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34(1989) APLIKACE MATEMATIKY No. 2,133—145 

CLASSIFICATION OF PROJECTIVE SPACE MOTIONS WITH 
ONLY PLANE TRAJECTORIES 

ADOLF KARGER 

(Received July 22, 1987) 

Summary. The paper contains the solution of the classification problem for all motions in the 
complex projective space, which have only plane trajectories. It is shown that each such motion 
is a submanifold of a maximal motion with the same property. Maximal projective space motions 
with only plane trajectories are determined by special linear submanifolds of dimensions 2, 3, 5, 8 
in GL(4, C), they are denoted as R, Elt ..., E6, Slf S2 and given by explicit expressions. 
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AMS Classification: 53A17. 

I. INTRODUCTION 

The paper presents a solution of the open problem of classification of all projective 
motions in the projective space, which have only plane trajectories. First we show 
that any 1-parametric motion with the above mentioned property lies (locally) on 
an s-parametric motion with plane trajectories, s > 1. Then we find all such motions 
with maximal number of parameters. As the problem is of algebraic nature, we extend 
it to the complex domain, which enables us to use known facts from algebra and 
algebraic geometry. The list of all maximal motions with plane trajectories is given 
at the end of the paper. 

II. REAL PROJECTIVE SPACE MOTIONS WITH PLANE TRAJECTORIES 

Let P3, P3 be two copies of the 3-dimensional real projective space, points of which 
are considered as 1-dimensional subspaces of real 4-dimensional vector spaces V4, V4, 
respectively. Let us fix bases R0 = {ej , P0 = {ej , i = 1,..., 4, in V4, V4, respective­
ly. A projective motion g(t) in P3 is given as a sufficiently differentiable 1-parameter 
family of projective maps from P3 into P3, which can be represented as a curve 
on the Lie group 5L(4, R). Because there is a canonical homomorphism from 
OL(4, R) onto SL(4, R), we may consider g(t) as a curve on GL(4, R) as well. The 
matrix of the motion is then given up to a multiple of the unit matrix E. 
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Similarly as in [3] we call a projective space motion g(t) a Fr motion, if all trajec­
tories of the points of P3 lie in subspaces of dimension r and not all trajectories lie 
in subspaces of dimension r — 1. We call a projective motion g(t) a Dk motion, if it 

k 

satisfies a differential equation of the form g(fc+1)(t) = £ a^(t) g(l)(t), where h is the 
i = 0 

least number with this property. Obviously, each Dk motion is an Fk motion, the 
converse being not always true. 

All trajectories of a Dk motion are projective images of a fixed curve in the pro­
jective space Pk — this can be proved similarly as the corresponding affine statement 
in [3]. Especially it means that the D2 motions are characterized as those F2 motions 
which have projectively equivalent trajectories (for details see [3]). 

By an s-parametric projective space motion we mean an immersion of an open set 
M c Rs in SL(4, R). The definition of an F2 motion extends immediately to s-parame­
tric motions. 

Definition 1. An s-parametric F2 motion g defined on M is called maximal, if 
there is no open subset N of M such that the restriction of g to N is a submanifold 
of an (s + l)-parametric F2 motion. 

Lemma 1. There are no 1-parametric maximal F2 projective space motions. 

Proof. Let g(t) be defined on an open interval I. Let us consider the following two 
cases: 

a) There is t0 e I and K0 e F4 such that g(t0) X0, g'(t0) X0, g"(t0) X0 are linearly 
independent vectors. Then there is a neighbourhood U(X0) of K0 in V4 such that 
g(t0)K, g'(t0)K, g"(t0)X are independent. Let us denote by £(X) the plane which 
contains the trajectory of X. £(X) is a linear form in the dual V* of F4; the pairing 
V4 x V* -> R will be denoted by <, >. 

