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Summary. The article is a survey on problems of the theorem of Hurwitz. The starting point
of explanations is Schur’s decomposition theorem for polynomials. It is showed how to obtain
the well-known criteria on the distribution of roots of polynomials. The theorem on uniqueness
of constants in Schur’s decomposition seems to be new.
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1. PREFACE

We meet the criterion of Hurwitz, for example, when considering stability of
solutions of ordinary differential equations with constant coefficients. As to the proof
of the assertion, we are mostly refered to special literature. In addition to the usual
lack of space, the reason for omitting the proof certainly is that it is by no means
easy, involving facts from algebra as well as from the theory of complex variable.
This is corroborated, for example, by R. Bellman’s comment in [7] that there exists
no simple proof of Hurwitz’s theorem.

In the present paper we will show some aspects of the problem as well as one of
the many possibilities how to explain it. Our starting point will be Schur’s idea of
decomposition. The theorem on invariance of constants in Schur’s decomposition
seems to be new.

2. TWO BASIC PROBLEMS

Consider a differential equation of degree n with constant coefficients
aoy® + a;y* P+ ... +a,y=0.

The study of properties of solutions of the differential equation for t - + oo induces
the notion of stability. A solution of the differential equation is considered stable
when, roughly speaking, for any small change of the initial values (for some to) the
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values of the new solution (as well as the values of its derivatives to degree n — 1)
differ only little from the values of the original one for any t = ¢,. For equations
with constant coefficients, the fundamental system of solutions is given by functions
of the form e** or t*e* where k is a natural number and the (complex) number z
is the root of the characteristic equation

(2.1) apz" + a;z" '+ ...+ 4, =0.

The requirement of asymptotic stability of solutions implies that the real part of
each root of Equation (2.1) be negative. Such a polynomial is said to be stable.
Consider a difference equation

agy(j+n)+ay(j+n—-1)+..+a,3j)=0, j=0,1,2,..

with constant coefficients. The fundamental system of sclutions is given by sequences
of the form {w'} or {j*w/} where k is a natural number and the (complex) number w
fulfils the equation (2.1). The requirement of asymptotic stability of solutions implies
that the absolute value of each root of Equation (2.1) be less than one. Using the
function w = (1 + z)/(1 — z) which transforms the half-plane Re(z) < 0 of the
complex plane one-to-one onto the domain Iw‘ < 1 we obtain the condition for
stability in the form that the real part of each root of the pelynomial Q(z) =
= (1 = 2" P((1 + z)[(1 — z)) is negative.

3. FROM THE HISTORY OF THE PROBLEM

We present here but some important data, more details can be found in [6].
Cauchy (1837) showed that the number of roots of a polynomial in a given region
of the complex plane can be expressed by the index of a certain rational function.
In the case of a half-plane, the index can be simply determined by the theorem of
Sturm that was published in 1827. Thus the problem was in essence solved, but
Cauchy did not give any effective criterion. Ch. Hermite (1856), see [1], showed
that the stability condition for a polynomial is equivalent to the positive definiteness
of a certain quadratic form (the famous “Hermite’s forms™). Only twenty years later
(1877) E. J. Routh [2] gave a very elegant and simple solution of the problem for
polynomials with real coefficients. Later, the stability problem of polynomials was
being solved again by some engineering specialists in special cases of polynomials
up to the third degree. A. Stodola, a scientist of Slovak origin, an outstanding
worker in the theory of turbines, formulated again the problem of finding a general
criterion of stability; Stodola, evidently, did not know the result of Routh. Then,
in 1895, A. Hurwitz [ 3] solved the problem of Stodola independently of Routh’s work
that he did not know, either. Using the results of Cauchy, Hermite, Sturm and the
theory of quadratic forms (not long ago Frobenius had published the law of inertia
of quadratic forms) as well as further advanced mathematical means he obtained a
classical criterion of outstanding elegance in the form of certain inequalities with
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determinants, in the special case of polynomials with real coefficients. Later inves-
tigations showed additional connections leading both to simplifications of proofs
and to the generalization of the results to polynomials with complex coefficients.
(It should be noted that already Hermite’s criterion was formulated for polynomi-
als with complex coefficients.) It was shown, for example, that the criterion of Hur-
witz differs not too much from the criterion of Routh, having only another form.
For this reason, it is often called the criterion of Routh-Hurwitz, being usually
applied in the form due to Hurwitz. In 1921, J. Schur [4] presented the method
of related polynomials, by means of which it is possible to deduce the criterion of
Hurwitz. Later on, the attraction of the topic was, time and again, demonstrated by
a number of works that are listed in [6], [8]. The problem has been studied by
means of quadratic forms of Hankel, continued fractions and many other methods.

In the meantime, the theory of retarded differential equations, difference dif-
ferential equations and, finally, the theory of functional differential equations arose.
From the end of the last century, the ideas of Liapunov were dominating in the
theory of stability, especially the method of Liapunov’s functions, see for example
[9]. Thus, from this more general point of view, the classical theorem of Routh-
Hurwitz or Hermite solves the problem of stability in a special, even though a very
important case. In connection with stability of solutions of difference differential
equations, the important work of Pontryagin [5] appeared in 1942 which generalized
the classical results of Hurwitz.

4. THE INCREMENT OF ARGUMENT AND THE RELATED POLYNOMIALS

The notion of related polynomials introduced by J. Schur [4] offers a comparatively
simple way of proving the Hurwitz-Routh theorem; such an approach was chosen,
for example, in [9].

