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SOME PROBLEMS OF EXPONENTIAL SMOOTHING
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Snmmary. The paper deals with some practical problems connected with the classical expo-
nential smoothing in time series. The fundamental theorem of the exponential smoothing is
extended to the case with missing observations and an interpolation procedure in the framework
of the exponential smoothing is described. A simple method of the exponential smoothing for
multivariate time series is suggested.
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1. INTRODUCTION

The classical exponential smoothing (see [1]) belongs to popular smoothing and
extrapolation methods. Due to its simplicity it is still used frequently in practical
time series analysis although more effective, but more complicated methods have been
developed.

This paper concentrates on some aspects which are connected with the practical
applications of the exponential smoothing. First, the case with missing observations
which is usual in practice is investigated. It is shown in Section 2 that the classical
exponential smoothing can be extended in a natural way to this case so that the
fundamental theorem of the classical exponential smoothing (see [2], [4]) stays
valid.

Further, a procedure of interpolation in time series based on the exponential
smoothing is suggested in Section 3. This procedure combines the “forward” and
“backward” exponential smoothing so that the optimality in the sense of the funda-
mental theorem is again guaranteed. Finally, Section 4 contains a note on the
exponential smoothing for multivariate time series. Although the procedure of the
adaptive exponential smoothing in the multivariate case by Enns et al. [5] seems
to be effective, its initiation based on maximum likelihood estimation can be com-
plicated for routine applications (this procedure takes advantage of Kalman filtering
and is described only for the situation corresponding to the model of the simple
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exponential smoothing in the non-adaptive case). Therefore a natural multivariate
extension of the classical exponential smoothing is suggested which is numerically
simple.

2. MISSING OBSERVATIONS

The mathematical method of the classical exponential smoothing of order n for
the time series model

(2.1) re= 3 W,

k=0 .
with integers ¢ and 7 (Ee, = 0, var¢, = 6% > 0, Ege, = 0 for s % ) is based on
minimization of the discounted least squares

(2.2) ]20(1 — oy {y'_j _k; f’%(, j)k}z,

where 0 < @ < | is a smoothing constant. Let the observations y,,i, Yu+2,---
vy Yo—25Vo—1 (4 < v) be missing so that only the observations ..., y,—1, Vu> Yo
Yo+1, --- can be gradually delivered (for v = u + 1 we obviously have the standard
case without missing observations). Now the natural modification of the above
minimization consists in excluding the summands with missing observations so that
the minimized expression is

3 P R

j¥Et— v+l t—u—1

Foru <t < vthesumin(2.3)isoverj =t—u,t—u+1,... and for t < u the
sum is over j = 0,1, .... In this section the bare symbol £ will always denote the
sum used in (2.3) in the sense just described.

Let us construct smoothing statistics SI”! of order p recursively as

(2.4) SU=ay, + (1 —o)StY, t=..,u—Luvo+1,..;
=(l-a)SY, t=u+lLu+2,.,0-1;
St = oSt 4 (1 — a) S,
t=..,u—lLuu+1,..;v—-—1Lv,0o+1,..., p=2,...,n+1.

If one uses the recursive formulas (2.4) for practical computations one must choose
suitable initial values for the smoothing statistics (see e.g. [3]). One can see that the
only difference from the case without missing observations concerns the values
St ..., St which are calculated as if the missing observations were replaced
by zero values. Let us denote S, = (1", ST, ..., S"* ) and a(t) = (a,(t), a,(t), ..

- ay(1)).

162



Theorem 1. The vector a(t) minimizing (2.3) is determined by the system of
equations

23) Ma() = 5.,
where the elements of the matrix M have the form

— 1) o )
(2.6) my, = (__ki‘)_ @ I(1 — o) <p ]1 + ])jk )

p=1,..,n+1, k=0,...,n.

