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Summary. The paper is devoted to the solvability of a nonlinear elliptic problem in a plane
multiply connected domain. On the inner components of its boundary Dirichlet conditions are
known up to additive constants which have to be determined together with the sought solution so
that the so-called trailing stagnation conditions are satisfied. The results have applications in the
stream function solution of subsonic flows past groups of profiles or cascades of profiles.
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INTRODUCTION

In the study of plane, nonviscous, subsonic steady flows past profiles it is convenient
to introduce the stream function which leads to a boundary value problem for
a second order elliptic equation. However, the stream function is determined on
each profile up to an unknown additive constant. In order to complete these boundary
conditions, we can prescribe e.g. the velocity circulations along profiles or the mass
fluxes per second between the components of the boundary. Nevertheless, it follows
from physical considerations and experience that only the solutions satisfying the
so-called trailing stagnation conditions model real flows in an appropriate way. It
means that in the flow past a profile which is smooth except for a sharp trailing edge
we demand the velocity to be bounded. (See e.g. [2].) In technology we often meet
also smooth profiles. On the basis of experiments and numerical calculations, we
have concluded that for obtaining physically reasonable flows it is sufficient to choose
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the trailing stagnation point (where the velocity is zero) as a point on the backward
part of the profile (with respect to the direction of the flow) with the greatest curvature.

To similar problems we come in the stream function solution of plane flows past
profiles in a layer of variable thickness, past cascades of profiles or past axially
symmetric rings inserted into an axially symmetric channel, etc. In the papers [4, 5]
we studied the solvability of incompressible (irrotational or rotational) flows and of
subsonic compressible irrotational flows past smooth profiles with given trailing
points. Here we extend the results to a general nonlinear equation which governs
compressible rotational flows. We consider more general situation, when the in-
complete Dirichlet conditions are combined both with the trailing conditions on
some profiles and with prescribed velocity circulations on other profiles.

1. FORMULATION OF THE PROBLEM

By R* we denote the k-dimensional Euclidean space. The distance of x € R* and
x" e R* will be denoted by |x - x’].

Let @ < R? be a bounded, (r + 1)-multiply connected domain (r = 1) with the
boundary dQ whose components C,, Cy, ..., C, are geometric images of simple
closed curves. Let C; < Int C,, (= the bounded component of R*> — C,) for i =
=1, ..., r. By Q we denote the closure of Q. The curves C, ..., C, can be considered
as profiles inserted into the domain Int C,.

1.1. Boundary value problem. Let functions y;: C; > R, i =0,...,r, points
z;€C;,i=1,...,mand constants y;€ R!, i = 1, ..., r be given. We seek a function
u: @ - R (sufficiently smooth) and constants ¢y, ..., ¢, € R satisfying the equation

2
0 .
(1.2) -y . a(x, u(x), Vu(x)) + ao(x, u(x), Vu(x)) = f(x) in Q
i=1 0x;

and the boundary conditions
(1.3) ulCo =¥y,
(14) ulci =’l//i+qi’ i=1>"'sr1

ou .
(1.5) b(-,u,Vu) —)(z;) =v;, i=1..m<r,

on

. ou .
(1.6) b(*,u,Vu)—ds =y, i=m+1,..r
c on

Here 6/6n denotes the derivative in the direction of the outer normal to 0Q, Vu =
= (uy,, Uy,), U, = Oufdx,. Similarly, we write u,,. = 0°u[(dx; 0x;). z; € C; are the
so-called trailing points, b = b(x, &y, &,, &;): @ x R* > R'. We assume that the
functions a; = ay(x, £), xe Q, & = (&, &, &;) € R?, are continuous for i =0, 1,2
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and continuously differentiable for i = 1,2. Under this assumption equation (1.2)

can be written in the form
2

(1.7) Y a(x, u(x), Vu(x)) Uy (%) +

ij=1

+ ‘;lb,-(x, u(x), Vu(x)) u, (x) = bo(x, u(x), Vu(x)) in Q,

where
. da. »
(1.8) a;fx, &) = — _‘ﬁ(x, g, Lj=12.
o&;
b,—(x, & = — ‘2"; (_\_, &), i=12,
o0&,

bo(x, &) = —a(x, &) + Z:l ;; alx, &) + f(x),

i

XEQ, C‘=(60’€1561)6R3'

Because of the nonstandard discrete conditions (1.5) it is impossible to use the
usual concept of a weak solution from the Sobolev space H'(£2) and therefore we will
consider classical solutions of equation (1.7). With respect to this fact we introduce
the following

1.9. Assumptions. The following conditions hold:

(1.10) ae(0,1); -
(1.11) 0QeC*;
(1.12) Y, eC*XC), i=0,..,r;

(1.13) the functions a;; (i,j = 1,2) and b; (i =0,1,2) are bounded, Holder-
continuous with respect to x with the exponent a and Lipschitz-continuous
with respect to &:

lai(x, &), [bix, &) S ¢, i,j=1,2, |bo(x,&)| <S¢y Vxe@, EeR?,
laif(x,8) = ay(n, O = My|x =y, 1j =12,
|bi(x, &) — by, )| = My|x —y|*, i=1,2,
|bo(x, &) = bo(y, €)| = Mg|x — y|“ , Vx,yeQ, (eR3?,
laif(x, &) — aifx,m)| < L|g - ], Li=1,2,
|bi(x, &) — bx,n)| < Llé — ;7| , i=1,2,
|bo(x, &) — bo(x,m)| < Lo|é —n|, VxeQ, &neR?,

with constants co, ¢, My, M, Ly, Lindependent of x, y, &, n, i, j;
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(1.14) there exist constants u, v > 0 such that