We have <a(t) X, c;(K)> = 0 for all X e F4 . Differentiation at t0 gives <a(t0) X, 
£(X)> = <g '(t0)K, {(X)> = <g"(t0)X, £(X)> = 0 for all X e U(X0). This shows 
that g(t) X, g(t0) X, g'(t0) X, g"(t0) X lie in the kernel of £,(X) for all X e U(X0) and 
so the determinant 

(1) \g(t0) X, g'(t0) X, g"(t0) X, g(t) X\ = 0 

for all X e U(X0). 
As (1) is algebraic, it must be satisfied by all X e F4. The solution of (l) it as least 

a 2-parametric motion, as it contains the 2-parametric motion g(X, pi, v) = Ag(t0) + 
+ w ' ( t 0 ) + vg"(t0). 

b) g(t)K, g'(t)K, g"(t)K are linearly dependent on I. The trajectory X(t) = 
= g(t) X of the point X e F4 therefore satisfies an equation of the form ccX" + 
+ PX' + yX = 0, where a, jS, y depend on t as well as on X. (The bar which denotes 
that a point belongs to the moving space P3 was omitted in the above text to simplify 
the notation. This will be done in the sequel as well.) 
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We see that the trajectory K(t) is locally a solution of a linear differential equation 
of the second order. It has the general solution of the form K(t) = a(t) Y + v(t) Z, 
where Yand Z are constants, so the trajectory lies on a straight line and the motion 
is an F! motion. 

Lemma 1 shows that each 1-parametric F2 motion is locally a curve on an at least 
2-parametric F2 motion. This means that if we want to find all 1-parametric F2 

motions, it is enough to find all maximal F2 motions, 1-parametric F2 motions are 
then composed from curves which lie on maximal F2 motions. 

In what follows we shall describe all maximal projective F2 motions in the pro­
jective space. 

Lemma 2. Any maximal F2 motion g(ut), i = 1, ..., s, satisfies an equation of the 
form 

(2) \X,AX,BX,g(ui)X\ = 0 

for all Xe V4, A, B are constant matrices, vertical bars denote the determinant. 

Proof. The motion g(u() has only plane trajectories iff for each XeV 4 there 
exists £ e V* such that <g(uf)X, £(X)> = 0 for all u,-. Now we proceed similarly as 
in the proof of Lemma 1. 

a) Let us suppose that there exist K0 e V4 and u? such that g(u?) X0, 
dg\du1(u°i)X0, dg\du2{u°i)X0 are linearly independent. Then there exists neigh­
bourhood U(X0) of X0 such that g(u?)K, dgjdu^u^X, dg\du2(u?)X are in­
dependent for all X e U(X0). As g(u°t) is a regular matrix, we may suppose that 
g(u°i) = E by a change of the basis in V4. Let us denote dgjdux (u°t) = A, 
dgjdu2 (u°i) = B. Then X, AX, BX are independent for X e U(X0) and we have 
<g(ui)X, £(X)> = 0. Differentiation at u° yields <X, £(X)> = 0, <AX, £(X)) = 0, 
<BK, £(X)y = 0. As X, AX, BX generate the kernel of £(X), we must have (2) on 
U(X0). As (2) is algebraic, it must be satisfied for all X e V4. 

b) Let the dimension of the linear space generated by g(ut)X, dgjdUj(u^)X be 
equal to 2 for any X e V4 and any ut. Then there is a point u° such that g(u°) X0 , 
dgjdui (u?) X 0 are independent for some X 0 (we permute the parameters if necessary). 
This means that there are neighbourhoods U(K0)

 a n d U;(u?) s u c n t n a t g(ui)^ a n < i 
dgjdux (u t)X are independent. This shows that 

^ X = aj(X, u ;) fl(u;) X + Pj(X, u() i * - (uf) X 
dUj dui 

for suitable functions a and j8. For each X and û  we now choose (in a smooth way) 
two elements <l;a e V4, a = 1, 2, such that 

<a(Ui) X, UX, u;)> = 0 , (^L (u;) X, UX, u ^ = 0 . 