Proof. The normal equations corresponding to the minimization of (2.3) have the
form

2.7) zﬂgh@—@nrqu=x1—wf*%ﬁ,p=1wwn+L
k=0 :

Further we shall show by induction that SI”! from (2.4) can be written as

— 14

(2.8) S = a? I(1 — o) (” j

>y,_j, p=1,..,n+1.
For p = 1,(2.8) is obvious. Let (2.8) hold for p. Then using the induction assumption
we can write for p + 1

SN = o8P+ (1 — @) ST =Y (1 — o) SI7; =

j=0
@ . oo‘ ; _ 1 + i
— Y (1 - o) o 5 U~a)€ i )%ﬁﬁ=
i=o e gaiTO
= gPt1 (l_a)ryt_'z<l)_sl+s>.
0

Since

‘we obtain the required relation
SPH1l = @P*1E(1 — a)f (p ;”)y,_,..

The proof is completed by noticing that the system of equations (2.5) is equivalent
to the system (2.7).
The formula

(2.9) a(t) = M~1s,

can be used in the same way as for the exponential smoothing without missing
observations. As the calculation of the elements of the matrix M for a chosen
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smoothing constant « is concerned the problem can be reduced to the calculation of
sums of the type Z(1 — a)/ j* (k = 0, 1, ..., n) with missing summands. One can use
formulas for these sums without missing summands given e.g. in [1, p. 135] for
k =0,1,...,6 and then subtract the values of the missing summands or calculate
these sums directly using a computer till a prescribed precision is achieved.

For n = 0 (the simple exponential smoothing) the following explicit formulas
can be derived (let us denote ¢ = t — v + 1, d = t — u for simplicity)

do{t) ={1 = (1 =) + (1 =)} * St 1 2 0;
=(1—a)?sit, u <
= St t <u.

For n = 1 (the double exponential smoothing) the matrix M in (2.9) has the explicit
form
A B
M =
(€5)
where

A=1-(1—-af +(1-a?

B=—-(a)[l—a+{(l—a)(c-1)—c} (1 —a) -

—t =@ =-1)-d(1 -,
C=1+{l-a)c—(c+ D)@ —-a)f—{(1-a)d-(d+1)}(1—-a,
D={-(1-a)fu}[2+{-(c—1)c(l —a)p+

+2lc=1D(c+ 1)l —a)—clc+1)}(1—a) -

—{-(@d-1)d1l —af +2d—-1)(d+1)(1 —a) —

—dd+ 1)} (1 —af ], t=0;

A=(1-af, B=Q10){(1l —a)(d—1)—d}(1 — ),
C=—-{(1-a)d—(d+1)}(1—af,
D=(1fa){—(d - 1)d(l —a)* +2(d —1)(d+1)(1 —a) -

—dd+ 1)} (1 —a)f, u<t<v;

A=C=1, B=—-(1—-a)fa, D=-21—-o)fa, tZu.
Remark 1. If the values of c =t — v + 1 and d = t — u are large one can go
back to the formulas of the exponential smoothing without missing observations.

Then e.g. in the simple exponential smoothing with o = 0-2 and ¢ = 9, d = 10 one
replaces the formula do(f) = 1:0276 S'1 by d,(t) = St
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Remark 2. The above procedure can be generalized to the case when more
groups of observations are missing. For example if observations y, 41, Yu,+2:---
ooy Yormt1s Vugt 15 Vuyr 25 -+ o» Vuam1 (Ug < U3 < u, < 0,) are missing then one must use

SI = (1 — o) S

t—1>

t=u, + Lu, +2,..,00 — Luy, + Lu, +2,...,0, — 1

in (2.4) and omit all summands with missing observations in (2.6).

3. INTERPOLATION

The interpolation procedure described in this section is very similar to the procedure
of exponential smoothing for time series with missing observations from Section 2.
The particular observations used for the construction of the interpolated value are
discounted according to their time distances from this value.

Assume a value y; in a group of missing observations y,.{, Yui2s--+» Yo—1
(1 +1=<s=<v—1)is to be interpolated using the known observations ..., y,_,,
Yus Yos Vo+1s --- - Let us suppose that the number of known observations is suf-
ficiently large in both directions (forward and backward) from y,. Then it is natural
for the time series model (2.1) to construct the interpolation j; as the first com-
ponent a, of the vector @ = (ay, ay, ..., a,)’ minimizing the expression

o0

() B R TR

In this section let the bare symbol £ denote the sum used in (3.1). In addition to the
smoothing statistics St (see (2.4)) we shall also use “backward” smoothing statistics
TIP1 defined as

(3.2)
T

i

ay, + (1 — o) T, t=..,0+ 1L, o,u,u—1,...;

Il
I

(1 =) T8, t=v—1,0—2,..,u+1;

It

TP =T 4 (1 =) T, t=..,v+1o,0— 1. u+luu—1,..,

p=2,...,n+ 1.