~

pn: +n3) £ Y ay(x, & nm; < v(ni + n3)
i,j=1

VXEQ, €GR3’ ’11”126R1;
(1.15) the function b = b(x, &) (x € @, & € R?) is continuous in @ x R*® and
0<¢;£b=t, <+ in Qx R>. O

The spaces and classes C, C¥, C*, C** etc., are defined e.g. in [1,8,9]. By the
symbols ||*[lo.0.3 [ *le.0.3 |* |k |* llk.c,00 We denote the norms in the spaces C(£2),
CYQ), C*(Q), C**(0Q), respectively (here k = 0 is integer, a € (0, 1)).

Let us remark that the following assertions hold:

a) The imbedding C'*(Q) = C(Q) (x€(0,1)) is continuous. Therefore, there
exists a constant ¢* = ¢*(Q) such that

(1.16) lullonn < c*|uf1,.0 YueC(Q).

b) The imbeddings C**(Q) = C'*(Q) and CX(Q) = CH(Q) with 0 < f<a <1
are completely continuous. It means that from each sequence u, bounded in
C*%(Q) (C(R)) we can choose a subsequence u,, convergent in C'*%(Q) (C#(Q)).

The subject-matter of this paper is the study of the following

Problem (P). Find u e C*%Q) and constants qy, ..., q,€ R' satisfying equation
(1.7) and conditions (1.3)—(1.6). O

2. ESTIMATES OF SOLUTIONS OF LINEARIZED PROBLEM

The main tools for proving the existence of a solution of Problem (P) are the strong
maximum principle and estimates valid for solutions of elliptic equations.
Let us consider a linear elliptic equation

2 2
(2.1) Lu= Y Ajx) . (x) + X Aix) ue(x) = g(x), xeQ
N ij=1 i=1
with
(22) A, A, geC(Q), ae(0,1), A=A},
satisfying

3) i+ D)= 3 Ay S0 ) Vee B, nmeR?,
(u, v > 0 are independent of x, 7, 77,) and
(24) l4iloao [4dosa =M,
(2:5) lllo0.m = co-
In the following we shall consider assumptions (1.10)—(1.12), (2.2)—(2.5).
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2.6. Theorem (the Schauder estimate). There exists a constant k, dependent
on p,v, a0, M and Q, i.e. ky = ky(ut, v, a, M, Q), such that any solution u € C*(Q)
of equation (2.1) satisfies the estimate

2.7) [4ll200 = Killlglo.cm + [u]2.2.00] -
For proof see e.g. [1] or [9]. O

2.8. Theorem. Let u € C*(Q) be a solution of equation (2.1) satisfying

(2.9) uloQ =y |oQ

with € C*(Q). Then

(210) “ulll,a,ﬁ é k2(”7 v, &, Co, HJ’”Z,O,ﬁ: Q) .
Proof is a consequence of results from [9, Ch. ITI, § 19 and § 1]. O
2.11. Theorem (on the solvability of a linear elliptic equation). Under assumptions

(1.10), (1.11), (2.2), (2.3) and § € C**(Q), problem (2.1), (2.9) has a unique solution
ue C*Q).

Proof. See [9], Theorem 1.3 from Ch. Il or [1],§5.7. O

2.12. Theorem (strong maximum principle). Let (1.10), (1.11), (2.2), (2.3) be
satisfied and let u € C*(Q) be a solution of the equation Lu = 0 in Q. Then:

1. If u has maximum or minimum in Q, then u is constant in Q.

2. Let us assume that £ € 6Q and u is not constant in Q. Then, provided

u(X) = maxu or u(£)=minu,
we have 2 a

@i(fc) >0 or a—u(ﬁ) < 0, respectively .
on on

Proof. See [1] (where the theorem is proved under weaker assumptions).  [J
From (1.10)—(1.12) we get the existence of @, ..., ¢, € C***(2) such that
(2.13) a) @o|Ci=y;, i=0,..,r,
b) | C; =3y,

(6, =1,06;; =0if i * j.)Seee.g. [9].
Let us denote by u;, i = 0, ..., r, solutions of the following problems:

i=1,...,r, j=0,..,r.