In what follows, N is the set of all natural numbers, N, the set of all nonnegative

. integers, R and C the sets of real and complex numbers, respectively. If z = x + iy,
x€R, yeR and i is the imaginary unit, we denote Conj(z) = Z = x — iy, x =
= Re(z), y = Im(z). By M,, n € N, we denote the set of all polynomials P,

(4.1) P(z) = apz" + a;z" ' 4+ ...+ a,, ap*0

where a;€ C, j = 1,2,...,n. A polynomial is called stable (or Hurwitz), if the real
parts of all its roots are negative. By S,, n € N, we denote the set of all stable poly-
nomials of degree n. For n = 0 we have, of course, S, = M,.

Definition 4.1. For P € M, we denote by dP the increment of argument (angle)
of the polynomial P(z) when z passes through the imaginary axis {z:z =iy,

YER} fromy = —o0 to y = +00.
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Lemma 4.1. Let neN, let Pe S, be a polynomial of the form (4.1). Then

Re (ay/ao) > 0, which is equivalent to
(4.2) aody + doay = 2 Re(aod;) > 0.
For n = 1 the condition (4.2) implies P € S;.

Proof. If zy, z,, ..., z, are the roots of P, then —2z; = a,[do0 = (5001)/(aoao)~
As Pe S, by assumption, we have Re (Zz,) < 0, hence Re (aod1) > 0, since aofo
is positive. The assertion for n = 1 is obvious.

- Lemma 4.2. Letne Ny, Pe M,. Then
(4.3) dP=(l—-r)n

where I, r is the number of roots w of P such that Re (w) < 0, Re (w) > 0, respective-
ly. In particular, Pe S, if and only if dP = nn. For n = 0 we have, of course,
dP = 0.

Proof. 1. First we assume that none of the roots of the polynomial P lies on the
imaginary axis. Then it suffices to realize that for the polynomial P(z) =2z —w,
we C, we have dP = 1 or —n according to whether Re(w) < 0 or Re(w) > 0,
and to use the properties of the argument in connection with the decomposition

n

P(z) = anI;II(z — zj).

2. If P has some roots on the imaginary axis, then dP is defined as follows. If,
for example, ib, b € R is the only pure imaginary root of P, we denote by d{(P, b — v),
d,(P, b + v), v > 0 the increment of the argument of P(iy) when y passes from — oo
to b — v or from b + v to + o0, defining, finally, dP = lim (d, + d,) as v > 0+.
In the case of more than one pure imaginary roots, the generalization is obvious.
For a polynomial P of the first degree, P(z) = z — ib, b € R we obtain, of course,
dP = 0. If P(z) = Py(z) P,(z) where P, has not roots on the imaginary axis and P,
has only pure imaginary roots, then dP, = 0 which implies dP = dP;. We see that
the formula (4.3) holds in general.

Remark. The increment of the argument of a polynomial P can be defined for
any straight line parallel to the imaginary axis (and, more generally, for some other
oriented curves). Denoting by dP(t), t € R the increment of the argument of P along
the straight line {z:z = t + iy, y € R} when y passes from —oo to + o, dP(f) is
defined for all t € R except those for which the polynomial P has a root on the cor-
responding line. For this ¢ we can complete the definition by using the argument
given for the case t = 0 in the proof of the previous lemma. The function dP is then
defined for all t € R, it is nondecreasing, piecewise constant with jumps at those points ¢
for which P has a root on the straight line Re (z) = t. For such ¢t we have dP() =
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=(1/2) lim (dP(t + h) + dP(t — h)). Of course, the last equation is true for all

teR. It can be used as a definition of P(t) provided P has a root on the straight line
Re(z) = t.

Now we define the notion of the primary and the related polynomial. H aving
a polynomial P of the form (4.1) we define a_polynomial P* by ‘

(4.4) P*(z) = (—1)" Conj (P(-Z)).
It is easy to find that
4.5) P¥(z) = @gz" — @yz"" ' + @,2" 7 — L+ (—1)a,.

We see that w e C is a root of the polynomial (4.1) if and only if — W is a root of the
polynomial (4.5). Thus the roots of these polynomials are mutually symmetric with
respect to the imaginary axis.

Definition 4.2. Let ne Ny, Pe M,, Qe M, . If there are aeC, a + 0, ce R,
¢ = 0 such that
(4.6) a Q(z) = (z + ¢) P(z) + z PXz),

we say that P is primary (with respect) to Q. A polynomial P, e M, is called
related to Q if there is a polynomial P primary to Q, and a constantbe C,b = 0
such that P, = bP.

Lemma 4.3. Let n € N, let P € M, be of the form (4.1), Q € M, ,. If (4.6) holds
forceR,c#+0,aeC, a =+ 0(ie., Pis primary to Q), then 1. Re (ao) + 0. 2. If P
has some roots on the imaginary axis, then Q has the same roots (including multi-
plicity) on the imaginary axis, and vice versa. Furthermore,

dQ = dP + wsigne.
In addition, if P€ S, and ¢ > 0, then Q€ S, ;1.
Proof. 1. Assume that the polynomial P has the form (4.1). Since Qe M, 1,
the equality Re (ao) = 0 cannot hold. In the opposite case we have @, = —do, SO

we do not obtain a polynomial of degree n + 1 on the right-hand side of (4.6).
Thus we have Re (do/a,) > —1.

2. Rewriting (4.6) in the form
a0(z) = (z+ ) P(=) (1 + ¢(2)), 9(2) = ;—JZTC PX(2)[P(2)
we see that dQ = msign ¢ + dP + dh where h(z) = 1 + g(z). We shall show that
dh = 0.1f y € R, then [g(iy)| < 1, because [iy[(iy + ¢)| < 1 and |P*(iy)[P(iy)| = 1.