The statistics TIP? are constructed recursively in the opposite time direction than St
and their initial values can be constructed analogously as for S1”! (e.g. using regression

estimates based on several last observations of the time scries). Let us denote T, ==
(TE’], TEZ]’ o TE"H])’-
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For given n and o let ] be the matrix of the type (n + 1) x (n + 1) fulfilling

o «
o? i o? .
ﬁ(l ~J) E(l +J)

(3.3) o’ . . .y o} . .

' H@-N-D =5 @i+

n+1 . . 0£"+1 . .
Ltn=j)..(1 =] T (n+j) (1 +))
n! n!

for all j = ..., —1,0,1,.... The matrix J is uniquely determined by (3.3). For

example, for n = 3 it has the form

1, 0 0 0
2, —1, 0, O
302, —3a, 1, 0
403, —602, 4o, —1

-
Il

(3.4)

Theorem 2. The vector a minimizing (3.1) is determined by the system of equations
(3.5) . Ma=S,+]T.,
where the elements of the matrix M have the form

(3.6) my, = g%)k(—p%’——l)!Z@ — oV (p — 1 +j)... (L +j)j*,

Proof is similar to that of Theorem 1 since the normal equations corresponding
to the minimization of (3.1) have the form

() § S s - et (i = 31— e,
k= .
p=1,..,n+1,

and it is possible to show by induction that the p-th component of the vector S, + JT,
can be expressed as

(3.8) o

For n = 0 the following explicit formula holds (let us denote for simplicity f =
=5—u,g=0v—s)

(1= p =1+ j) e (L)) ysej-
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o= do = {(1 = 2 (1 = 2} (57 4 1)
For n = 1 the interpolation y, = d, can be calculated as
4o A B\™! (ST 4 70
<d1> - (c D) (SE.” + 24T — TE”)’
where ;
A= (1 - o) +(1-ap,
B =)0l —affg - (1 —a)(g— )} - (1 -/ {f = (1 —a)(f = 1}],
C=(-/{(f+)-(1=a)ff = (1 —af{g - (1 —a)(g — 1) - o},
D =) [{-(/ = D0 =0 +2(/ = D/ + (1 — ) =
S+ (=0 + {=(g=2)(g - D —a)* +
+2(g 2900 — @) — (g — 1) g} (1 — 2]
Remark 3. If the time distance of the last known observation y, from the inter-
polated value y, is not large one can proceed in the following way improving the

interpolation gradually with each new observation y, in the time series ..., y,_ 1, Vu,
Vor Yor1s--» ¥e (U < s < v < 1). Let us construct the statistics UP! recursively as

4
(39) Ut = ,,_9‘__‘__,( —af(p—1=g)...(L = 9)y,,

(p— 1)t
U, = U 4 —— (1 =)' (p =24 s — 1) oo (5 = 1) Yrur»
p— 1)

t=v,v+1,..,p=1,..,n+ 1,

where f =5 — u, g = v — 5. Then the interpolation §4(tf) based on the known
observations ..., Y,_{, Yu, Ves Yo+ 1> ---» ¥; Can be constructed as the first com-
ponent dy(t) of the vector a*(t) = (do(t), d,(t), ..., 4,())" given by the formula

(3.10) a*(t) = M(1)"' (S, + U),

where U, = (U}, US, .., U ) and the elements of the matrix M(t) have the
form

(3.11) m(t) = i 1)'{Z( —ay(p—14j)...(L+j)(=j)+

t—s
+Y 0=y (p—1=j)...(0=))j*, p=1,..,n+1, k=0,..,n.
i=g
For example, for n = 0 we obtain
1) = do(t) = {(1 = )7 + (1 = ) = (1 — o 171 (SI 4+ UFHY).
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4. MULTIVARIATE CASE

Lety, = (Y1 ---» Yar)' be a d-dimensional time series with the model

(4.1) y: = f(t) + &,

Iwhere the i-th component f(t) of the vector f(t) = (f,(t), ..., fi(t)) is a polynomia
of order n; and Eg, = 0, varg, = X > 0, Egg, = O for s =+ 1.

