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CLASSIFICATION OF PROJECTIVE SPACE MOTIONS WITH
ONLY PLANE TRAJECTORIES

ADOLF KARGER
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Summary. The paper contains the solution of the classification problem for all motions in the
complex projective space, which have only plane trajectories. It is shown that each such motion
is a submanifold of a maximal! motion with the same property. Maximal projective space motions
with only plane trajectories are determined by special linear submanifolds of dimensions 2, 3, 5, 8
in GL(4, C), they are denoted as R, E,, ..., Eg, S, S, and given by explicit expressions.
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I. INTRODUCTION

The paper presents a solution of the open problem of classification of all projective
motions in the projective space, which have only plane trajectories. First we show
that any 1-parametric motion with the above mentioned property lies (locally) on
an s-parametric motion with plane trajectories, s > 1. Then we find all such motions
with maximal number of parameters. As the problem is of algebraic nature, we extend
it to the complex domain, which enables us to use known facts from algebra and
algebraic geometry. The list of all maximal motions with plane trajectories is given
at the end of the paper.

II. REAL PROJECTIVE SPACE MOTIONS WITH PLANE TRAJECTORIES

Let P, P, be two copies of the 3-dimensional real projective space, points of which
are considered as 1-dimensional subspaces of real 4-dimensional vector spaces V,, V,,
respectively. Let us fix bases Ry = {e;}, R, = {e;}, i = 1, ...,4,in V,, V,, respective-
ly. A projective motion g(t) in P; is given as a sufficiently differentiable 1-parameter
family of projective maps from P, into P;, which can be represented as a curve
on the Lie group SL(4,R). Because there is a canonical homomorphism from
GL(4,R) onto SL(4,R), we may consider g(t) as a curve on GL(4, R) as well. The
matrix of the motion is then given up to a multiple of the unit matrix E.
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Similarly as in [3] we call a projective space motion g(t) a F, motion, if all trajec-
tories of the points of Pj lie in subspaces of dimension r and not all trajectories lie
in subspaces of dimension r — 1. We call a projective motion g(t) a D, motion, if it

&

satisfies a differential equation of the form g("“)(t) = Z ai(t) g“’(t), where k is the
i=0

least number with this property. Obviously, each D, motion is an F, motion, the
converse being not always true.

All trajectories of a D, motion are projective images of a fixed curve in the pro-
jective space P, — this can be proved similarly as the corresponding affine statement
in [3]. Especially it means that the D, motions are characterized as those F, motions
which have projectively equivalent trajectories (for details see [3]).

By an s-parametric projective space motion we mean an immersion of an open set
M < R®in SL(4, R). The definition of an F, motion extends immediately to s-parame-
tric motions.

Definition 1. An s-parametric F, motion g defined on M is called maximal, if
there is no open subset N of M such that the restriction of g to N is a submanifold
of an (s + 1)-parametric F, motion.

Lemma 1. There are no 1-parametric maximal F, projective space motions.

Proof. Let g(t) be defined on an open interval I. Let us consider the following two
cases:

a) There is to € I and X, € V, such that g(to) Xo, g'(to) Xo, 9"(to) X, are linearly
independent vectors. Then there is a neighbourhood U(XO) of X, in V, such that
g(to) X, g'(to) X, g"(to) X are independent. Let us denote by ¢(X) the plane which
contains the trajectory of X. (X) is a linear form in the dual ¥} of V,; the pairing
V, x VI - R will be denoted by (, >.

We have {g(t) X, X)) = 0 for all X e V,. Differentiation at t, gives {g(to) X
X)) = <g'(to) X, &X)> = {g"(to) X, &(X)> = 0 for all X e U(X,). This shows
that g(t) X, g(to) X, g'(to) X, 9”(to) X lie in the kernel of ¢(X) for all X € U(X,) and
so the determinant
1) l9(to) X, 9'(to) X, 9"(to) X, g(t) X| = 0
for all X e U(X,).