The last equality is obvious in the case when iy is not a root of the polynomial P,
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since then it is an easy consequence of the formulas P(z) = ao II(z — z;), P¥(z) =
= a, II(z + z;), as the roots of the polynomials P, P* are mutually symmetric with
respect to the imaginary axis. If iy is a root of P, it is at the same time a root of P*
with the same multiplicity. Hence, P*/P can be defined at the point iy in such a way
that it becomes continuous at this point (even holomorphic); then, by P*/P we
understand its continuous extension. At the same time we see that if P has some
pure imaginary roots, then Q has the same roots including multiplicity, and vice versa.
Consequently, for all y e R we have Re (1 + g(iy)) > 0. Therefore, the argument
of the function 1 + g(iy) can be taken (continuously) from the interval (—n/2, 7/2).
Using (4.1), (4.5) we obtain for large z (in particular, for large iy) the estimate h(z) =
=14g(z) =1+ 1 +c/z)7 a1l + ...)[(ap(l +...)) =1 + dy/ap + ..., where
the omitted quantities are of degree at least 1/z. Therefore lim (1 + g(iy)) = 1 +
+ dofa, as y —» +o0 or y » —oo. Hence, by virtue of Re (1 + @pfas) > 0 we
obtain dh = 0, completing the proof.
Now we show how to find primary polynomials.

Lemma 4.4. Let n€ N, let P € M, be of the form (4.1). Then
1. If apay + aga, = 0, then there is no primary polynomial to P.
2. Let agdy + Goay =+ 0. Define the (real) number ¢ by

(4.7) ¢ =ayfag + a,a, = (aody + dga,)/(aodo)
and the polynomial Py by

4.8) Py(z) = aoc P(z) — z(d, P(z) — ao P*(z)).
Then P, e M,_,, P, is primary to P and

(4.9 dP = dP, + msignec

where, in the last equation, P, can be replaced by an arbitrary polynomial related
to P. In addition, if P € S,, then P, exists and P € S, _;.

Proof. 1. Let P, € M,_, be primary to P. Then Equation (4.6) holds for suitable
a, c if we write P, P, instead of Q, P, respectively. Denoting Pl(z) = ayz""? +
+ajz"" % + ... we have Pf(z) =a,z" ! — @;z""? + .... Comparing the coef-
ficients at the powers z", z"~! in (4.6) we obtain aa, = ag + do, aa; = ay — @y +
+ cag. Therefore, first, ag + d, # 0. Multiplying aa, by @a, and doing the same
with their conjugates we find by adding that aa@(aed; + doa;) = (ag + do)* c.
Now, using a * 0, ay + ap £ 0, ¢ + 0 we get aga, + doa,; + 0, proving the first
part of the theorem.

2. First, let ce R, ¢ = 0. With regard to the definition of ¢, the polynomial P,
defined by (4.8) is of degree at last n — 1 (the coefficient at z"*1 is 0, and c is defined
from the condition that the coefficient at z" equals 0). For the coefficient aj at z*~*
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we get ag = (ay/a,) (aod; + doa;) + aod, — @oa,. The assumption agd; + doa; *
£ 0 of the lemma is equivalent to Re (al/ao) £ 0. Furthermore, ay,a, — dya, is
pure imaginary, hence Re(ap) # 0. Thus, the polynomial P, has degree n — 1.
Now, we prove that

(4.10) Goc? P(z) = (z + ¢) Py(2) + z Pi(2).
Using (4.4) we get from (4.8) (P, is of degree n — 1)
Pi(z) = (=1)""* Conj (Py(—Z2)) = (—=1)""" (aoc Conj (P(—Z)) +
+ za, Conj (P(—Z)) — za, Conj (P*(—Z))).
Since (—1)" Conj (P(—Z)) = P*(z) we have Conj (P*(—Z)) = (—1)" P(z) and thefore
PY(s) = —aqec P*(z) — za, P*(z) + za, P(z). Using this relation and (4.8) we find
by substituting on the right-hand side of (4.10) that Equation (4.10) is true, which

means that P is primary to P. Now, the remaining assertions of the lemma follow
from Lemma 4.3.

The previous lemma shows the assumptions under which there exists a primary
polynomial to the given one. Now we will discuss its uniqueness. We see from the
definition that if P is primary to Q,then the polynomial kP where k € R, k % 0 is also
primary to Q. We shall show that in this way we obtain all primary polynomials.
This is just the invariance assertion mentioned in the preface.

Lemma 4.5. Let ne Ny, Qe M, and let P, P,e M, be iwo primary poly-
nomials to Q, i.e., for suitable A, A, e C, ¢;,c,€R, A;c; £ 0, A,c, + 0 we have
Ay 0(z) = (z + ¢;) Py(2) + z Pi(2),

A; Q(2) = (z + ¢;) Py(2) + z P3(z). .

Then ¢, = c,. Furthermore, there exists k € R such that P, = kP,.

Proof. Eliminating Q from both equations we get
(4.11) Ay2(Py + PY) + APy = A,z(P, + P3) + Ajc,P,.