(2.14) a) Lug=g in Q, u,|0Q = ¢,|0Q,
b) Lu; =0 in Q, u;|0Q =¢;|0Q, i=1,..,r,
where @, ..., ¢, € C>*(Q) satisfy (2.13).
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2.15. Theorem. Problems (2.14) have unique solutions u;e C**(Q). Moreover,
there exist constants ¢, = ¢,(i, v, 0, M, Q), ¢, = ¢;(u, v, 0, ¢q, |90 c2@y Q) and
c; = c3(p, v, , Q) such that

(216) [uoll2.02 = ei[[|9]lo.m + [@0] 22001 »
lui200 Ses =11,
217) o]0 < e
ludliom S e i=1,r.
P;oof is an immediate consequence of Theorems 2.6, 2.8 and 2.11. O

2.18. Theorem. Let us consider operators

2 2 2 Fi

2.19 —— + ) A, —, n=1,2,...,
@19) .Z=1 7 ox; 0x, .-; ox;
2 2 2 a
L= Y 4,2 —+yY 4,2
ij=1 X; 0x; i=1 X;
with AJ;, Ayj, AL, A;€ C(Q) satisfying (2.3) with p,v > O independent of n,

functions g,, g € C{(Q) and ¢ € C**(Q). Let u,, u € C**(Q) be solutions of problems

(2.20) a) Lu,=g, in Q, u,|0Q=9¢|oQ,
b) Lu=g in Q, u|oQ=¢|0Q

and let

(2.21) Al = Ay, AT—> A, g.—g in C(Q).

Then u, — u in C**(Q).
Proof. Denoting v, = u — u, and subtracting (2.20, a) from (2.20, b), we get

2 2
(2.22) Y Aijuxie; + 2 Ay, = F,, v,|0Q =0,
ij=1 i=1
where
2 2
(223) F" = Z l(A?j - Aij) u"-"i-‘j + Zl(A': - Al) unx; + gn — 9 -
iLj= i=

It is evident that F, e_C“(Q) forn =1,2,.... From Theorem 2.6 and the boundedness
of Afj, A%, g, in C¥(Q) we see that ||u,], , 5 £ ¢, where ¢ is independent of n. This,
(2.21) and (2.23) imply that F, - 0 in C*(&). Now, applying Theorem 2.6 to (2.22),
we get the estimate

loalz.0m = sl v, @ [0, [Ailo,cim @) [ Fulo e

This already implies that v, = u — u, — 0 in C2%(Q). (]
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Now, let us consider the following linear problem:

Problem (L). Find ue C*%(Q) and ¢, ..., g, € R* satisfying (2.1), (1.3), (1.4).

(2.24) %(zi) =v;, i=1,...m,
dn
and
(2.25) J b(x)gf(x)ds=u,., i=m+1,..,r,
c dan
with given vy, ...,0,€ R and a given be L*( U C;). Further, we assume that
i=m+1
(2.26) 0<é <bx)<e Vxe U C;.
i=m+1

2.27. Lemma. Problem (L) has at most one solution.

Proof. If Problem (L) has two different solutions, then the corresponding homo-
geneous problem, i.e. Problem (L) with g =0, Y, =0, ; =0, v; =0 for i =
= 1,..., r, has a nontrivial solution u. Hence, u is nonconstant in Q and by Theorem
212, maxu = ¢; = u| C; for some ie{l,...,r}. Then dufdn >0 on C,

o
If ie{l,...,m}, we have a contradiction with (2.24) (where v; = 0). Let
ie{m + 1,....r}. Then, since b > 0, we get [¢, b(0u/on) ds > 0, which is a contra-
diction with (2.25). O

The solution of Problem (L) will be sought in the form
(228) U= uy + ~Zlqju‘i .
i=

It is easy to see that such u e C**(Q) is a solution of equation (2.1) and satisfies
conditions (1.3) and (1.4). We shall seek the constants g; to satisfy (2.24) and (2.25),
ie.

(2.29) T Mg =0 -0y, i=1m,
. j=10n on

(2.30) Zj a—uidsqj=vi——"-b%ds, i=m+1,..,r.
i=1])¢, On c, On

(2.29) and (2.30) form a system of linear equations

(2.31) : Aq =h,

where

(232) A= (aij)ri,j=1 > 4= (ql, cee qr)T > h = (hla s hr)T ’
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oc-‘— J(z) for i=1,....m, j=1,...,r,
o J.———’ds for i=m+1,..,r, j=1,..,r,
c

h, = auo( ) m,

h; =v,v—J. b%ds i=m+1,...,r
C; on

2.33. Lemma. The matrix A is regular.

Proof. It is evident that provided A is singular, Problem (L) with g = 0, 4 = 0,
¥;=0,v,=0, i =1,...,r has a nonzero solution, which is a contradiction with
Lemma 2.27. O

From the above results we get the following

2.34. Theorem. Problem (L) has a unique solution ue C**(Q). This u has the
form (2.28), where q is the unique solution of the linear system (2.31). O

2.35. Theorem. The solution u of Problem (L) satisfies the following estimates:

(2.36) lull20m < ex(t + crea A7) Llgllonm + [@o]l2,m0m] +
+ e ATy Jofs

(2.37) lulls2m < e2(1 + caca A7H1) + es|ATH]| o]y

where

0= (e, el = Lol

|A=*||y is the norm of the matrix A~* induced by the norm |||, in R". ¢y, ¢;, ¢5
are the constants from Theorem 2.15. ¢, = r + ¢, meas, (0Q)), where &, is the
constant from (2.26) and meas, is the one-dimensional measure on 09Q.