As (1) is algebraic, it must be satisfied by all X € V,. The solution of (1) it as least
a 2-parametric motion, as it contains the 2-parametric motion g(4, p, v) = ig(to) +
+ ug'(to) + vg"(to)-

b) g(t) X, g'(t) X, g"(t) X are linearly dependent on I The trajectory X(t) =
= g(t) X of the point X e V, therefore satisfies an equation of the form «X” +
+ BX' + 9X = 0, where a, B, y depend on t as well as on X. (The bar which denotes
that a point belongs to the moving space P, was omitted in the above text to simplify
the notation. This will be done in the sequel as well.)
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We see that the trajectory X(t) is locally a solution of a linear differential equation
of the second order. It has the general solution of the form X(t) = p(t) Y + ¥(t) Z,
where Y and Z are constants, so the trajectory lies on a straight line and the motion
is an F; motion.

Lemma 1 shows that each 1-parametric F, motion is locally a curve on an at least
2-parametric F, motion. This means that if we want to find all 1-parametric F,
motions, it is enough to find all maximal F, motions, 1-parametric F, motions are
then composed from curves which lie on maximal F, motions.

In what follows we shall describe all maximal projective F, motions in the pro-
jective space.

Lemma 2. Any maximal F, motion g(u;), i = 1, ..., s, satisfies an equation of the
form
(2 |X, AX, BX, g(u;) X| = 0

for all X eV,, A, B are constant matrices, vertical bars denote the determinant.

Proof. The motion g(u;) has only plane trajectories iff for each X eV, there
exists & € V7 such that <g(u;) X, {(X)> = 0 for all u;. Now we proceed similarly as
in the proof of Lemma 1.

a) Let us suppose that there exist Xoe ¥, and uj such that g(u?)X,,
dg/ou, (u?) X,, 0g/du, (uf) X, are linearly independent. Then there exists neigh-
bourhood U(X,) of X, such that g(uf)X, dg/ou; (uf) X, dg/ou, (u?) X are in-
dependent for all X € U(X,). As g(uf) is a regular matrix, we may suppose that
g(u)) = E by a change of the basis in ¥,. Let us denote dg/ou; (uf) = A4,
dg[ou, (uf) = B. Then X, AX, BX are independent for X e U(X,) and we have
<g(u;) X, X))y = 0. Differentiation at uf yields (X, ¢(X)> = 0, <4X, &X)) =0,
(BX,{(X)» = 0. As X, AX, BX generate the kernel of ¢(X), we must have (2) on
U(X,). As (2) is algebraic, it must be satisfied for all X € V,.

b) Let the dimension of the linear space generated by g(u;) X, dg/du; (u;) X be
equal to 2 for any X € ¥, and any u;. Then there is a point u? such that g(u?) X,
6g/6u1 (u(,-’) X, are independent for some X, (we permute the parameters if necessary).
This means that there are neighbourhoods U(X,) and U’(uf) such that g(u;) X and
0g[du, (u;) X are independent. This shows that

a9

2 = o) o) X o+ B, 0) 2L (1) X

J

for suitable functions « and B. For each X and u; we now choose (in a smooth way)
two elements ¢, € Vi, a = 1,2, such that

Colu) X, E(X,u)> = 0, <aﬁj_ (u) X, &(X, ui)> ~o.
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Partial differentiation of the first equation with respect to u; yields

<g(u,.) X, g.%(x,u,.)> + <§Tg (w) X, é,(X,ui)> - <g(u,.) X, gi_ (X, u,.)> —o.

J

As we may suppose that £, are linearly independent, we get élja/éu j=a M(X ,u;) &g,
o, f=1,2.

We now apply Lemma 3 and so &(X,u;) = a,4(u;) %,(X). This yields {g(u;) X,
x,(X)) = 0 for a = 1,2 and for all X and u; on a neighbourhood and the motion is
an F; motion.

Lemma 3. Let e,(u,-), a=1,...,m,i=1,...,s, be vector functions in R" such
that Je,[0u; = a;u(u;) ;. Then e, = my(u;) C; for suitable constant vectors C,
and functions m(u;), p =1, ..., m.