Denoting Py(z) = aoz" + a,z" ' + ... + a,, Py(z) = bpz" + byz" ' + ... + b,
expressing P}, P} as in (4.5) and then comparing the coefficients in (4.11) we obtain
the system of n + 2 linear equations

(4.12)  Ay(ao + o) = Ay(by + bo),
Az(aj+1 + (—1)j+15j+1 + lelj) = Al(bj'l—l + (—1)j+1 Ej+1 + Czbj) s
j=0,1,....,n -1,

Azclan = Alclbn .
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Since ao + do * 0, by + by + 0 (see Lemma 4.3) we can write the first equation of
the system in the form

(4.13) Re (by) = k Re (ag)

where the number k = A4,/A, is necessarily non-zero and real. Defining ¢ = ¢,/c,
we have g € R, q = 0. The last equation of (4.12) can be rewritten in the form

(4.19) b, = kqa, .

Assuming n to be odd (for an even n the calculations proceed in an analogous way)
we take the equation from (4.12) with j = n — 1. Using (4.14) we get

k(a, — a,) (1 — q) + keya,—y = cyb,_; .
As the first member on the left-hand side is pure imaginary we conclude that
Re (b,-;) = kq Re(a,-,).

Now we take the equation of (4.12) with j = n — 2. Using the result just obtained
we get
k(an—l + Zin-—l) (1 - q) + kcla,,_z = Can—Z .

As the first member on the left-hand side is real, we conclude that
Im (b,-,) = kq Im(a,-,).
In this way we get, forj=n—1,n—-2,...,0:
Re (b;) = kq Re (a;) if jis even,
Im (bj) = kq Im (a;) if jis odd .

In particular, for j = 0 we have Re (by) = kg Re (a,). Comparing this result with
(4.13)we get g = 1,i.e., ¢; = c,. Now, from the above relations we obtain b; = ka;,
j=0,1,...,n, completing the proof.

Remark. The previous lemma on the invariance of the constant ¢ has important
consequences. Comparing the notions of the primary and related polynomials (see
Definition 4.1) we see that the related polynomial (or the set of all related polynomials
to a given one) is determined by the position of its roots. On the other hand, in Equa-
tion (4.6), P cannot be an arbitrary related polynomial to Q but only the primary
one to Q. Of course, if P is primary to Q, then P is also related to Q. In order to
reproduce the polynomial Q knowing some P related to Q, it is necessary to give
c € R (which is uniquely determined) and, in addition, to choose some polynomial
from the set of all related polynomials to be primary to Q. According to Lemma 4.5,
the argument of the coefficient at the last power is uniquely prescribed for such a
polynomial. This is precisely the reason for introducing two notions, namely those
of the set of primary polynomials and the set of related polynomials.
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The above assertions provide the possibility to find out the distribution of roots
of polynomials with respect to the imaginary axis. Let P € M, be of the form (4.1).
Set P, = P and define the number [0, 1], by

(4.15) [0,1], = aea, + doa; = 2 Re(aod,)

where the index n indicates that the number is constructed for a polynomial of
degree n. For the case n = 0 we define [0, 1], = 0. The number [0, 1], is always
real. If [0, 1], & 0, then n = 1 and, by Lemma 4.4, there is a polynomial P,_ €
€ M,_, related (possibly primary) to P,. Denoting, in accordance with (4.7),

(4.16) 6 = ——[0,1],

Aolo

we have sign ¢, = sign [0, 1], and from Lemma 4.4 we get dP, = dP,_; +
+ msign [0, 1], where P,_; may be an arbitrary polynomial related to P,. Now
we define [0, 1],-4, ¢, (for the polynomial P,_,) analogously as we have defined
[0, 1], for P,. Lemma 4.5 implies that c,_, is independent of the polynomial P,_;
chosen from the set of all related polynomialsto P,. If [0, 1],- & O(i.e.,if ¢c,—; * 0),
then there is P,_, € M, _, related (in particular, it can be primary) to P,_, and,
furthermore, dP,_; = dP,_, + nsign [0, 1],—;. In this way we construct the
sequence

(4.17) P,P, 4 ..,P,, seN,, 0<s

IIA

n

of polynomials such that P;e M}, [0, 1]; = 0, P;_, is related (in particular, it can
be primary) to P;, j=s+ 1,s +2,...,n and, in addition, [0,1]; = 0. With
regard to the last equation, the sequence (4.17) cannot be continued, i.e., Py_,
cannot be constructed. In the case s = 0, the sequence is closed by a polynomial
of degree zero, i.e., by a nonzero constant. We summarize the results in the following
theorem.

Theorem 4.1. Let ne N, se Ny, 0 < s < n, let the sequence (4.17) be such that
P;_, is related to P;, [0,1]; 0, j=s+ 1,5+ 2,...,n, [0,1],=0. For j =5,

J
s 4+ 1,...,n we denote by l;, 0;, r; the number of roots of P; with negative, zero,

positive real parts, respectively (I; + o; + r; = j, each root being counted with its
multiplicity). Then o3 = 0544 = ... = 0,. Moreover, if for the sequence

(4.18) [0, 17, [0, 1715 -0 [0, 1544
p and q denote the number of positive and negative numbers, respectively, then
(4.19) L,=L+p, r,=r,+q.

In the case s = 0 we have I, = p, v, = q.In particular, P, is a Hurwitz polynomial,
i.e., P,eS,if and only if s = 0 and each member in the sequence (4.18) is positive.
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Remark. Instead of the sequence (4.18) we can take, of course, the sequence
(420) Cps Cp—15 e+e5 Cs41 5
which is independent of the choice of the related polynomials in (4.17).