135 



Partial differentiation of the first equation with respect to u^ yields 

g(u,) X, ^ (X, u , ) \ + (%L (u,) X, UX, u , ) \ = /fif(uf) X, g s (X, u , ) \ = 0 . 

As we may suppose that £a are linearly independent, we get d^jduj = ajap(X, ut) £p, 

a,j» = 1,2. 

We now apply Lemma 3 and so £a(X9 ut) = aa^(u^) xp(X). This yields <g(uf) X, 

xa(X)> = 0 for a = 1, 2 and for all X and u^ on a neighbourhood and the motion is 
an Fi motion. 

Lemma 3. Let ea(u;), a = 1, ..., m, i = 1, ..., s, be vector functions in R" swc/i 
that deajdUi = aja/j(uy) e^. Then ea = ma^(u^) Cp for suitable constant vectors Cp 
and functions ma/J(uf), p = 1 , . . . , m. 

Proof. For simplicity let us suppose that we have only two variables u and v and 
let us write symbolically dejdu = Ae, dejdv = Be, where e denotes the column of 
vectors el9..., es. For the k-th coordinate ek we now have dekjdu = Aek, dek\d\ = 
= Bek. If we integrate this system with respect to u, we get for each v0: efc(u, v0) = 
= M(u, v0) Ck(v0), where M(u, v0) is a fundamental solution of the system 
dy(u)jdu = A(u, v0) y. This shows that we can write e(u, v) = M(u, v) C(v). 
Proceeding similarly with respect to v we have e(u, v) = N(u, v) D(u). A comparison 
now yields M(u, v) C(v) = N(u, v) D(u), D(u) = N_1(u, v) M(u, v) C(v) = 
= N~\u, v0) M(u, v0) C(v0) and so e(u, v) = N(u, v) N~\u, v0) M(u, v0) C(v0). 
This proves that the vectors ea are linear combinations of fixed m vectors C(v0). An 
extension to the case of more than two variables is obvious. 

Theorem 1, A maximal s parametric F2 motion is an immersion of an open set 
of the projective space Ps into SL(4. R), 

Proof . According to Lemma 2 any maximal F2 motion must satisfy (2). Any 
maximal solution of (2) must be a linear space, as [X, AX, BX, C!X| = 0 and 
|X, AX, BX, C2X| = 0 implies |X, AX, BX, (aCt + £C2) X\ = 0. As the set of all 
regular matrices in a linear subspace of matrices is open, the statement follows. 

Theorem 1 shows that any maximal F2 motion can be expressed as ^(u,-) = 
s 

= YJ utAh where A{ are constant matrices. Further on, we see that any real maximal 
i = i 

F2 motion can be extended to a maximal complex F2 motion in the complex projective 
space P3(C) by taking u^ e C Therefore we have 

Theorem 2. Any real 1-parametric F2 motion is a real curve on a complex 
maximal F2 motion in P3(C). 
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III. SOLUTION OF THE EQUATION |X,AX,B*,CX| == 0 

To classify all maximal complex F2 motions in P3VC) we have to solve the equation 

(3) |K, AX, BX, CX\ = 0 

for all X e V4(C), where A, B, C are arbitrary 4 x 4 complex matrices. 

Remark . In the course of the classification process we have to use some facts 
which are true only for an algebraically closed base field. Therefore the classification 
of complex F2 motions appears to be more natural and easier than the same problem 
over R. 

(3) has an obvious solution C = XE + \iA + vB. Let us call this solution regular 
and let us denote it by R. Further on, (3) has a solution such that Im (A) z> Im (JB) Z> 
z> Im (C), dim Im (A) = 2, where Im (A) denotes the image of the map C4 -> C4 

which is determined by the matrix A. Let us call this solution a singular solution of 
rank 2 and denote it by S2. 