Proof. For simplicity let us suppose that we have only two variables u and v and
let us write symbolically de/du = Ae, de/dv = Be, where e denotes the column of
vectors ey, ..., e, For the k-th coordinate € we now have de*/du = Ae, de*[/ov =
= Be". If we integrate this system with respect to u, we get for each vo: €*(u, vo) =
= M(u, vo) C¥(v,), where M(u, v,) is a fundamental solution of the system
dy(u)/du = A(u, vo) y. This shows that we can write e(u,v) = M(u,v) C(v).
Proceeding similarly with respect to v we have e(u, v) = N(u, v) D(u). A comparison
now yields M(u, v) €(v) = N(u, v) D(u), D(u) = N~'(u, v) M(u, v) C(v) =
= N"!(u, vo) M(u, vo) C(vo) and so e(u,v) = N(u,v) N™(u, vo) M(u, vo) €(vo).
This proves that the vectors e, are linear combinations of fixed m vectors C(vo). An
extension to the case of more than two variables is obvious.

Theorem 1. A maximal s parametric F, motion is an immersion of an open set
of the projective space P, into SL(4, R).

Proof. According to Lemma 2 any maximal F, motion must satisfy (2). Any
maximal solution of (2) must be a linear space, as |X, AX, BX, C,;X| = 0 and
|X, AX, BX, C,X| = 0 implies |X, AX, BX, («C; + BC,) X| = 0. As the set of all
regular matrices in a linear subspace of matrices is open, the statement follows.

Theorem 1 shows that any maximal F, motion can be expressed as g(u,-) =
= Y u;A;, where A, are constant matrices. Further on, we see that any real maximal

i=1

F, motion can be extended to a maximal complex F, motion in the complex projective
space P3(C) by taking u; € C. Therefore we have '

Theorem 2. Any real 1-parametric F, motion is a real curve on a complex
maximal F, motion in P4(C). '
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III. SOLUTION OF THE EQUATION |X, AX, BX,CX|=0

To classify all maximal complex F, motions in P3(C) we have to solve the equation
(3) |X, AX,BX,CX| =0

forall X e V4(C), where A, B, C are arbitrary 4 x 4 complex matrices.

Remark. In the course of the classification process we have to use some facts
which are true only for an algebraically closed base field. Therefore the classification
of complex F, motions appears to be more natural and easier than the same problem
over R.

(3) has an obvious solution C = AE + pAd + vB. Let us call this solution regular
and let us denote it by R. Further on, (3) has a solution such that Im (4) o Im (B) o
> Im (C), dim Im (4) = 2, where Im (4) denotes the image of the map C* — C*
which is determined by the matrix 4. Let us call this solution a singular solution of
rank 2 and denote it by S,.

Similarly, if Im (4) = Im (B), dimIm(4) = 1, C is arbitrary, we obtain also
a solution of (3). Let us call it a singular solution of rank 1 and denote it by ;. In
what follows we have to determine all the other solutions of (3); we shall call them
exceptional solutions. We start with several preliminary lemmas.

Lemma 4. Let #(X).¥(X) = 0 for all X € V,(C), where # and ¢ are homo-
geneous polynomials in coordinates of X. Then either #(X) =0 for all X or
%(X) = 0 for all X.

Lemma 5. Let A = (a,;), B = (b,), @ = 1,2, i = 1,...,4. Then |AX,BX| =0
for all X iff A and B are linearly dependent or rank (4 | B) = 1,where A | B means
that we put matrices A and B next to each other.

Remark. To simplify the notation, let us denote in what follows the i-th row of
the matrix AX by «; and similarly for B and C using f§ and 7.

Proof. We may suppose a,; ¥ 0. Then we may change 4 and B in such a way
thata,, = 0, b;; = 0 by adding a combination of the 1-st row to the 2-nd and adding
a multiple of 4 to B. Then necessarily f, = 0. Now a, . §; = 0 and according to
Lemma 4 we have a, = 0 or §; = 0.

Lemma 6. Let E, A, B be linearly independent 3 x 3 complex matrices, E the
unit matrix. Then the equation |X, AX, BX] = 0 for all X has only the following
solution: There exist A,peC such that rank (4 — AE) =1, Im(4 — AE) =
= Im (B — pE).
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Proof. Let us denote mo = Minrank (AE + ud + vB) for all 4,4,veC,
|A] + |u| + || # 0. Then 0 < mg < 3. For A we can take the matrix with the
smallest rank. Then we have two possibilities:

a) my = 1. In a suitable basis we have o; = a, = 0. As a3 #F 0, we get
X, Bl
¥y, B2

As the rank of the matrix (E | by), @ = 1,2, i = 1,2, 3 is equal to 2, we have b,; =
= by3, by; = 0 for % i and this gives the solution from the statement.