Since the exponential smoothing if performed separately for particular components
of y, does not take into account the correlations which may exist among these com-
ponents, a simple method respecting this fact is looked for. The feature which is
substantial for the following procedure and which can unpleasantly contradict
a real situation consists in the assumption that the correlation structure given by X
does not change in time.

Letyy, ..., Yy be observations which can be used for the initiation of the procedure
(such initial observations are used also in the method of adaptive exponential
smoothing by Enns et al. [5] for the construction of initial ML estimates). Then one
can estimate the elements o;; of the matrix ¥ consistently using thé theory of the
seemingly unrelated regressions (see e.g. [6, p. 160]) as
(4.2) s, =elelN, i,j=1,...,d,

J

where e = (&4, ..., &)’ is the vector of the OLS residuals from the regression of
(¥i1s --» yan) on (f(1), ....f{(N))'. The initial estimates of the parameters of f(r)
can be obtained in the second stage by applying the OLS method to the particular
components of the transformed observations

(4.3) z, = S 1%y,

for t = 1,..., N (the elements s;; of § are given in (4.2)).

The components of z, can be taken as uncorrelated and the previous estimates
of the parameters of f(t) are fully efficient (see e.g. [6, Theorem 8.4.2]). This fact
motivates the suggestion to use the classical univariate exponential procedure
(including the choice of the order of the smoothing and the choice of the smoothing
constant) for particular components of the transformed time series z, constructed
according to (4.3) for all t. Moreover, it is possible to take advantage of the previous
initial estimate of f(t) for starting the procedure. Finally, one must revert from the
smoothed values z;' of the transformed time series to the smoothed values y;* of the
original time series according to the formula

(4.4) y, = sz .
In particulaf, if for univariate time series {zl,}, ey {z,,,} it is possible to use the
simple exponential smoothing with smoothing constants o, ..., a,, respectively,

then the following direct formula
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(4.5) y, =AY+ (- Ayl
holds, where

(4.6) Ax = SUZAS™1/2
and A is the diagonal matrix with «;, ..., o; on the main diagonal.
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Souhrn

NEKTERE PROBLEMY EXPONENCIALN{HO VYROVNAVANI{

ToMAS CiprRA

Clanek se zabyva n&kterymi praktickymi problémy spojenymi s klasickym exponencialnim
vyrovnavanim v Casovych fadach. Zakladni véta exponencidlniho vyrovnavani je rozsifena
na pripad s chybé&jicimi pozorovanimi a v ramci exponencialniho vyrovnavani je popsana inter-
polaéni procedura. Je navrZena jednoducha metoda exponencialniho vyrovnavani pro mnoho-
rozmérné Casové rady.

Pe3ome
HEKOTOPBIE ITPOBJIEMBI DKCITOHEHIIMAJIBHOI'O CIJIAXWBAHW S
ToMAS CIPRA
PaboTa 3aHMUMAETCS HEKOTODLIMH IIPAKTHYECKMMM IIPOGJIEMaMH, KACAIOIMMHCS KJIACCHYECKOTO
3KCIIOHCHLHAJIBHOTO CrilaXKHBaHUSA BO BPDEMEHHBIX pAOax. QOcHoBHas T€OpEMA 3KCIIOHCHUHAJIBHOTO
crylaxuBaHust 0000IIEHa Ha CiIy4ail C OTCYTCTBYIOLUMMH HaOIIONCHHSMM M ONMCAHA TAKXKE MHTEP-

IIOJIAUMOHHAA npoueaypa B paMKax 3KCIOHECHUHAJIBHOTO Crijla)XHBaHMA. Hpeunoxe}{ NIPOCTOH
METOA 3KCITOHCHUMAIbHOTO Crjla2dkKHBaHHS [JI1 MHOTOMEDHBIX BPEMEHHbIX DAOOB.
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