Proof. Let us denote either |u| = |ju],,5 or [|u] = [[u]; .5 Then, by (2.28),
(2.38) [l = o]l + llgl}s max Jui] -
We have ¢ = A™'h and
(2.39) lalls = A7 0],
Moreover,
Il s o + 5, [Ze @ + 3 [ p5eal.
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If we use Theorem 2.15 and assumption (2.26), we get

i}‘—o(zi) = Cl[“gno,a,?i + H(POIIZ,:;,OQ] ,
%(zi)l Lcp, i=1,..,m;

0
j b2 4| < ¢z, meas, (C) [[g]onm + [Polz.e0n]
Ci

on
b Mo 4
c; On

i=m+1,...,r.

< ¢,¢, measy (C)),

Hence,
(2.40)  |lhfly = Jolls + ex(m + ézi=%:+ jmeas, (€)) [lgllowz + [@oll2.e00] <

< eseal]|9]lo.em + |Pollza00] + [lofs -
Similarly we get

(241) I2ls < caca + o] -

Now, if we substitute (2.39), (2.40) and (2.41) into (2.38) and use (2.16), (2.17),
we get (2.36)—(2.37). ]

In the following let us consider given constants a€(0,1), p, v, M, &,,¢, > 0,
p<v, & £¢, and functions @, ..., ¢, € C*%(Q) with properties (2.13). Let us
denote by Z(a, p, v, M) the set of all operators Lfrom (2.1) with properties (2.2)—
—(2.4), and by 4%(¢,,¢,) the set of all be L*( U C,) satisfying (2.26). Each

i=m+1
operator Le L(a, u, v, M) can be associated with the functions wu;, = u,
(i =1,...,r) — solutions of (2.14, b). Hence, each pair (L, b), Le #(«, s, v, M) and
b e &(¢y, ¢,), is associated with the regular matrix Ay, = A defined in (2.32). We
shall prove

2.42. Theorem. There exists a constant K > 0 such that

(2.43) |ALs]: < K VLe L(o,p,v, M), Vbe B(2y,8,).

Proof. Let us denote o/ = {|A7}|; Le L(a, p, v, M), be B(&y,¢,)} and a =
= sup . Then there exist sequences L, € #(a, u, v, M) (L, has coefficients A7;, A7}
and b, e B(2,,¢,), n = 1,2,.... such that (denoting A, = A, ;)

(2.44) ||A,,'1Hl—>a if n—> .
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By (2.32) we have

ou(z;)
0
(2.45) A, = "
. f aljds i=1,..mk=m+1,...,r,
Cr " on / j=1,..,r
where
(2.46) uje C**(Q),

Lui=0in Q, u}|0Q = ¢,|0Q,
i=1,..,r, n=12,...

Since the imbedding C*%(Q2) = C'%(Q) is completely continuous, on the basis
of (2.16) we can choose a subsequence of u} (denoted again by u) such that u} — u;
in C*(Q) if n—> oo (i =1,...,r). Hence, du}[on (z;) » du;lon (z;) (i=1,...,m,
i=1..,r).

Moreover, in view of (2.26), the sequence b, is bounded in

(U c)

i=m+1
and thus it is possible to assume that b, — b weakly in
(U c).
i=m+1

On the other hand, the set

{(beI’( U C); 0<¢ b=ty
1

t=m+

is convex and closed, and therefore, it is weakly closed. This implies that b satisfies
(2.26), which means that b € #(¢,, ¢,). Further, it is evident that
duifon — ouilon in I*( U C))
- i=m+1

strongly, which yields

jb,,%dsqf bMas, i=mal,.r.
C: on C; an

S
-.
I
—_
~
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Let 0 < B < a. As the imbedding C(Q) o C/(Q) is complstely continuous and
(24)isvalid foralln = 1,2,..., w2 choog, subsequences A7, A7 such that
(2‘48) A'i'j - Aij . Al - A; in C‘o(g) .
Of course, the coefficients A;; satisfy (2.3). By Theorem 2.15, (where we substitute
o = f§), there exist unique solutions #; € C2 ﬂ(Q) of the problems

(2.49) Li; =0 in Q, &[0Qx |02, i=1,..,r.
Let us define the matrix
[ a/ﬁi(zi)
on
(2-50) AT = AL,b = B
b % ds
\jc; on

which is regular, as follows from Lemma 2.33,
Now, by Theorem 2.18 we have

(2.51) W@ i c2A(@).

On the other hand, u} — u; in C'"%@). From this, (2.50), (2.51) and (2.47) we
conclude that u; = #; and therefore A = A~ Hence,

sup o/ = a = lim [[A; Y], = A7, < + 0,

which we wanted to prove. O
As a consequence of 2.35 and 2.42 we get

2.52. Theorem. To given constants o, u, v, M,cy, ¢y, ¢y > 0, oce(O, 1), p=,
&, < ¢, there exist constants cy,c3 > 0 such that

(253) lu]l2.08 = €il9]0.02 + |00l 200 + [2]1]
and
(2.54) 1,00 < 3(1 + [o]1)

for each solution u of Problem (L) with an operator Le ¥(«, u, v, M), a right-hand
side of equation (2.1) g € CX(Q) satisfying (2.5), and with a function b e %(¢,, ¢,)
from conditions (2.25).

