = B, U(t) — U(t) Co — U(H) DU(t); U(0) = U,
whete By, C, and U, are given by (2.1). Now, let us consider the extended linear
system
V)] _[Co D1[V(e)]. [v)] _[1
28 a0 = 15" 5 )L A0): [0) = Lo
Solving (2.6) we obtain that
(2.7) Z(t) = exp (tB,) U, ,

V(t) = exp (1C,) (I + [5 exp (—vCo) D exp (vBo) dv U,) ,
see [2], chap. 1 for details.
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Note that as V(0) = I, there exists a neighborhood J of t = 0 such that V() is
invertible in J, [6]. Thus, if we define the matrix function U(t) = Z(z) (v(¢) (V(t)) ™"
for t € J, an easy computation yields (2.5), see [9], p. 18, for details. By [13], there
exists only one solution, and by virtue of (2.4), (2.7), it is given by (2.3).

For the sake of clarity of the proof of the following result we introduce an easy
algebraic relationship satisfied by any matrices L,, S,, T,, L, S and Tin C™™, Note that

(2.8) LS,T,— LST=L,S,—S)T,+ L,S(T, — T) + (L,— L) ST.

Lemma 1 provides an explicit expression of the solution of problem (1.2) when
there exists a solution of the algebraic equation (1.5). The next result shows that
a good approximation of the solution X of equation (1.5) provides a good approxi-
mation of the solution of problem (1.2), and also an estimate of the approximation
error of the solution of (1.2) in terms of the data and the approximation error of the
solution of (1.5) is given.

Let us suppose that {Z,},., is a sequence of matrices norm-convergent to a solu-
tion X of equation (1.5). Then it is clear from Lemma 1 that for each real number
te J such that hypothesis (2.2) is satisfied, the sequence of matrix functions X,(¢)
defined by

(2.9)
X,(t) = Z, + exp (tB,) U,(I + [§exp(—vC,) D exp (vB,)dv U,)" " exp (—1C,)
where

BH=B_—ZIID; Cn=C+DZn7 Un=P0—Zn’

is pointwise convergent to the only solution X(7) of (1.2), given by (2.3). Let us also
suppose that the matrix function W(r) defined by

(2.10) W(t) = [§ exp (—vCo) D exp (vB,) dv U,
satisfies
(2.11) [w()| = d(t) <1, forall telJ.

Now, considering the matrices
2.12)
L,=exp(tB,)U,; S,=(I+ [yexp(—vC,) Dexp(vB,)dvU,)"";
T, = exp (—1C,)
L=exp(tBy)Uy; S =(I+ [5exp(—vCqo) D exp(vBy)dvUoy) " ;
T = exp (—1C,)
we obtain that from (2.3), (2-8), (29) and (2.12), that
@13) %0 - XO) < L] S, = S|IT] + |L] [S]IT. - 7] +
+ | = L] S]] -
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Let ¢ be a positive number. Then from the norm convergence of Z, to X it is clear
that B,, C, and U,, defined by (2.9), are norm-convergent to By, C, and U, respect-
ively. Let 1 be a fixed real number satisfying (2.11). Then there exists a positive integer
n, (depending on ¢ and ¢) such that for n > n, the following conditions are satisfied