Similarly, if Im (A) = Im(B) , d i m l m ( A ) = 1, C is arbitrary, we obtain also 
a solution of (3). Let us call it a singular solution of rank 1 and denote it by 5 t . In 
what follows we have to determine all the other solutions of (3); we shall call them 
exceptional solutions. We start with several preliminary lemmas. 

Lemma 4. Let &(X). <9(X) = 0 for all X e V4(C), where & and 9 are homo­
geneous polynomials in coordinates of X. Then either ^(X) = 0 for all X or 
<S(X) = 0forallX. 

Lemma 5. Let A = (aai), B = (bai), a = 1, 2, i = 1 , . . . , 4. Then \AX, BX\ = 0 
for all X iff A and B are linearly dependent or rank (A | B) = 1, where A | B means 
that we put matrices A and B next to each other. 

Remark . To simplify the notation, let us denote in what follows the i-th row of 
the matrix AX by af and similarly for B and C using /? and y. 

Proof. We may suppose aXi + 0. Then we may change A and B in such a way 
tha ta 2 i — 0, bu = 0 by adding a combination of the 1-st row to the 2-nd and adding 
a multiple of A to B. Then necessarily f}2 = 0. Now a2 . px = 0 and according to 
Lemma 4 we have a2 = 0 or px = 0. 

Lemma 6. Let E, A, B be linearly independent 3 x 3 complex matrices, E the 
unit matrix. Then the equation \X, AX, BX\ = Ofor all X has only the following 
solution: There exist X,fieC such that rank (A - XE) = 1, Im (A — XE) = 
= Im (B - fiE). 
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Proof. Let us denote m0 = Min rank (IE + \iA + vB) for all X,n,veC, 
\X\ + |/x| + |v| + 0. Then 0 < m0 < 3. For A we can take the matrix with the 
smallest rank. Then we have two possibilities: 

a) m0 = 1. In a suitable basis we have ax = a2 = 0. As a3 4= 0, we get 

x, h I = 0. 
y, JS2 ; 

As the rank of the matrix (E \ bai), a = 1, 2, i" = 1, 2, 3 is equal to 2, we have btl = 
= &22> bai = 0 for a + i and this gives the solution from the statement. 

b) m0 = 2. We may suppose ax = 0. Let x = 0. Then we obtain Pi(ycc3 — Za2) = 
= 0 with x = 0. 

1) j?i 4= 0 with x = 0. Then a22 = a33, a23 = a32 = 0, and adding a multiple 
of E we obtain a matrix of rank 1, which is impossible. 

2) j8i = 0 with x = 0. Then a2f53 - a3/?2 = 0. As rank A = 2, B must be a mul­
tiple of A, which is a contradiction. 

Remark. For the sake of simplicity we denote the coordinates in V4(C) by 
*, y, z, t. 

Lemma 7. The group Int GL(4, C) takes solutions of (3) into solutions. 

Proof. Let g e GL(4, C). Then \X, AX, BX, CX\ = 0 implies \gX, gAg'1 . gX, 
gBg~x . gX, gCg~l . gX\ = 0 and we write gX = Y. 

Now we are ready to start with (3). We may suppose that E, A, B, C are linearly 
independent matrices (as vectors in the matrix algebra of 4 x 4 matrices). Let us 
denote by n3(A, B, C) the projective space generated by matrices E, A, B, C: 
n3(A, B, C) = {the set of all nontrivial linear combinations of E, A, B, C with 
identified multiples}. Further, let us denote m(7c3) = min rank D, where D e 
en3(A,B,C). 

Lemma 8. 1 ^ m(7i:3) ^ 3. 

Proof. The equation |A — XE\ = 0 has at least one solution 

Lemma 9. Let m(n3) = 3. Then (3) has no solution. 