Proof. From (2.36), (2.37) and (2.43) we see that it is sufficient to put cf =
= max {¢,(1 + ¢;¢4K), ¢,K} and ¢ = max {¢,(1 + Kcsey), ¢3K}. O

We shall close this section by a theorem on continuous dependence of the solution
to Problem (L) on the data:

2.55. Theorem. Let us consider operators L,, L form (2.19) with coefficients
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from CXQ) satisfying (2_3). Further, let gn, 9 € C(Q), b,,be L*( U C,) satisfy
i=m+1

(2.26), Y, C**(C)). i = 1,...,r, v", ve R". We denote by u, and ue C**(Q) the
solutions of the problem

(256) Lnun=gn in Q,
un‘cozlpOa
u, | Ci=y; +q;, qi=comst, i=1,.r,

ou .
——n(zi =U’;a 1=
an

|
-
3

b nds = i=mA .y
ci On

and of Problem (L), respectively.
Then, provided

(2.57) A > Ay, Al > A, g.— g in C(Q),

b, = b almost everywherein \J C;,

i=m+1
n

" —>v in R,
we have u, » u in C*%(Q).

Proof is analogous to the proof of Theorem 2.18. From (2.57) it follows that

there exists M such that L,, Le &(«, p, v, M). Moreover, b,, be %(¢,,¢,). By
Theorem 2.52 and assumption (2.57),

(2.58) uunuLaﬁ = CT[ugn”o,a,ﬁ + u(P()n2,u,6§ + uU"“J < ki = const,
ltallt0m S 51 + [|o"]}) S k3 = const, n=1,2,....

Let us put w, = 4 — u, € C**Q). Then w, is a solution of the problem

(2.59) Lw,=F,
Wn‘c('P:O’ ancir‘q?y ""1: Ty
a&l(z;)—d'i‘y l=1a sm,
on
J.baw"ds=d';, i=m+1,..,1,
Ci on
where F, is given by (2.23) and
(2.60) D=0, =0, i=1,em,
d?:vi_.v'i'—j.(b—bn)au"ds, i=m+1,..,r.
Ci on
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(2.57) and (2.58) imply
(2.61) F,>0 in C(Q) and d"—0 in R,
By Theorem (2.52) applied to problems (2.59) we get

¥al2z = ElIFon + |d7]:] -0,
which concludes the proof. a

3. SOLVABILITY OF THE NONLINEAR PROBLEM

Now we shall study nonlinear Problem (P) (i.e. (1.7), (1.3)—(1.6)) and prove its
solvability.

3.1. Theorem. Let functions y;€ C**(C,), i =0,....,r and constants y;€ R',
i =1,...,r be given and let ¢; be functions satisfying (2.13). Further, let M > 0
and let (1.10)—(1.15) be satisfied with constants a, p, v, ¢, ¢o, My, My, Lo, L, &, ¢,
such that

(3:2) ¢+ My + L(1 + c*?)1/2 3 (1 + ||v]|; max (1,%)) =M,
€y
where c5 and c* are constants from (2.54) and (1.16), respectively.
Then Problem (P) has at least one solution u € C**(Q).

Proof. For each ue C'*%(Q) we shall consider the following problem: Find
w = w(u) and g; = q,(u), i = 1, ..., r, such that

(3.3) Lw = bo(*,u,Vu) in @,
(3.4) w|Co = Vo,
(35) W‘Ci=¢’,-+q,~, i=1,...,r,

(3.6) [b(-,u,Vu)%](zi)=y,~, i=1,...,m,b

3.7 b(+,u, Vu ﬂds‘:yi, i=m+1,...,r,
0
c; n
where
2
(3.8) Lw =Y a;(*,u, Vuyw, + b(-,u, Vu)w,,.
i,j=1

Now (1.13) implies for x, y € Q the inequality
laij(x, u(x), Vu(x)) = a;(y, u(y), Vu(y)| <
= M| x =y + Lu(x) — u)]® + [Vu(x) = Vu(y)]?)'* <
< [My+ L1+ ¢*2)' 2 uly 0] |x — ¥|*.
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Similar estimates hold for b;. Hence, a;(+, u, Vu), b{(*, u, Vu) € C¥(Q) and
(39) lai(-> w, Va)o am [B:(+> 4, VU)o o <
Sc+ M, + L1+ )2 |u|yn, i,j=1,2,
1Bo(+> u, V) 0,08 = <o »
o(+, u, Vt)||owz S co + Mo + Lo(L + ¢*2)' |u|, .2
By (1.15), b(+, u, Vu) | 02 € C(0Q) and
(3.10) ¢y £ b(-,u,Vu) <2, on 09Q.

Let us put v; =7y, for i=m+ 1,...,r and v; = y;b(z;, u(z;), Vu(z;))™* for
i=1,...,m. Then

(3.11) Iofl: = ] max (1, 5)

We see that (3.3)—(3.7) form a linear Problem (L) with a differential operator
L = L, satisfying (2.2), (2.3). By results from Section 2, there exists a unique solution
w = w(u) e C**(Q) to (3.3)—(3.7). Hence, we can define the mapping @: C**(Q) —

- C? z(Q) by

(3.12) o(u) = w(u), ueC' Q).

In view of the imbedding C*%(Q) = C'%(Q) we have also the mapping F: C* Q) —
- C'(Q):

(3.13) F(u) = w(u), ueC"(Q).

That is F = J o @, where J is the imbedding operator of C**() into C**(Q). It is
obvious that u is a solution of Problem (P) if and only if u is a fixed point of the

mapping F.
Now let us put

(.14) M= {u e C1o(@); s am < (1 + |7] max (1, el))} .