=0.

.

b) my = 2. We may suppose &; = 0. Let x = 0. Then we obtain p,(ya; — za,) =
= 0 with x = 0.

1) By #+ 0 with x = 0. Then a,, = 33, a3 = a;, = 0, and adding a multiple
of E we obtain a matrix of rank 1, which is impossible.

2) B; = 0 with x = 0. Then «¢,f3 — @38, = 0. As rank 4 = 2, B must be a mul-
tiple of A, which is a contradiction.

Remark. For the sake of simplicity we denote the coordinates in V,4(C) by
X, y,2,t.

Lemma 7. The group Int GL(4, C) takes solutions of (3) into solutions.

Proof. Let g € GL(4, C). Then |X, AX, BX, CX| = 0 implies |gX, gAg™" . ¢X,
gBg~'.gX,gCg™*.gX| = 0and we write gX = Y.

Now we are ready to start with (3) We may suppose that E, 4, B, C are linearly
independent matrices (as vectors in the matrix algebra of 4 x 4 matrices). Let us
denote by ms(4, B, C) the projective space generated by matrices E, 4, B, C:
11:3(A, B, C) = {the set of all nontrivial linear combinations of E, 4, B, C with
identified multiples}. Further, let us denote m(m,) = minrank D, where De
ens(4, B, C).

Lemma 8. 1 < m(n,) < 3.
Proof. The equation |A - AE| = 0 has at least one solution
Lemma 9. Let m(n;) = 3. Then (3) has no solution.

Proof. In m, there exists a matrix which has 0 as a characteristic root of multi-
plicity 3. To see this, consider the equation [iE + nA + vB + ¢oC — €E| = 0. If we
expand this equation with respect to &, we get &* + f,E3 + f,E% + f3& + fa =0,
where f; is a form of degree i in the variables A, u, v, 0. If we put f, = f3 = f4, = 0,
we get 3 algebraic surfaces in 75, which have at least one common point according
to the classical theorem of Bézout.
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We take such a matrix for the matrix 4 and put it into the canonical Jordan form
according to Lemma 7. As A has rank 3, we have only two possibilities:

0,1,0,0 0,1,0,0
0,0,1,0 _10,0,1,0
D 4=100,0 0 2 4=\0 00 1]
0,0,0,1 0,0,0,0
First we consider the case 1). Let us write

_ B19 BZ
B= (Bs, 34)’

where B, is a 3 x 3 matrix. The group

0,1 ’

\

1,0 B
G1=(‘q’ 0), where g =10, 1, «
0,0, 1

> >

preserves the Jordan normal form of A. For the change of B by G, we have B; =
= (b4, baa, bys) = By . g = (byy, bay@ + bas, basB + bare + bys).
The same result is obtained in the case 2) with the group

G, = (g’ lt) , where t=(y,B, 0)".

Now we combine the both cases.
Let ¢, ¢;, be 1 or 0 with ¢} + ¢ = 1. Then (3) can be written as follows:

X, ¥, biaz + byat, €13z + cy4t

Y, 2, BZ’ Y2 — 0
z, &t, P, Y3
t’ 82t9 ﬁdw Ya

a) Let |byy| + |cas| # 0. We may suppose by, + 0, using the group G, or G,
“we may change B to b,, = b,3 = 0, adding a multiple of B to C we obtain ¢,; = 0.
ai) |caz| + |cas] # 0. For x = ¢ = 0 we obtain

0, y, byaz
Vs 2, bagy + byzz| = 0.
z, 0, b3y + baaz
This yields b;5 = by3 = b3, = 0, by, = bs;. We add a multiple of E to B and obtain
a matrix of rank 2, which is a contradiction.
aii) ¢4, = c43 = 0. For t = 0 we have
X, Y, €132
4 Vs Z, €1X + €22y + €232 | = 0.
z, 0, 31X + ¢329 + €332 |
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Using Lemma 6 we get rank C < 1, which is a contradiction. .