5. THE CRITERION OF ROUTH

In order to find an effective criterion for the distribution of roots of polynomials
with respect to the imaginary axis it suffices to show how to compute the numbers
[0, 1] ;- To this end, the coefficients of the polynomials P; are needed. Of course, it
suffices to express the coefficients of P,_, in terms of those of P,. Let

n n—1
P(z) =Y az"™%, P,_y(z) =) apz" 17k
k=0 k=0
Define the numbers [ j, k], {j, k} (we should write a subscript n as in (4.15) but for
simplicity we omit it) by
(5.1) [j, k] = ajak =+ 5jak = 2 Re (alak) 5
{j, k} = a;a, — a;a, = 2iIm (a;a,),
J,k=0,1,...,n; [0,1] coincides, of course, with [0,1], defined in (4.15). Sub-

stituting in (4.8) P,_;, P, instead of Py, P, respectively, we get by comparing the
coefficients

(5.2) a,;:—l—[O,l]ak+1+{0,k+2}, keven, 0<k=<n-1,
)

IA

a,;=;1—[0,1]ak+1—[o,k+2], kodd, 0<k=<n-1.

0
If we put a;, = a;, = 0for k < 0 and g, = 0 for k > n, a, = 0for k > n — 1, the
relations (5.2) hold for all integers k. The formulas (5.2) give the coefficients of some
primary polynomial. The coefficients of any other related polynomial can be obtained
by multiplying the right-hand sides of (5.2) by a nonzero complex constant. Choosing
this constant equal to a/[0, 1] we get the coefficients of a special related polynomial

(5.3) ap = ayq + a0{0, k + 2}/[0,1], keven,
ap = aryy — aol0, k + 2]/[0,1], kodd.

In this relations, the coefficients of P, as well as P,_ have the same ‘““dimension”.
Note that, if a, is real, then (5.3) gives the coefficients of a polynomial which is
even primary. In the case of polynomials with real coefficients the calculation is
simpler. Namely, we have [ j, k] = 2a;a,, {j, k} = 0, the coefficients ay are, of course,
also real and from (5.3) we get
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(5'4) ap = a4y, keven,
’
A = Qgg1 — aOak+2/a1 » kodd.

In this case, the algorithm can be arranged in a scheme, see Table 5.1 where the first
two rows represent the coefficients of the polynomial P,, the second and third rows
represent the coefficients of P,_;, etc. Each row in the scheme results from the two
previous ones in the manner which is demonstrated by the third row in the scheme.
The coefficients in the first column are called Routh’s testing functions. The members
of (4.18) can be obtained from the testing functions of Routh. In particular,
(1/2) [0, 1], is the product of the testing functions in the first two rows, (1/2) [0, 1],-,
is the product of the testing functions from the second and third row, etc. It is easy
to see that the polynomial is stable if and only if all testing functions have the same
sign. It was precisely in this way that the classical result of Routh was formulated.

ao a, as
a, as as
(‘11‘12 - ‘foas)/fh (0104 — agas)a; (aja — 0007)/01

‘Table 5.1. The algorithm of Routh

6. THE CRITERION OF HURWITZ

In this part we consider polynomials with real coefficients. The coefficients of
the related (even primary) polynomials calculated by (5.4) will be real as well.
The formulas (5.4) have a vectorial character. Introducing vectors

u = (a9, a;,...), v=>_ay,as,...)
we easily find out that by (5.4) the new vectors are formed, namely
(6.1) W =v, v =u-—(aa,)v,

their coordinates being the coefficients of the related polynomial. Let

4o 0 0 0 0 ... 0

a, a; ap 0 0 ... 0

(6.2) A” = det ag, Az a, ap; ag ... 0
a"l

be the determinant of order n + 1 such that its first column is the vector u, the second
and third columns are the vectors v, u with shifted coordinates, the following two
«columns are given by shifting the previous two columns, etc.; the numbers in the
main diagonal are ay, ay, ..., a,. If a, with k > n occurs in the determinant, then,
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of course, a, = 0. Expanding the determinant with respect to the first row we get

ags a; 0 0
A, =agdet|as; a, a; ag

The formulas (6.1) which express the relations (5.4) are reflected in the last deter-
minant as follows: the odd columns remain the same but from each even column
we subtract a multiple of its left neighbour such that we obtain zero at place of a,.
Of course, the determinant does not change the value. Hence, using the notation
from (5.4) we obtain

@y 0 0 0 ... 0
a, ay ag 0 ... 0
(6.3) A, =aydet|a, ay a, a, ... 0O

a;—1/
So we get a determinant of the same form as in (6.2), now of degree n, whose
elements are the coefficients of the polynomial P,_; related to P, by the formulas.
(5.4). Denoting this determinant in accordance with (6.2) by 4,_, we have 4, =
= a¢A,- . Moreover, denoting the coefficients of the related polynomial P; (see
(4.17)) by a, j=n,n—1,..., so that Py(z) = a{’z/ + az/"! + ..., the
relation (6.3) can be written in the form 4, = a§” 4,_;. Thus in an analogous way
we get A; = a§’ A;_, provided the related polynomial P;_, exists. Assume in the
rest of the section that the sequence (4.17) ends by the polynomial P, = al® of
degree 0. Then we have
A, =af ay™ P ... all a? .

Notice that the numbers in this product are Routh’s functions placed in the first
column in the scheme 5.1.

Furthermore, denoting by B;, j = 0,1,...,n the determinant of degree j + 1
which we obtain from the determinant 4, by keeping the first j + 1 rows and columns,

ie.

ag 0 0 ... 0
B, = det 1:12 a, ag ... 0 ’
a

then in an analogous way we get
(6.4) B;=al’al™ V.. al™", j=0,1,..,n.