This set is nonempty, bounded, convex and closed in C"“(Q). If u e M, then by
(1.14), (3.2) and (3.9),

(3.15) lag(+,u, Vi)owm,> 6>t VU)oum S M, i,j=1,2,
L,e (o, p, v, M). ‘
Moreover,
(3.16) b(+,u,Vu)| U CieB(¢y,8,),
i=m+1

9u = bO('? u, Vu) € Ca(g) 4 nguno,a,?? é M =
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= ¢y + My + Lo(1 + c*?)'/? (1 + |7/, max (1, g-)), 9. < co -

1

By Theorem 2.52 and (3.11),

(3.17) Wliem = e (1 * [l max <1’ ﬁ%))

and thus, w € M. This means that F: N — IN.

In order to complete the proof by applying the well-known Schauder fixed point
theorem it is sufficient to prove

3.18. Lemma. The operator F is completely continuous in M.
Proof. a) By (3.15), (3.16) and Theorem 2.52,

2208 = [WWl2a0 < i[M + |@o]|200 + [0]i] < +o0.
Hence, the set ¢(M) is bounded in C>*(Q). Since the operator J: C2%(Q) - C*%(Q)
is completely continuous, the set F(M) = J(H(M)) is compact in C'*(Q). This
implies the compactness of F.

b) Let us show that F is continuous. Let y € (0, ot). The operator F can be written
in the form F = J o &, where J is the imbedding of C27(Q) into C*%(Q2) and the
mapping &: C'%(Q) > C>7(Q) is defined by ®(u) = w(u) for ue C'*(Q). The
operator J is continuous and therefore, it is sufficient to prove the continuity of &.

Let u,e C'*(Q), w, = ®(u,), n =1,2,..., u, > u in C"%(Q). We shall prove
that
(3.19) a;(*, up, Vu,) > a;(*,u, Vu),

b+, u,, Vu,) > b, u,Vu) in C(Q).
If xe, we denote &,(x) = (u,(x), Vu,(x)), &(x) = (u(x), Vu(x)). For arbitrary
x,ye @, x + y, we have '
(3-20) ha(x, y) 1= |aifx, &%) = @iy, &) —
= ayx, &%) + ay(, €W Ix = 377 =
< min {[M; + (w100 + |#liaa)] x = 177,
L{JE(x) = &)] + [&(y) = DN x =77} -
There exists k > 0 such that ||[u]; 5, [|[us]1,.0 < k(n = 1,2,...). Further, &, - ¢
uniformly in @ and thus, a,;(+, &,) - a;,(*, €) in C(2). We need to prove that

(3.21) . lim [ sup h,(x,y)] = 0.
n—+o x,yef?
x¥y

Let ¢ > 0; we find 6 > 0 and n, such that
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(3.22) (M, +2Lk) &7 <2,
2LIE(x) = &(x)| 677 <& VxeQ, Vn>n,.

Now, if n > ng, then |h,(x, y)| < &, as follows from (3.20) and (3.22). This yields
(3.21). Similar results hold for by(+, u, Vu), i = 0,1, 2.

Further, from the continuity of b we have b(-, u,, Vu,) > b(-, u, Vu) and therefore,
V" — v, where o} = y,/b(z;, u,(z;), Vu(z))), v; = v:/b(z;, u(z;), Vu(zy)), i = 1,....m
and v} = v, =y, fori=m+1,..,r

Now, by the application of Theorem 2.55, where we substitute o := y, we find out
that &(u,) = w(u,) > ®(u) = w(u) in C*”(Q), which we wanted to prove. O

3.23. Remark. We have proved the solvability of nonlinear Problem (P)under
the restrictive condition (3.2). This is satisfied, e.g., if the constant Lof the Lipschitz-
continuity of a;; and b; is sufficiently small. This is caused by the fact that we are
not able to estlmate the constants K and ¢3 from (2.43) and (2.54), respectively,
in dependence on the constant M. Therefore we have obtained the solvability result
for a model of rotational compressible flows with a small velocity (i.e., with a small
Mach number). As a special case of our results we get the solvability of a rotational
incompressible flow studied in [4]. The general case of rotational compressible flows
past profiles with trailing conditions, when the velocity is high, remains open.

4. APPLICATIONS

Let us investigate a steady, plane, compressible, subsonic, adiabatic, barotropic
flow. Tt is described by the following equations:

(4.1) p=2Co*, C>0, x>1 areconstants,
¢ dp 1 .
(4.2) P0)=| ——(1)—dr, g, >0 isa constant,
wde "7
(4.3) H = 2(o) + 3|v|*,
29
(4.4) Y —(ev) =0,
i=1 0x;
(4.5) w = Q‘iz_ — 5_111_ ,
0x, 0x,
0H
4.6 a v, = —
b) —wu; = oH ,
0x,
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which are considered in the domain @ filled by the fluid. We use the following nota-
tion: p — pressure, ¢ — density, H — generalized enthalpy, # — pressure function,
v = (v, v,) — velocity vector, w — vorticity. (4.1) is the adiabatic barotropic state
equation ,(4.4) is the continuity equation and (4.6, a—b) are the Euler equations of
motion. We neglect the outer volume force.