Proof. In n3 there exists a matrix which has 0 as a characteristic root of multi­
plicity 3. To see this, consider the equation \XE + fiA + vB + gC — £F| = 0. If we 
expand this equation with respect to ^, we get £4 + f ^ 3 + f2£

2 + f3£ + f4 = 0, 
where f is a form of degree i in the variables X, \i, v, Q. If we putf2 = f3 = f4 = 0, 
we get 3 algebraic surfaces in n3, which have at least one common point according 
to the classical theorem of Bezout. 
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We take such a matrix for the matrix A and put it into the canonical Jordan form 
according to Lemma 7. As A has rank 3, we have only two possibilities: 

1) A = 

/o, 1, 0, 0\ 
o, o, i, o' 
o, o, o, o 

\0, 0, 0, 1/ 

2) A = 

jo, 1, 0, o^ 
0, 0, 1, 0 
0, 0, 0, 1 

lo, 0, 0, 0/ 

First we consider the case 1). Let us write 

-G.2D-
where Bx is a 3 x 3 matrix. The group 

? i =(o;ľ ) ' where g = 

preserves the Jordan normal form of A. For the change of B by Gx we have B3 

= (^4i, S42, b43) = B3.g = (b41, b41a + b42, b41p + b42a + b43). 
The same result is obtained in the case 2) with the group 

G2 = f J ' J ) , where t = (y, j?, a)T . 

Now we combine the both cases. 
Let el9 e2 be 1 or 0 with e\ + e2 = 1. Then (3) can be written as follows: 

x, y, b13z + b14f, c13z + c 1 4t 
y, 2, p2, y2 

z, £it, h, 73 
t, e2t, P*, 74 

= 0. 

a) Let |b41| + |c41j + 0. We may suppose b41 + 0, using the group G1 or G2 

we may change B to b42 = b43 = 0, adding a multiple of B to C we obtain c41 = 0. 
a 0 |c42| + |c4,3| + 0. For x = t = 0 we obtain 

0, y, b13z 
y, z, b22y + b23z 
^ 0, b32j + b33Z 

0. 

This yields b13 = b23 = b32 = 0, b22 = b33. We add a multiple of E to Band obtain 
a matrix of rank 2, which is a contradiction. 

aii) c42 = c43 = 0. For t = 0 we have 

(4) 
x, y, c13z 
y, z, c21x + С22J> + c23z 
z, 0, c31x + c32y + cъъz 

0 
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Using Lemma 6 we get rank C g 1, which is a contradiction. 

b) b4i. = c 4 1 = 0, |b 4 2 | + | c 4 2 | 4= 0, let b42 4= 0. We may suppose b43 = c 4 2 = 0 
similarly as above. 

bi) Let c 4 3 4= 0. Then ^ = t = 0 yields b31 = b13 = b33 = 0, z = t = 0 yields 
b32 = 0 and t = 0 now gives c 4 3 = 0, a contradiction, 

bii) Let c 4 3 = 0. Then t = 0 gives (4) and rank C ^ 1. 

c) Let b41 = b42 = c 4 1 = c 4 2 = 0, b43 4= 0, c 4 3 = 0. We get a contradiction 
similarly as above. 

d) b4i = c 4 i = 0, i = 1, 2, 3. We add a suitable multiple of the first column to the 
other columns to have zero in the last row. Then 

(5) 
У - e2*> ßu ľi 
z - £2y> Pг, ľ2 

Єiř - e2z, ß3, y3 

0 . 

If ex = 1, e2 = 0, we put x = 0 and use Lemma 6 to see that the rank of B is at 
most 2. If st = 0, e2 = 1, we put t = 0. The first matrix in (5) is regular; denote it 
by D. We multiply (5) by D"1 from the left and use Lemma 6 to see that rank B ^ 2. 
This completes the proof. 

Lemma 10. If m(n3) = 1, then any solution of (3) is either Sx or a special case 
of S2. 