In this product the first j + 1 Routh’s functions occur. With regard to (5.4) we have:
af™P =a{,j =1,2,..., n. Therefore we can express ay’, [0, 1];, ¢; in terms of B;.
Defining, in addition, B_; = 1 we get the formulas
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(6.5) af = B,_,|B,_,_,,
[0, 1]j = 2Bn—-j+1/Bn—j—1 s
¢j=2B,_jiy Bn—j—l/B2

n—jo
j=0,1,..., n. Thus, we can extract the desired information on the distribution of

roots from the determinants B;. For instance, for s = 0 Theorem 4.1 yields the
following assertion.

Theorem 6.1. (Hurwitz). The polynomial P with the real coefficients is stable if
and only if all determinants By, B3, Bs, ... are positive and all determinants
By, B,, By, ... are nonzero and have the same sign.

Remark. If ¢ > 0 (the coefficient at the leading power of the polynomial), then
the condition for P € S, is the positiveness of all B, j = 1,2, ..., n. Instead of the
determinants B;, the more familiar formulation uses the determinants B; which we
get from B; by removing the first row and column.

The connection between the criteria of Hurwitz and Routh is expressed by (6.4)
or by the first equation in (6.5). The reason why the form of Hurwitz is almost
exclusively preferred is the fact that the conditions are expressed by coefficients of P
explicitly, whereas in the form of Routh they are not. As concerns the necessary
operations the criterion of Routh is more advantageous to that of Hurwitz, as the
complete algorithm requires only n?/4 multiplications and the same number of
divisions and additions where n is the degree of the polynomial considered. On the
-other hand, applying the criterion of Hurwitz we have to evaluate n determinants
and, if we do not use (5.4) to compute the determinants simultaneously, the number
of operations will increase considerably. Of course, under suitable organization
(following, in fact, the algorithm of Routh), the number of operations will be the
same as in Routh’s procedure. Thus, from the numerical point of view, it is just the
algorithm of Routh which is more economical. In applications the number »n is
often not too large, the coefficients of the polynomial depend, as a rule, on some
parameters, and the problem to be solved is to determine the domain of the para-
meters for which the polynomial is stable. In such a case, the explicit form of the
«criterion of Hurwitz is preferable.

7. THE SINGULAR CASE

By a singularity we understand the case in which the sequence (4.17) cannot be
-continued to the polynomial of degree 0, i.e. the sequence ends by a polynomial P,
s = 1 where [0, 1], = 0. Of course, in such a case the polynomial is not stable.
Being interested in the distribution of roots of the polynomial with respect to the
imaginary axis we can use the method explained in the remark following after Lemma
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4.2. Assuming t€ R, t & 0 we apply Routh’s algorithm to the polynomial Q(z) =
= P(t + z) (the variable in the polynomial is z). Relations (5.3) imply that the coef-
ficients of all related polynomials to Q, as well as the numbers c;, [0,1] ; are rational
functions of the variable t. Evidently, the polynomial Q, is stable for sufficiently
large t which implies ¢; > 0 for this ¢. This implies that no c; equals identically
zero. Therefore, there exists h > 0 such that for ali ¢, 0 < |¢] < h all the functions c;
are nonzero. For such ¢ the algorithm of Routh may be performed without restrictions
to a polynomial of degree 0. Denoting by I(t), r() the number of roots of Q, lying
in the half-plane Re (z) < 0, Re(z) > 0, respectively, we conclude that the equation
I(t) + r(f) = nholds for all t with 0 < |¢| < h. This implies the existence of the limit
I(0+) = lim I(t) as t » 0+ and, analogously, of /(0+), /(0—), 7(0—).Obviously /(0—),
#(0+) is the number of roots of P lying in the half-plane Re(z) < 0, Re (z) > 0,
respectively, and, moreover, the number of roots lying on the imaginary axis equals
(0+) — (0—) = r(0—) — r(+). Thus, using this method we can solve the problem
of distribution of roots also in the singular case. As the polynomials P(t + z) are
considered for small ¢ only, it usually suffices, for n not too large, to look only for
some small degrees of the variable t.

8. THE CRITERION OF HERMITE

As we have seen in the case of polynomials with real coefficients, it is possible
to determine the distribution of roots with respect to the imaginary axis by deter-
minants constructed in a suitable way from the coefficients of the polynomial under
investigation. It can be shown that even in the case of polynomials with complex
coefficients a similar characterization is possible. Suppose that P,e M, is a poly-
nomial with complex coefficients which possesses a primary polynomial. Take P,_,
related to P, by (5.3). In particular, we have

ap = a; + ao{0,2}/[0,1],
a, — ao[0, 3]/[0, 1]

where [0, 1] = [0, 1], = aod, + @oa; according to (5.1). Express [0,1],_, =
= aody + apay by the coefficients of P,. Remember that the numbers [j, k] are
real and {j, k} pure imaginary, see (5.1). We have

apdy = a;a, — ayay[0, 3]/[0, 1] + a0d,{0, 2}/[0, 1] — a,a,{0, 2} [0, 3]/[0, 1]?;
doay = aya, — aed, |0, 3][[0, 1] — @,a,{0, 2}/[0, 1] + @,a,{0, 2} [0, 3]/[0, 1]*.
Adding and using (5.1) we get

1 2
B [0ty = g ([0 011.2) - 011031 + (0,27,

The expression in the brackets can be written as a determinant of the matrix U,

aj
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where

_( [o1] {0,2}
=(02 DA-p 3]> '
Observe that the numbers on the main diagonal are real and the others pure imagi-
nary. The matrix U, is thus Hermitian (a matrix is Hermitian when after transposing
and subsequently replacing all entries by their complex conjugates we obtain the
original matrix). The important fact is that U, contains all the information needed
for the evaluation of [0, 1],, [0, 1],-;. Denote by H; the first main determinant
of U, (the first row, the first column), by H, the second main determinant of U,
(the first two rows and columns, so H, = det U,). Then using (8.1) we can write

(8.2) [0,1], = H,, [0,1],-; = H,/H,.