b) byy = cqy = 0, |byo| + |cas| *+ 0,let by, #+ 0. We may suppose by; = c45 = 0
similarly as above.

bi) Let c43 & 0. Then y =t = 0 yields by; = by3 = b33 =0, z =t = 0 yields
bs; = 0 and t = 0 now gives c,3 = 0, a contradiction.

bii) Let cs3 = 0. Then t = 0 gives (4) and rank C £ 1.

c) Let byy = byy = ¢4y =4 =0, bys + 0, c43 = 0. We get a contradiction
similarly as above.

d) by; =c4; = 0,i = 1,2,3. We add a suitable multiple of the first column to the
other columns to have zero in the last row. Then

Y = &X, B vy
(5) zZ — &Y, B2 ¥2|=0.

l &t — &z, ﬁ3s V3
If e, =1,¢e, =0, we put x = 0 and use Lemma 6 to see that the rank of B is at
most 2. If ¢, = 0, &, = 1, we put ¢t = 0. The first matrix in (5) is regular; denote it
by D. We multiply (5) by D™ ! from the left and use Lemma 6 to see that rank B < 2.
This completes the proof.

Lemma 10. If m(rn;) = 1, then any solution of (3) is either Sy or a special case
of S,.

Proof. We may suppose a; = o, = a3 = 0. As a4 * 0, we have

X, ﬁl’ Y1
Ys Bas 72| = 0.
z, B3, 73
We put ¢ = 0 and use Lemma 6.
a) ¢;; = Ad;; + pby, i,j =1,2,3. We may suppose c;; =0 by adding
—(AE + pB) to C. What remains is

x, P1, €14

Vs B2, €24 =0,

z, BB’ C3a
Ifc;s =0fori =1,2,3, we have S;. If one of c;4 is nonzero, we may change the
basis to have ¢34 + 0, ¢4 = ¢4 = 0. Then xf, — yf; = 0 and by Lemma 5 we
obtain that the solution is a special case of S,.

b) Im (B) = Im (C), dim Im (B) = 1, where B and C are restrictions of B and C

to indices 1,‘2, 3. In a suitable basis we may write

X, biat, Cy4t
Vs bast, caqt| = 0.
z, B3, 3
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Let all byy, ciq, i = 1,2 be zero. Then we have a special case of S,. So, let one of
them be nonzero. We may suppose that byy + 0, ¢4, = 0. Then ¢, =0, y; =0
and we have a special case of S;.

Lemma 11. Let m(rn3) = 2. Then any solution of (3) is either S, or one of the
exceptional solutions E,, ..., E¢ which are listed in the proof.

Proof. We have to use similar arguments as in the proof of the preceding two
lemmas. Having in mind that computations of this kind are not very interesting,
we omit the details whenever possible.

Let us suppose «; = o, = 0 and let us write B in the form

B= (K, L >’ where K, L, M, N are 2 x 2 matrices .

M, N
G___(gl: 0 >,
92, 93

where g; are 2 x 2 matrices, g, and g, regular, preserves the equation a; = o, = 0.
For the change of B by elements of G we have

The group

(6) K =9.Kg, +9:Lg,, L=79,Lgs, M= (9K + §3M) g, +
+ (32L+ ;_,,N) 9., N= gzLya + 93Ny, ,

where g; denotes the corresponding matrix of the inverse element in G.

Let us denote
P = C135 C14 _ (€115 €12
- 5 Q - .
C23, C24 Ca15 €22

I. Let L= P = 0. We may suppose that K is in the normal Jordan form, so
b,y = byybyy = by; = ¢;; = 0. Computation shows that we get a solution only
~if by, & 0. Then b,, = ¢;, = 0. For x = 0 we have

A32y + 33z + azal, C32Y + (033 - sz)z + Caqat

=0.
A42) + G437 + Agal, C42) + a3z + (Caa — C2)t

The first matrix is not zero. If the second is a multiple of the first, then rank C < 1.
So let the 3-rd row be a multiple of the fourth. Then