On the basis of (4.4) we introduce the stream function u: Q — R' satisfying the
relations
(4.7) ou _ —ov, , ou_ ov, .

0x, 0x,

Since both u and H are constant along an arbitrary streamline, we introduce the
assumption that H is a function of u. It means that there exists a function 4: R* — R*
(we assume that A is sufficiently smooth and bounded) such that

(4.8) H=Au)=Aou.

Substituting (4.7) and (4.8) into (4.5)— (4.6, a—b) we derive the stream function
equation .

2 0 (1 ou dA
4.9 —(-—)=0—(u).
(49) i; 0x; <Q 6x,-> ¢ du Q
With the use of (4.1)—(4.3) and (4.7) we derive the implicit equation

x — 1 11 1G=1)
. 0 = Qo + u)— ——|vVu s < ay = const,
(4.10) [1+ 22 (0= 5 o vwr) 0

0 Q

for the density. If we introduce the speed of sound a = (dp[dg)'/?> and the Mach
number M = |v|/a, we can prove that for a subsonic flow, i.e. M < 1, equation
(4.10) has exactly one solution ¢ = g(u, |Vu|?) > 0. Hence, if we put

(4.11) B= ! and f=¢ dd ,
0 du
equation (4.9) assumes the form
2 9 ou
(4.12) > 2 (Bu 1) 24) = sa V).
i=1 0x; 0x;

After differentiation we get a special case of equation (1.7).

It is not difficult to prove that for each fixed M* e (0, 1) it is possible to modify b
and f in such a way that the coefficients a;;, b; from (1.7) satisfy assumptions 1.9
and the following assertion holds: If u is a solution of (1.7), ¢ = 1/B, vy, v, are given
by (4.7), p by (4.1) and the corresponding Mach number satisfies the condition
M £ M*, then v, v,, p,0 represent a real subsonic flow satisfying equations

(4.1)—(4.6).
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Further, the constant L of the Lipschitz-continuity of the functions a
on M* in such a way that

(4.13) L=LM*) -0 if M*—0.

b; depends

ijs

A similar result holds for axially symmetric flows (cf. [3, 10]).
In the following we shall study two patterns of a plane flow.

I) Plane rotational flow past a group of profiles. Let Q = R? be a bounded domain
with 0Q € C*H(x € (0, 1)), 9Q = Cou Cy U ... U C,. The curves Cy, ..., C, represent
fixed and impermeable profiles, see Fig. 1. The problem of a flow past these profiles
is described by equation (4.12) with the boundary conditions

(4.14) ulCo =¥y,

(4.15) u|C;=gq;, i=1,..,r,

(4.16) i’f(zi)=0, i=1,..,r.
dn

Fig. 1.

The stream function u e C>*(Q) and constants ¢y, ..., q,€ R' are unknown. The
function Y, is obtained by integrating the quantity ov,| C, past C, (v, = v.n,
where n = (ny, n,) is a unit outer normal to Q). On the inlet I'; = C,, ie. I'} =
= {x € Cy; gv,(x) < 0} (see Fig. 1), we prescribe the distribution of H, and this
determines the function A. (We do not go into details. The situation is quite analogous
to [4].) z; € C; are given trailing stagnation points, where the velocity is zero.

If we consider the trailing conditions (4.16) on the profiles Cy, ..., C,, (m < r)
only and prescribe the velocity circulations (—y,.) past the profiles C,, 4, ..., C,, i.e.

(4.17) fe,v.tds=—y,, i=m+1,..,r,
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where t = (—n,, n,) is the unit tangent to C;, then by (4.7) and (4.11) we get the
conditions

(4.18) J. ﬁ(u,|Vul2)i‘ids=y,~, i=m+1,...,r.
C; an

We see that the rotational compressible flow past profiles C, ..., C, can be
formulated as Problem (P). On the basis of the above results and (4.13), to a prescribed
constant M > ¢ (the constant M, = 0in (1.13)in this case) we can choose M* e (0, 1)
in such a way that the solvability condition (3.2) is satisfied and hence, by Theorem
3.1, our model problem (4.12), (4.14), (4.15), (4.16) (i = 1, ..., m) and (4.18) has at
least one solution.

) )

/ S
/‘ ——-

7

h,
Q

7

outlet

X4

inlet K,

/

avd

)’5
N
.'.ﬁ N

Fig. 2.
II) Cascade flow problem. We consider a domain @ = R? with the boundary
Qe C**(xe(0,1)) formed by two straight lines K; = {(x,, x,); x; = d;, x, € R},
i=1,2, di <d,, and disjoint simple closed curves C,, k =0, +1, +2,...,
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periodically spaced in the direction x, with a period T > 0 and contained in the
strip Q* = [d,, d,] x R'. The curve C, is obtained by translating C, in the direction
x, by kt. The curves C, form the so-called cascade of profiles. K, and K, represent
the inlet and outlet of the cascade, respectively. See Fig. 2. The domain Q is periodic
in the direction x, with the period t:

(4.19) (x5, x)€Q e (x4, x, +T) Q.