(2.14) [t exp (~0G,) Dexp (o8 do U] < (1 + ()2,
1B < I8 + 25 [Cl < [Co + 25 [0 < Vol 455 0> no.
Considering (2.12), (2.11) and taking norms for n > n, we obtain that
(15 IL] = (U] + D erp (1Bl + )5 |1 = exp (1Co] + 2)
I7] = exp (lCal) s 5] = (1 - 5(0)"
By application of the mean value theorem to the expressions
L,— L=exp(tB,)U, —exp(tBo)Uy; T, — T = exp(—1tC,) — exp (—1C,)
it follows that
(2.16)
|7, 71 = 2 exp ((]Coll + ) [C, — Col = 2]0] |2, = X] exp (|G + ).
IL. — L] = {(1U6l + &) #10] exp (1Bo] + &) + exp (1Bo]} |2, - X .
From (1.6) and (2.12), (2.14) for n > n, one gets
(2.17) Is. — S| =
< IS [Sall [§6 ((exp (= vC,) D exp (vB,) U, — exp (vCq) D exp (vB,) U,) duf| <
< Sl [S] §o [exp (=vC,) D(exp (vB,) — exp (vB,)) U, | dv +
+ [6 exp (—vC,) D exp (vB,) (U, — U,)| dv +
+ S]] [S]l §6 [lexp (—vC,) — exp (—vCo)) D exp (vB,) U dv .
From (1.7) and (2.17), (2.14) one gets
(2.18) IS, — S| =
< 2| D] (1 = 8(1))~* (Jo exp («([Coll + [[Bol| + 2¢) v do) [ D] (JUo] + 2) -
2. = X + 2| D] |2, = X[ (1 = 8(1))7* (o (exp ((|Co]| + [Bo] + ) -
|D] do + 2] D[* (1 = 8(1))~* [Uo| (f5 v* exp (o([[Cof| + [ Bo]| + 2)) -

) |z, - X].
Let us denote by y and ¢ the positive constants defined by

(2.19) y=|Coll + |Bo] + 265 o= |Co| + |Bo] + -
From (2.17)—(2.19) it follows that

(220) Is, - s]

< 2t = o(n)* o] |z, - X[ ([2] ([Uo] + €) fo v* exp (y0) do +
+ [§ exp (ov) dv) + 2(1 — 6(t))~2 | D]* |Uo]l |2, — X|| f§ v* exp (vo) dv .
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From (2.13), (2.15), (2.16) and (2.20), it follows that
(221) [X.(6) = X(1)] =
< (2([Uo] +2) [ D] (1 = 8()~2 exp (to) [| D[ (o] + &) 5 v* exp (3v) dv +
+ [o exp (ev) dv + [ D] U] [ v* exp (y0) dv)] + exp (to) £ [ D] (1 — 5(2))" +
+ (1 = 3()™" exp (1] Co)) ([Uo] + &) [ D] exp (t([|Bo]| + €)) + exp (¢][Bo])} -
NZw = X[ = {2exp (t7) (1 = 8(0) 7" [ D] ([Us] + &) [J5 exp (o) dv +
+ ¢ D] J5 v* exp (v7) dv + | D] [Us| [ v*(exp (v) + exp (vo)) du] +
+ 2| D (|Uo| + ) (exp (te) + exp (ty)) + exp (¢(|Bo| +
+ [CoD} (1 = 8()™" |2, - X[ .

Thus, under the notation of Lemma 1, the following result is proved.

Theorem 1. Let us consider problem (1.2), let W(t) be defined by (2.10), let us
suppose that (2.11) is satisfied in a neighborhood J = [0,r] of t =0, lete be
a positive number, let y, o be defined by (2.19), and let ny be such that (2.14) is
satisfied for n > ny. Then the error of the approximation X,,(t) defined by (2.9)
is given by (2.21).

3. BOUNDARY VALUE PROBLEMS: EXACT, APPROXIMATE SOLUTIONS
AND ERROR ESTIMATE

The next results concern the resolution problem (1.3), under the existence hypo-
thesis of a solution X of equation (1.5). This problem (1.3) has been studied in [8],
for the time varying finite-dimensional case, and in [9], for the time invariant infinite
dimensional case, but in both papers, the solution of the problem is given in terms
of the entries S;;(f) of the matrix function S(¢) defined as

S(t) = exp (t [i g:l) .

In this section, a computable expression for solutions of problem (1.3), in terms
of the data and solutions of algebraic Riccati equations of the type (1.4) is given.