Thus the numbers [0, 1],, [0, 1],-;, are, indeed, determined by H,, H,. For example,
in the case n = 2 we obtain from (8.2) this special result: a polynomial of the second
degree is stable if and only if the matrix U, is positive definite. Indeed, P, is stable
if and only if both the numbers (n = 2) [0, 1],, [0, 1]; are positive which is equi-
valent to the positiveness of the determinants H,, H, and, consequently, to the
positive definiteness of U,. The result can be generalized, but so far we do not know
how to construct the matrix U, in general. To find it, further steps of induction
should be carried out. We give here the final result without proving it. For a given
polynomial we construct the Hermitian matrix U, of order n, U, = [u,], where

(8.3) up=-Lkl-[j-2k+1]+[j-3k+2]—..,
J=<k, j+ k even;

up={j—-Lkl —{j-2,k+1}+{j-3k+2} —...,
j<k, j+k odd.

In fact, the sums are finite, for obviously [j, k] = {j,k} =0 if j <0 or k <0
orj > n or k > n. Thus the matrix U, has the the form .

[0, 1] {0,2} [0, 3] {0, 4}
U - [1,2] = [0,3] {1,3} — {0,4} [1,4] - [o0,5]
" (23] = [1.4] + [0,5] {2,4) = (1,5} + {0, 6]

It is Hermitian, therefore we do not write the entries below the main diagonal.
If H, denotes the main subdeterminant of U, constructed from the first k rows and
columns, then it can be shown by induction that

(8.4) H, =1[0,1],[0,1],—1 ... [0, 1]y k44

holds as long as the related polynomials of degree n — 1,....,n — k + 1 exist.
As a special result we have the following assertion.
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Theorem 8.1 (Hermite). The polynomial P e M, is stable if and only if all the
main subdeterminants of the matrix U, are positive.

Remark. Note that the condition of positiveness of all main subdeterminants Hy
is equivalent to the positive definiteness of the matrix U,.

9. THE GENERALIZATION OF THE CRITERION OF HURWITZ
TO THE CASE OF COMPLEX COEFFICIENTS

Deducing the criterion of Hurwitz we started from the transformation formulas
(5.3). We stated that, in the case of polynomials with real coefficients, the formulas
have a vectorial character, which implies the special structure of Hurwitz’s matrix.
Thus, the natural question arises about the existence of an analogue of Hurwitz’s
matrix for the case of complex coefficients. First, from (5.3) we can see that it is
not possible to form the corresponding matrix directly in terms of the coefficients
of the polynomial P,. So we try to separate the real and imaginary parts. Writing
the coefficients of P, in the form v

ak=pk+iqk: pkqueRs k=0>1’--~,n

and, analogously, a; = p; + iq, for the coefficients of the related polynomial P,_,
given by (5.3) we get

’ 2q(2) 2 Podo
9.1 = - —
( ) Pr = DPik+1 Di+2 + [0 1]

[0 1]

0‘10 2po >

dr+2> keven

QG = qy+1 T [0 1] +2 [0 1] dk+2 »
and
: 2ps 2Podo
(9'2) Pr = Pk+1 — [0—1‘]' Pr+2 — [0 1] dx+2, kodd
A 0‘10 +2 — = dk+2

o 0 o
where 0 < k < n — 1. Note that the formulas remain true for all integers if we set
px = qx = O for k < 0 and k > n (in connection with P,) as well as p, = ¢; = 0 for
k<0 and k> n — 1 (in connection with P,_;). Without troubling the reader
with details we immediately show the corresponding matrix in which the relations
(9.1), (9.2) have a “vectorial” character. The matrix is of the form

{ Po 4o
—d1 P1 Po 4o
(9.3) ) W = —P2 =42 491 Pi  Po do ---

93 —P3 —P2 —4d2 —4q1 Pi
Ps dsa 43 —P3 —P2 —4y ..
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It is a square matrix of order 2n, the omitted entries being zeros. It suffices to write
the first two columns (the distribution of py, g, including the signs has some regularity,
it is “periodical” with respect to k with the period 4), as all further pairs of columns
are obtained by shifting the first one.

Now we calculate det W. We carry out the following transformations in W:
we let the first pair of columns without any change; in every further pair we exchange
the two columns, change the sign in the right column and then add to them linear
combinations of the previous two columns following the rule

2
290 (Zk _ 1) _ 2podo (Zk) ,

[0, 1] [0, 1]

, 2podo 2ps

2k +2) = -2k +1) — —— (2k — 1) + —= (2k),

(k2 = ke 1) - 22 i 1) 4 225 i
k=n—-1,n-2,...,2,1 (we apply the rules in the matrix from the right to the
left). In (9.4), the symbol (k) denotes the k-th column of the matrix W and the symbol
(k) denotes the k-th column of the new matrix V. Using (9 1), (9.2) we get