We shall consider equations (4.1)—(4.6, a—b) in the domain Q combined with the
following boundary conditions (cf. [4, 6]):

(4.20) ov,=0o0n C,, k=0, +1,...,
(4'21) Qvn(di’xl) = ¢i(x2) onK;, i=12,
(4.22) H(d,, x,) = h(x,) on K, ,

1 x2+T
(4.23) ;J v(dy, &) dé, = fiy
(4.24) 0(z) =0, k=0, 41, %2, ....

Here ¢,, ¢, € C'*(R"), h e C>*(R") are given t-periodic functions, ¢; = ¢ > 0,
¢ = const,

(4.25) 2 e,(8)dE = [RYT§,(¢)dE = Q Vx,eR'.

fi; € R! is a given constant which represents a mean value of the tangential velocity
component over the segment of the inlet K, of the length 7. z, = z, + (0, kt) € C;
are the trailing points. We assume that vy, v,, p, @, w are 7-periodic in the direction x,.

Introducing the stream function u satisfying (4.7) we come to the following
problem: Find ue C*>*(Q) and constants 4o, q, € R' satisfying equation (4.12)
in Q and the conditions

(4.26) u(xy, x; + 1) = u(xy, x,) + @, (x;,x,)e @,
(4.27) W|Cy=qo+kQ, k=0,+1, 42, ...,
(4.28)  u(d;, x;) = ¥i(x2) + ¢;, i=1,2, x,eR', with g, =0,

X2+ T
(4.29) J. [ﬂ(u, |Vu|2) ?i] (dy, &)dé = —1ji;, x,eR!,
xz n
(4.30) ‘;—'f(zk)=o, k=0, 41,42, ...
n

Here y; € C**%(R") is a primitive to @;, i = 1, 2. Hence, by (4.25), ¥i(x, + kt) =
= yi(x;) + kQ, x, € R'. The function A from (4.8) is determined on the basis of
(4.21), (4.22) (cf. [4]) and is Q-periodic in R'.
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By the use of the transformation proposed in [4] (to an incompressible rotational
cascade flow) we transform the cascade flow problem (4.12), (4.26)—(4.30) to
Problem (P) in a bounded domain. Then, using Theorem 3.1 and assertion (4.13),
we get the solvability of our cascade flow problem under the assumption that the
maximum Mach number M* e (0, 1) is sufficiently small.

Let us remark that by following the process used in Sections 2 and 3, we can prove
the solvability of the cascade flow problem (4.12), (4.26)—(4.30) directly by con-
fining our considerations to one period of the cascade (cf. e.g. [6,7]). In this way

we avoid the necessity to apply the above mentioned transformation from [4].
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Souhrn
NELINEARNI ELIPTICKY PROBLEM S NEUPLNYMI DIRICHLETOVYMI
PODMINKAMI A RESENI ZAVIRENEHO OBTEKANI PROFILU
A PROFILOVYCH MRIZi
MiLoSLAV FEISTAUER
Clanek se zabyva fteSitelnosti nelinearni eliptické dlohy ve vicenasobn& souvislé oblasti.
Na vnitfnich komponentach hranice uvaZujeme Dirichletovy podminky, zndmé aZ na aditivni

konstanty, které je tfeba ur€it spolu s hledanym feSenim tak, aby byly splnény tzv. Kutta-
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Zukovského odtokové podminky. Vysledky byly ziskany pomoci silného principu maxima a vhod-
nych apriornich odhadu feSeni a maji aplikace v ulohach obtékani profila a profilovych mf¥iZi,
formulovanych pomoci proudové funkce.

Pesiome

HEJIMHEVHAS DJUTUIITUYECKAS 3AJAYA C HEIIOJIHEIMU KPAEBBIMU
VCIIOBUAMU JUPULIXJIE ¥ PENIEHUE JO3BYKOBBIX 3ABUXPEHHBIX
OBTEKAHMH ITPOOUIIEN U PEMETOK ITPO®UIIEN
IIPY ITOMOIIM ®VHKIIMU TOKA

MiLosLAV FEISTAUER

CraTbsl TIOCBSALICHA pPa3pemMMOCTH HEJIMHEHHOM OIITUNTHYECKOH 3aJayd B MHOTOCBSI3HON
obnactu. Ha BHYTpEeHENX KOMIIOHEHTaX IPaHMIB! YCIOBHE UpHUXiie H3BECTHO TOJIBKO A0 aAJATUB-
HBIX TIOCTOSIHHBIX, KOTOPBIE HAZ0 ODPEEeIUTh BMECTE C HEM3BECTHBIM PEIICHHEM TakMM 00pa3oM,
yTO0OBI GBIIM BHIIOJIHEHBI TaK ha3siBaemble ycinosus Kyrra-XKykoBckoro. Pe3ysibTaTs NOJIyYeRB! IPU
WCNOJIL30BAHMM CTPOTOIO IPHHIMIA MAKCAMYMa ¥ allpHOPHBIX OLIEHOK PEINEHHUS M MMEIOT NPHIIO0-
XKeHuA B 3a7a4ax 1 GyHKumM TOora, ONMCHBArOmuX obTekanne npoduieil ¥ PeeTOK NPOAUIIEH.

Author’s address: Doc. RNDr. Miloslav Feistauer, CSc., Matematicko-fyzikalni fakulta UK,
Sokolovska 83, 186 00 Praha 8.
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