Theorem 3. Let X be a solution of equation (1.5), and let us consider the matrices
By, Co and U, defined by (2.1). Let us consider the matrices M, N, P and Q defined
by the expressions

(3.1) . K=G-EX+XF; M= —Kexp(bCy);
0 =F [%exp((b — v) Cy) D exp (vB,) dv
N = Eexp (bB,) — K [5exp ((b — v) Co) D exp (vBy) dv; P = F exp (bCy)
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and let us suppose that there exists a solution Y of equation (1.4), where the coeffi-
cients are given by (3.1), such that

(3.2) For all te[0,b],
the matrix 1 + [ exp (—vC,) D exp (vB,) dvY, is invertible

Then a solution of problem(1.3) is given by
(33) X(t) = X + exp (tBy) Y(I + [§ exp (—vCy) D exp (vB,) dv Y) ™" exp (—1Cy)

Proof. Let us consider the Cauchy problem (1.2) for any matrix P, in C™", and
let us consider the change of variable (2.4). Taking into account Lemma 1, it follows
that the matrix function X(7) given by (2.3) is the solution of problem (1.2) with
X(0) = P,. Now we are interested in finding the value of P, so that X(r) given
by (2.3) be a solution of (1.3).

Note that the boundary value condition appearing in (1.3), for the variable X(7),
is equivalent to the boundary value condition

(3.4) EU(b) — U(O)F = G — EX + XF
where U(t) = Z(f) (V(1))~", and Z(t) and V(1) are defined by (2.7) for all 1€ [0, b],
and U, = P, — X. By imposing that U(t) satisfies the boundary condition (3.4), it
follows that U, must verify the condition
(3.5)  E(exp (bBo) Uy(I + [5 exp {—vCy) D exp (vB,) dvU,) ™" exp (—bC,)) —
_U,F =K
where K is given by (3.1). By postmultiplying (3.5) by the matrix
exp (bCo) (I + [ exp (—vCy) D exp (vB,) dv Uy) ,
it follows that U, must verify the equation
(E exp (bBy) + K exp (bCy) [5 exp (vCy) D exp (vB,) dv) U, —

— UyF exp (bCy) — U,(F exp (bC,) [b exp (—vC,) D exp (vB,) dv = K exp (bCy).
Hence, and from (3.1), it follows that U, must satisfy the equation (1.4), where
M, N, P and Q are given by (3.1). Conversely, if Yis a solution of (1.4)—(3.1) and
we consider the problem (1.2) with X(0) = X + Y, placing Y as U(0), the solution
of this Cauchy problem, given by Lemma 1, satisfies the boundary condition (3.4).
Note that by the invertibility of ¥(t), the condition that U(0) is a solution of (1.4) to

(3.1) is necessary and sufficient for U(¥) to be a solution of (2.5), (3.4), or equivalently,
for X() to be a solution of (1.3).

Corollary 1. Let {Z,}, ., be a sequence of approximations that converges to a solu-
tion Y of equation (1.4) with coefficients given by (3.1), X being a solution of equa-
tion (1.5) and let Uy, By, C, be defined by (2.1). Let W(t) be defined by (2.10), and
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let us suppose that for all te[0,b], the condition a(t) = Y| |W(t)] <h <1
is satisfied. Then the sequence of matrix functions defined by

(3.6)

X,(t1) = X + exp (tBy) (Z, + [, exp (—vCy) D exp (vB,) dvZ,)™ " exp (—1Cy)

is pointwise convergent to the solution X(t) of problem (1.3), defined by (3.3).
The error X,(t) — X(t) is norm-bounded by

(3.7) 2exp (((|Bo]| + [|Col)) (1 = h)™" |2, = Y| for n>n,

where ng is chosen such that |Z, — Y| < (1 — h)(2h)™* | Y| if Y # O and n > n,,
and if Y = 0, then we take n, such that for n > nq the condition | W(t)| |Z,|| < 1
is satisfied.

Proof. The result is an easy consequence of theorems 1 and 3.