Proof. We may suppose a t = a2 = a3 = 0. As a4 4= 0, we have 

*> Pu 7i 
y> P2, 72 = 0 . 

i 2, p3, y3 

We put * = 0 and use Lemma 6. 
a) ctj = AO*l7 + tibfj, i,j = 1, 2, 3. We may suppose ctj = 0 by adding 

— (XE + fiB) to C. What remains is 
x > Hl> C 1 4 

y> Pi, c 2 4 = 0 , 
Z > F3> C 3 4 

If c i 4 = 0 for i = 1, 2, 3, we have St. If one of c i 4 is nonzero, we may change the 
basis to have c 3 4 4= 0, c 1 4 = c 2 4 = 0. Then xj?2 — }>/?! = 0 and by Lemma 5 we 
obtain that the solution is a special case of S2. 

b) Im (B) = Im (C), dim Im (B) = 1, where B and C are restrictions of B and C 
to indices 1, 2, 3. In a suitable basis we may write 

x, b14.t, c14f 
y, b24*> C 2 4 t 

>̂ /Ss, T3 
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Let all bi4J ci4, i = l , 2 be zero. Then we have a special case of S2. So, let one of 
them be nonzero. We may suppose that b14 + 0, c1 4 = 0. Then c2 4 = 0, y3 = 0 
and we have a special case of Si. 

Lemma 11. Let m(?c3) = 2. Then any solution of (3) is either S2 or one of the 

exceptional solutions El9 . . . , £ 6 which are listed in the proof. 

Proof. We have to use similar arguments as in the proof of the preceding two 
lemmas. Having in mind that computations of this kind are not very interesting, 
we omit the details whenever possible. 

Let us suppose ccx = a2 = 0 and let us write B in the form 

B = 
K, L 

м, лr 
The group 

where K, L, M, N are 2 x 2 matrices 

92, 9zj 

where gx are 2 x 2 matrices, g1 and g3 regular, preserves the equation ax = a 2 = 0. 

For the change of B by elements of G we have 

(6) K = 'g1Kg1 + 'g1Lg2 , L = g1Lg3 , M = (g2K + g3M) gt + 

+ (92L + #3N) g2, N = *g2Lg3 + H3N93, 

where ^^ denotes the corresponding matrix of the inverse element in G. 

Let us denote 

Cu, Ci 
P = 13? c14 

C23? C24 
ß 

/Cll? C 1 2 | 
\c21? C22/ 

I. Let L = P = 0. We may suppose that K is in the normal Jordan form, so 
&2i = b12b22 = blx = clx == 0. Computation shows that we get a solution only 
if b12 4= 0. Then b22 = c i2 = 0. For x = 0 we have 

^32y + ^33- + ^34*? c32y + (c33 ~ C22)
Z + C34^ 

«42y + 043Z + a44t, c42y + c^z + ( c 4 4 - C22)* 
= 0 . 

The first matrix is not zero. If the second is a multiple of the first, then rank C ^ 1. 
So let the 3-rd row be a multiple of the fourth. Then 

= 0 . 

x, 0, b12y, cxlx 
y, 0, 0, c21x 
z + oct, a31x, ß3, c31x 
t, oc4, j84, ľ4 

As a31 4= 0, we may suppose b31 = c 3 1 = 0. 
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= 0. 

a) Let c2i + 0. Then for y = 0 we have 

a3ix, b33z + b34* 

a41x + a43z + a44t, b4ix + b43z + b44t 

If the second matrix is a multiple of the first, we have rank B ^ I, so the fourth 

row is a multiple of the third and we have the solution 

( E i ) •*> v> "4-iy, ^ I I - * 

= 0 . 

x, 0, a*iУ, ^ 

У, 0, 0, x 
Z, X, -t, 0 

t, a42y, 0, c< 11 t - a 42--

b) Let c2i = 0 . Similarly as above we obtain 

0 

(E 2 ) x, 0, -y, x 

y, o, o, o 
z, x, J?3, 0 
t, a42y, 0, a42j33 

Now we have to consider the case when not both Land P are zero. We have two 
possibilities: 

a) There exists a matrix Px such that Pt = XL + /iP and det Px = 0. 

b) There is not such a matrix Pi. Then Land P are linearly dependent and we 

may suppose L = 0. P must be regular. 