X, 0,  by,y, cyyx|

y, 0, 0, cuX| _
z + at, az;x, P3, C€31X )
t das Bas  Va

As a3, # 0, we may suppose by, = c3; = 0.
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~ a) Let ¢z1 # 0. Then for y = 0 we have

Az X, bsaz + b34t

=0.
Q41X + G432 + Agal, byyX + buzz + byt

If the second matrix is a multiple of the first, we have rank B < 1, so the fourth
row is a multiple of the third and we have the solution

v

(El) x, 0, a42), C11X
y, 0, 0, x _
z, X, —t, 0 =0.

t, aay, 0, ¢yt — a4zzl

b) Let ¢,; = 0. Similarly as above we obtain

(EZ) X, 0’ =), x
» 0,00 | _,
Z, X, ﬁ39 0

't asy, 0, asxps

Now we have to consider the case when not both Land P are zero. We have two
possibilities:

a) There exists a matrix P; such that P; = AL+ pP and det P, = 0.

b) There is not such a matrix P,. Then Land P are linearly dependent and we
may suppose L = 0. P must be regular.

II. Let P be regular, L = 0. For the action of G on K, P, Q we obtain K = ¢,Kg,,
0= 91(Q.‘11 + sz), P = d,Pgs.

We change K to the Jordan normal form and fix g,. As P is regular, we can change
Q to 0 by g, and choose g, to have P = E. Now (3) yields

x, 0, byzy, z

Y, 09 b22y7 t

( = by, . by, =0.
‘ z, 03, 537 V3 ’ where 12 2

t’ 0(4, 54’ ’V4

a) by, 0, by, = 0. After some computation we obtain the solution

(Es) x, 0, y, z
v, 0, 0, t -0
zZ, X, by,y — t, b3,z )
t, y,0, bs,t |

b) by, = 0 leads to no solution.
III. Let Lbe singular and different from 0. Using the group G we may change B
in such a way that b3 =1, by, = by = by3 =byy =by3 =0. For x=y=0
we obtain
Z, A33Z + A3al
t, 43z + ayqt

(€232 + ca4t)
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1) Iczsl + |c24| * 0. Let us suppose az; = 1.

®) |es2| + |era| # 0. This case yields the sohition S,.
B) cy2 = ¢4 = 0. Then by, = 0 yields S,, so by; = 0.
i) ¢4 ¥ 0. Here we obtain the following solution:

(Ea) X, X, z + byx, 0
y’ y7 bzlyy t — 0
z, 0, 0, bs,x ’
t 0’ b42.V, 0
ii) ¢;4 = 0 yiclds the solution (bs, = 0)
(ES) .xa X, b33x + asy + z, 0
V> Vs baay, (bas — bag) x + azy + z -0
z, 0, b3y, —b3,x '
t, 0, bsyy, —byyx

b3, = 0 leads to a special case of E; or to S,.
as; = 0 yields no solution at all.

2) ¢34 = ¢33 = 0, ay3 = 1. Then b,; * 0 leads to no solution, so b,y = 0. We
have

0, z — byx, C12) + Cial — €22X
az1X + aszy + asal, B3, 73 =0,
41X + A4 + Z + Agat, bayX + bazy + bast, carx + cupy + Cast

We add a multiple of the first row to the second to have b3 = 0. Using the coef-
ficients at z? and z3, we obtain y; = 0. z = b,,x yields

a3 X + azyy + asat, baix + b3yy + baat
(@ay + ba2) x + agsy + Ggat, byyX + byyy + bygt

If the second matrix is a multiple of the first, we obtain a special case of S, if the
second row is a multiple of the first, we obtain

(Es) x, 0, oy, o
y, 0, 0, 0 |=0.
z, d3, B3, O
t, oy, Oa _ﬁ3

3) ¢33 = €34 = a43 = 0. A rather long computation shows that we get no new
solutions. This completes the proof.

1IV. MAXIMAL F, MOTIONS

For each solution of (3) we now construct a maximal F, motion. Let us discuss
the individual cases separately.
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1) The regular solution R: let A, B be arbitrary. Then g(4, u, v) = AE + pd + vB
is in general a maximal 2-dimensional F, motion. Let us denote by D(4, B) the subset
of P,(C) given by the equation det g(4, p, v) = 0. Then D(4, B) is a curve of degree
four in P,(C) and g(4, p, v) is an immersion of the open set P, — D(4, B)in SL(4, C).
A similar remark applies to the other cases as well.