(9.4) 2k + 1) = (2k +2) +

Po 9o
—4q1 P
v | P2 -2 P @

43 —P3 =41 Py Po do
Pa ds ~P2 —d2 —4i  Ph --~/
where py, gy are the coefficients of the polynomial P,_, related to P, by (5.3). Of
course, the changes performed in the matrix W do not change the value of det W,
i.e. det W = det V. Expanding det V with respect to the first two rows (the theorem
of Laplace) we get det V = (pgpy + qoq) det W’ where W' is a square matrix of
order 2n — 2 formed in the same manner as W but from the coefficients of the
polynomial P,_,. Since pop; + qoqs = (1/2)[0,1],, we have det W = (1/2).
. [0, 1],- det W’. This formula can be generalized. Eventually we obtain

det W = (1/27) [0, 11, [0, 1], 0. [0,1],

assuming that all the numbers [0, 1], are nonzero. Denoting by W, the main sub-
determinant of the matrix W consisting of the first 2k rows and columns we ana-
logously have

9.5) W= (112910, 13, [0, s -.. [0, Tycses

assuming that all the numbers [0, 1], in the equation are nonzero (the corresponding
related polynomials exist). Comparing (9.5), (8.4) we obtain

H, = 2'W,.
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The criterion for the distribution of roots of polynomials with respect to the imaginary
axis can be, therefore, formulated in terms of W,.In particular, polynomial of degree n
is stable if and only if W, > Oforallk = 1,2,...,n.

Now we show the way of forming the matrix W which can be easily remembered.
Let

n n
i"P(—iz) = Y wz" " + 1Y yz"F
k=0 k=0
where u,, v, € R, k = 0,1, ..., n. Then we find out that

Uy Vo
Uy Uy Uy Vg
W=1lu, v, u, v, uy v,
Us U3 Uy 0,y Uy Ul “se

Of course, we can form the matrix W also for a polynomial with real coefficients
(9x = 0). In this case we get, by comparing (9.5), (6.5),

W, = (1)ao) By, By .

10. THE GENERALIZATION OF PONTRYAGIN

We will present some of the results which can be found in [10]. In [5] Pontryagin
investigated the distribution of roots with respect to the imaginary axis for the
characteristic equation P(z, e*) = 0 where P(x, y) is a polynomial in x, y. Let

r s
(10.1) P(z,w) =Y Y au,z"w".
m=0 n=0
We call a,,z"w® the principal term of the polynomial if a,, & 0 and, for each term
ap2™w" with a,,, = 0 we have either r > m, s>norr=m,s>norr>m,
s = n. Of course, not every polynomial has a principal term.
If w = ¢? then P(z, e’) = 0 is the characteristic equation for the differential-
difference equation ’
r S dm
(10.2) Y Y am—x(t+n)=0.
m=0n=0  df"
Theorem 10.1. If the polynomial P(z, w) has no principal term, then the equation
P(z, ¢*) = 0 has infinite number of zeros with arbitrarily large real parts.

Theorem 10.2. Denote d(z) = P(z, €*) and suppose P(z, w) has a principal term
a,,z'w'. All zeros of d(z) have negative real parts if and only if

(i) the complex vector d(iy) rotates in the positive direction with a positive
velocity for y ranging in (—-oo, +oo);
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(ii) for y ranging in {—2kn, 2kn), k = 0 an integer, there is €, such that g, — 0
as k - + oo and d(iy) subtends the angle 4kns + mr + &.

Theorem 10.3. Let d(z) = P(z, ¢*) where P(z, w) is a polynomial with a principal
term. Suppose that d(iy), y € R is separated into its real and imaginary parts,
d(iy) = F(y) + iG(y). If all zeros of d(z) have negative real parts, then the zeros
of F(y) and G(y) are real, simple, alternate and

(10.3) G'(y) F(y) = G(y) F'(y) > 0

for y e R. Conversely, all zeros of d(z) are in the left half-plane provided that at
least one of the following conditions is satisfied:

(i) all zeros of F(y) and G(y) are real, simple, alternate and the inequality
(10.3) is satisfied for at least one y;

(ii) all zeros of F(y) are real and, for each zero, the relation (10.3) is satisfied;
(iii) all zeros of G(y) are real and, for each zero, the relation (10.3) is satisfied.

Using the previous theorems we can prove ‘““algebraical” criteria in some simple
cases. We present one of the results of this type, proved, for example, in [10].

Theorem 10.4. All roots of the equation (z + a)e* + b = 0, where a and b are
real, have negative real parts if and only if

(i) a> -1,
(i) a + b > 0,
(i) b < tsint — acost
where t is the root of the equation t = —atgt,0 <t <mnif a0, and t = =2
if a=0.
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Souhrn
O STABILNICH POLYNOMECH

MIiILOSLAV NEKVINDA

Jde o prehledny ¢lanek o problematice Hurwitzovy véty. Vychazi se v ném z Schurova rozkladu
polynomu a uvadi se, jak Ize dosp8t k b&Zn& znamym kritériim. Zda se, Ze véta o jednozna&nosti
konstant v Schurové rozkladu neni dosud znama: !

Pesrome
OB VCTOMYMBBIX MHOI'OYJIEHAX
MiLoSLAV NEKVINDA

B craree maercs 0030p mpobiemaruku TeopeMsl I'ypsua. OTOpPaBHEIM ITYHKTOM H3JIOXKEHHS
sBiteTcst Teopema Illypa o pasmoxeHun moiauHOMOB. IToKa3aHO, KAk MOXHO MOJIYYHTh XOPOIIO
#3BECTHBIC KPHTEPHH IS pacHperelieHHil KopHei monunaomoB. ITo BuauMomy, Teopema 06 OgHO-
3HAYHOCTH KOHCTAHT B pasnoxkenuu Illypa moxa He H3BecTHA.

Author’s address: Doc. RNDr. Miloslav Nekvinda, CSc., Vysoka Skola strojni a textilni Liberec,
Halkova 6, 461 17 Liberec.
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