II. Let P be regular, L = 0. For the action of G on K, P, Q we obtain K = ^ K ^ , 

Q = £i(G#i + P02), P = 3 ^ 3 -
We change K to the Jordan normal form and fix gx. As P is regular, we can change 

Q to 0 by g2 and choose g3 to have P = L. Now (3) yields 

x, 0, b12y, z 
y, 0, b22y, f 

Z, 0-3, ^3> T3 

r, oc4, / ? 4 , y 4 

a) b12 =J= 0, b22 = 0. After some computation we obtain the solution 

(E3) x, 0, y, z 
y, 0, 0, t 
z, x, b32y - t, b32z 
t, y, 0, b32t 

b) b12 = 0 leads to no solution. 

III. Let Lbe singular and different from 0. Using the group G we may change B 

in such a way that b13 = 1, b12 = b14 = b23 = b24 = b43 = 0. For x = y = 0 
we obtain 

z, a33z + a34t 
t, a43z + a44f 

= 0 , where b12 . b22 = 0 . 

= 0. 

(c23z + c24t) = 0 . 
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1) |c23. + 1̂24-1 + 0- Let us suppose a33 = 1. 
°0 C12I + | c 1 4 | 4= 0. This case yields the solution S 2 . 
P) C12 = c 1 4 = 0. Then b21 + 0 yields S2, so b21 = 0. 
i) c24 4= 0. Here we obtain the following solution: 

(E,) X, X, Z + b22*? 0 

У, У> Ь22У, t 

z, 0, 0, b 
t, 0, b42y, 0 

= 0 . 

ii) c 2 4 = 0 yields the solution ( b 3 2 4= 0) 

0 . 

( E 5 ) X, x, b33x + a32y + z, 0 

y> y, »22y 5 (&33 - b22)x + a32y + * 

z, 0, b32y, - o 3 2 x 

t, 0, b42y, - b 4 2 x 

b32 — 0 leads to a special case of E5 or to S2. 

^33 = ^ yields no solution at all. 

• 2) c24 = c 2 3 = 0, a43 = 1. Then b21 4= 0 leads to no solution, so b21 = 0. We 

have 

^ 2 2 - ^ 0, z - b22x, c12y + c14t 
a3íx + a32y + a34t, [}3, y3 

a4íx + a42y + z + a44t, b41x + b42y + b44ř, c41x + c 4 2 y + c44t 
= 0 , 

We add a multiple of the first row to the second t o have b33 — 0. Using the coef­
ficients at z 2 and z 3 , we obtain y3 = 0. z = b22x yields 

a 3 1 x + a32>! + a34t, b31x + b32y + b34ř 
0*41 + ^22) x + a 4 2 y + a 4 4 t , b41x + b42y + b44í 

= 0 . 

If the second matrix is a multiple of the first, we obtain a special case of S2, if the 
second row is a multiple of the first, we obtain 

(Eв) x, 0, cc4, a 3 

y, 0, 0, 0 

z, cc3, ß 3 , 0 
t, a4, 0, ~ß3 

= 0 . 

3) c23 = c24 = a 4 3 = 0. A rather long computat ion shows that we get no new 
solutions . This completes the proof. 

IV. MAXIMAL F2 MOTIONS 

For each solution of (3) we now construct a maximal F2 mot ion. Let us discuss 
the individual cases separately. 
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1) The regular solution R: let A, B be arbitrary. Then g(k911, v) = kE + \iA + vB 
is in general a maximal 2-dimensional F2 motion. Let us denote by D(A, B) the subset 
of P2(C) given by the equation det g(k, \i, v) = 0. Then D(A, B) is a curve of degree 
four in P2(C) and g(k, \i9 v) is an immersion of the open set P2 — D(A, B) in SL(4, C). 
A similar remark applies to the other cases as well. 