Now we are going to consider a class of examples for solving the problem (1.3)
by application of Th. 3, and a particular way for the resolution of the generalized
Riccati equation (1.4) with coefficients given by (3.1).

Example 1. Let P, Q, M and N be the coefficient matrices defined by (3.1), and
let R and H be defined by the expressions

[P o R R,
o[l - [R R

— Jl *
J”*[o JZ:I

where J; is the Jordan canonical form of H. If X is a solution of (1.5), By, Co and U,
are defined by (2.1) abd

(3-8) forall rel0,b],
the matrix Ry + [§ exp (—vC,) D exp (vB,) dvR; is invertible ,

such that HR = RJy,

then a solution of problem (1.3) is given by
X(t) = X + exp (tB,) R3(R; + [§ exp (—vC,) D exp (vBy) dvR;) ™! exp (—1C,) .

In fact, from the hypothesis (3.8), taking t = 0, it follows that R, is invertible.
From [14], Y = RyR; " is a solution of (1.4), its coefficients being given by (3.1).
Now the result is a consequence of Th. 3.

CONCLUSIONS

This paper presents a method for computing explicit solutions of Cauchy problems
and two-point boundary value problems concerned with the generalized Riccati
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matrix differential equation (1.1). The method is based on the existence of solutions
of algebraic Riccati type matrix equations related to the problem, and the expression
for the solution of the differential problems is expressed in terms of the solutions
of the corresponding algebraic problems.

The interplay between the solution of the algebraic and the differential problem
allows us to obtain approximate solutions of problems (1.2) and (1.3), and an error
estimate of them, in terms of approximate solutions of equations of the type (1.4)
and their corresponding error estimates. Also, it is proved that the expression for
the solution of the Cauchy problem (1.2) is stable with regard to a small change
of the Cauchy condition.
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Souhrn

O ZOBECNENE RICCATIOVE MATICOVE DIFERENCIALNI ROVNICI.
EXAKTNi A PRIBLIZNA RESENf, ODHAD CHYBY

Lucas JODAR, E. NAVARRO

V praci jsou uvedeny explicitni formule pro teSeni Cauchyovy ulohy a dvoubodové okrajové
ulohy pro zobecnénou Riccatiovu maticovou diferencialni rovnici. Tyto vyrazy lze vypoditat
pomoci dat a feSeni jistych algebraickych Riccatiovych rovnic souvisejicich s danou ulohou.
Vzajemné vztahy mezi algebraickou a diferencialni rovnici jsou uZity k nalezeni pfiblizného
feSeni diferencialniho problému pomoci feSeni problému algebraického.

Pe3ome

OB OBOBHIEHHOM MATPUYHOM IN®®EPEHIIMAJIBHOM YPABHEHUU
PUKKATH.
TOYHBIE 1 NMPUBJIMDKEHHBIE PEIMEHWA, OLIEHKA ITOI'PEITHOCTU

Lucas JODAR, E. NAVARRO

B paborte npuseneHs! sBHbIE GOpMyIBI Ui pemieBus 3anadd Komwu ¥ ABYTOYEHHOH KpaeBOM
3aa4d [t 0000IIEHHOTO MaTpUYHOTO Juddepenimanbroro ypapaeHus Pukkatu. OTH BHIpaXeHHs
MOTYT OBITH BBIYHCIIEHH! IPH MIOMOIIHA JAHHBIX ¥ PELICHMI HEKOTOPHIX ajiredpanyeckux ypaBHECHHH
PuxkaTy, CBSI3aHHBIX C JAHHOM 3ajayeil. B3auMubie CBs3n Mexay anrebpawyeckum u guddepen-
[UABHBIM YPaBHEHHUSIME KCIIOJIb30BaHbI AJis1 ODpeAcNenus NIPUbkesHOro pemennas quddepeH-
LUAJBHOM 3a/1a4yy IpH IIOMOIIH ajirebpanyeckoil 3anayu.
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