2) S;: the corresponding maximal F, motion is
0, 0, 0, O
0, 0, 0, 0
0, 0, 0, 0)°
Vi, Va, V3, V4

g(}" Hy V5 o005 V4) = AE + HA +

where A is arbitrary; we get a 5S-dimensional motion.

3) S,: we obtain an 8-dimensional maximal F, motion

0, 0, 0, O
0, 0, 0,0 O
H1s Moy H3s Ha|
Hs, He> H75 Mg

4) E;: let us have the 3-dimensional motion g(4, p, v, ¢) = AE + pA + vB + ¢C
for given constants a,, and cy;. Let us suppose that g is immersed in a motion g,
which has greater dimension, then g has. Let g contain an element D = pu,;4; +
+ v;B; + 0,C,, where Ay, By, C; are similarly defined by constants a},, ¢;;.Then
we must have |X, AX, BX, DXI = 0 for all X and so we may suppose y; = vy =0,
ay, = a4,. From the equation lX, AX, CX, CIX\ = 0 we obtain c¢j; = c¢y;. This
shows that g is maximal.

g(l, Hiseees u8) = AE +

5) E,, ..., Es: in these cases C is uniquely determined by A and B, so we have
a 3-dimensional maximal F, motion g = AE + puAd + vB + oC.

Theorem 2. The maximal F, motions in P,(C) are: the 2-dimensional motion R,
3-dimensional motions Eq, ..., Eg, the 5-dimensional motion S, and the 8-dimen-
sional motion S,.

~ Remark. To get a 1-dimensional F, motion we have to choose a curve on
a maximal F, motion (all parameters are functions of one variable). By this procedure
we in general obtain from an s-dimensional F, motion a D, motion, as it depends
on s arbitrary functions. If we choose all matrices to be real, we get real F, motions
in P5(R). The problem of determination of all real forms of the F, motions in
Theorem 2 remains open.
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Souhrn

KLASIFIKACE PROJEKTIVNICH PROSTOROVYCH POHYBU
S POUZE ROVINNYMI TRAJEKTORIEMI

ApOLF KARGER

V ¢lanku je vyteSen problém klasifikace viech projektivnich pohybt v komplexnim projektiv-
nim prostoru, které maji vSechny trajektorie rovinné. Je dokéazano, Ze kaZdy takovy pohyb je
podvarietou né€kterého z maximalnich projektivnich pohybu s pouze rovinnymi trajektoriemi.

Tyto maximalni pohyby jsou urfeny specialnimi rovinnymi podprostory dimensi 2, 3, 5 a 8
v prostoru GL(4, C). Jsou oznaleny jako R, Ej, ..., Eg, S{, S, a je pro né€ nalezeno explicitni
maticové vyjadreni.

Pesiome

KIIACCUPUKALS ITPOEKTUBHBIX OBVKEHUN C TOJIBKO IIOCKUMU
TPAEKTOPUAMU :

ADOLF KARGER

CraThst 3aHMMAeTCs Knaccudukanueil IBHXEHMH B KOMIUIEKCHOM NPOEKTHBHOM NPOCTPAHCIBE,
¥ KOTOPBIX TOJIBKO IUIOCKHE TPAKETOPHH. B CTaThe MOKA3aHO, YTO KaXJ0€ TAKOe [BHXKEHHE €CTh
NOAMHOrooGpasue OJHOrO U3 MaKCHMAaJIbHBIX OBHXKEHHM C MUIOCKAMH TPAEKTOPHSMH. OTH MaKCH-
MaJbHble OBHXEHUS 06o3HaueHs! R, Ey, ..., Eg, S}, S,, UMeroT pasMepHOCTH 2, 3, 5, 8 u nalineH
MX MaTPUYHBIE TIPEICTABIICHHUS.

Author’s address: RNDr. Adolf Karger, CSc., katedia matematické analyzy MFF UK,
Sokolovské 83, 186 00 Praha 8.
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