2) Sx: the corresponding maximal F2 motion is 

0, 0, 0, 0 
i 0, 0, 0, 0 

g(k9fi9vl9...9v4) = kE + \iA + | Q Q Q Q 

where A is arbitrary; we get a 5-dimensional motion. 

3) S2: we obtain an 8-dimensional maximal F2 motion 

(0, 0, 0, 0 \ 
'o, 0, 0, 0 

g(k,џľ,...,џ8) = kE + 

\: 

Џu fl2> Џз> ЏA-

џ5, џ6, џl9 џ8j 

4) Ex: let us have the 3-dimensional motion g(k, fi, v, Q) = kE + \iA + vB + QC 
for given constants a42 and cxl. Let us suppose that g is immersed in a motion gx 

which has greater dimension, then g has. Let g contain an element D = pi1A1 + 
+ v1B1 + QxC±, where Al9 Bl9 Cx are similarly defined by constants a42, c^.Then 
we must have |X, AX, BX, DX\ = 0 for all X and so we may suppose fix = vt = 0, 
a42 = 4̂2- From the equation JX, AX, CX, C!X| = 0 we obtain c'lt = c n . This 
shows that g is maximal. 

5) E2,..., E6: in these cases C is uniquely determined by A and B, so we have 
a 3-dimensional maximal F2 motion g = kE + \iA + vB + QC 

Theorem 2. The maximal F2 motions in P3(C) are: the 2-dimensional motion R, 
3-dimensional motions El9 ...9E6, the 5-dimensional motion Sx and the S-dimen-
sional motion S2. 

Remark. To get a 1-dimensional F2 motion we have to choose a curve on 
a maximal F2 motion (all parameters are functions of one variable). By this procedure 
we in general obtain from an s-dimensional F2 motion a Ds motion, as it depends 
on s arbitrary functions. If we choose all matrices to be real, we get real F2 motions 
in P3(R). The problem of determination of all real forms of the F2 motions in 
Theorem 2 remains open. 
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S o u h r n 

KLASIFIKACE PROJEKTIVNÍCH PROSTOROVÝCH POHYBŮ 
S POUZE ROVINNÝMI TRAJEKTORIEMI 

ADOLF KARGER 

V Článkuje vyřešen problém klasifikace všech projektivních pohybů v komplexním projektiv­
ním prostoru, které mají všechny trajektorie rovinné. Je dokázáno, že každý takový pohyb je 
podvarietou některého z maximálních projektivních pohybů s pouze rovinnými trajektoriemi. 

Tyto maximální pohyby jsou určeny speciálními rovinnými podprostory dimensí 2, 3, 5 a 8 
v prostoru GL(4, C). Jsou označeny jako R, El9..., E6, Sl9 S2 a je pro ne nalezeno explicitní 
maticové vyjádření. 

Р е з ю м е 

КЛАССИФИКАЦИЯ ПРОЕКТИВНЫХ ДВИЖЕНИЙ С ТОЛЬКО ПЛОСКИМИ 
ТРАЕКТОРИЯМИ 

А^о^р КАКОЕК 

Статья занимается классификацией движений в комплексном проективном пространстве, 
у которых только плоские тракетории. В статье показано, что каждое такое движение есть 
подмногообразие одного из максимальных движений с плоскими траекториями. Эти макси­
мальные движения обозначены Л, Е19..., Е6, 819 5 2 , имеют размерности 2, 3, 5, 8 и найдены 
их матричные представления. 

Ашког'з аййгезз: 1ШОг. Айо1/ Каг$ег, С8с, кагесЬа татетагюке апагугу МЕР ^ К , 
8ококгу&ка 83, 186 00 Ргапа 8. 
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