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NUMERICAL TREATMENT OF 3-DIMENSIONAL
POTENTIAL PROBLEM

VLADIMIR DRAPALIK, VLADIMIR JANOVSKY

(Received March 13, 1986)

Summary. Assuming an incident wave to be a field source, we calculate the field potential
in a neighborhood of an inhomogeneous body. This problem which has been formulated in R3
can be reduced to a bounded domain. Namely, a boundary condition for the potential is formulat-
ed on a sphere. Then the potential satisfies a well posed boundary value problem in a ball contain-
ing the body.

A numerical approximation is suggested and its convergence is analysed.
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1. INTRODUCTION

The present paper is an extension of [1] to the 3-dimensional case. Let f = f(x)
be the density of an electric charge in R>. Let w = w(x) be the potential of the relevant
electric field in vacuum. Suppose that an inhomogeneous body € is placed in the
field. If u = u(x) is the potential of the resulting field on R3 (due to scattering, u + w)
then our aim is to find # on Q.

We say that u is a smooth solution if # = u(x) is continuous in R?, lim u(x) = 0,
and I¥]= o0

0 du(x)
1.1 Au = — —(a;;(x) —=) = f(x
(L1 i,jZ=1 6x,~< ) 6x_,-) /&)
in R? in the sense of distributions. We assume
(i) ai;€ Ly(R?), a;5(x) = §,; outside 2, where @ is a bounded domain in R3;
(ii) there exists a positive constant ¢ such that

3 3 .
Uzlaijfifj =c) & foreach EeR® g onQ:
»J= i=1 ’
(ii) feLz(R®), supp f is compact in R3, @ A supp f < 0.
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The function w (the so called incident wave) is assumed to be continuous in R?,
such that lim w(x) = 0 and

1%| =0

(1.2) —Aw=f in R

in the sense of distributions.
We note that both u and w are harmonic in a neighborhood of . Due to the
assumptions

lim u(x) = lim w(x) = 0,

|x]- |x] -0
they behave asymptotically as follows:
u(x) = o(|x|™1),  w(x) =0(|x|]7"),
grad u = 0(|x|72), grad w = 0(|x|~2)
as |x| » oo.

Using some standard arguments of potential theory, we can prove

Theorem 1.1. Let the boundary 0Q of Q be sufficiently smooth. If u is a smooth
solution of (1.1) then

19 300 3 055 () * gyt <0 =

for each x € 0Q with the following notation:

(a) u = w(y) is the outward normal vector at y € 0Q with respect to the comple-
ment Q° of Q in R3;

(b) 0/ou(y) is the derivative at y € 0Q along the direction p(y) with respect
to Q°, i.e.

a ef 3 . 6
¥ ; wi(y) lim 2% (2) ;

ou(y) =t = 0x;

(c) 0/ov(y) is the derivative at y € dQ along the co-normal v(y) with respect
to Q, i.e.

def 3
25 a0, 0) (i) lim 2(2).
v(y) 15=1 = 0x;

Proof. We omit the proof which would follow almost word-by-word the proof
of Theorem 2.1 in [1]. We note only that the fundamental solution —1/(2r) log ||
of the Laplace operator in R? should be replaced by 1/(4x|x|) which is the fundamental
solution of the same operator in R3. Moreover, the asymptotic behavior of u and w
is different in R* (see above).
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2. BOUNDARY CONDITION ON A SPHERE

We assume Q to be a ball {x e R*:|x| < R} with radius R. Let us rewrite (1.3)
making use of the spherical coordinates (r,a,9): x; = rsinacos9
= rsinasin 9, x3 = rcosa.

If x € 0Q, y € 0Q, x # y then, if (R, ¢, 9) and (R, «’, §') are the spherical coordina-
tes of x and y, respectively, we have

x2=

1 4 A (o, 950, ),
Ix = ¥l
o 1 =zE.%”(a,9;<x',9’)
ou(y)|x —y] R
where
1
2.1) Ao, 0, 9) = 1 — sinasin o’ cos (§ — 9) — cos a cos a’)"1/2 .
(2.1) o ( ) 4TCR\/2( 1n o SIn ( ) — cos & cos a)

Substituting into (1.3), we obtain the boundary conditions in the form

-

% MP2n
(2:2) %u(R, a, 9) + gj J. u(R, o', 9) A (a, 9; o', ") sin o’ dor’ 49’ +
0J0

N RZ J-uJ-Zn du
oJo 0v(y)

In order to simplify notation, we define an operator K,

H(a, 350/, ) sin o’ do’ 49’ = w(R, @, 9) .

y=(R,a’,8")

def
(23) Ko =(Kv)(x,9) = [§ (3" A (e, 8; o, 8) v(e', ) R% sin o do’ Y’ ,
which acts on sufficiently smooth functions on Q.

Thus, the traces u and du/dv of a smooth solution u should satisfy

(2.4) v Lk ko on o0,
2 2R ov

In the next step, we find the spectrum of K. To this end we make an observation:
If v is a harmonic function on Q then the classical Green’s formula yields

o9 = 5o [ 1200 Ty = o) o)

at each x e 0Q. The vector s = (y/R, y,/R, y3/R)T is the outward normal vector

at y € 0Q with respect to Q. In terms of the operator K, the above identity can be
written as follows:

(2.5) 0=2Kk% 4 Ly = 2k (% + L o) on 0.
s R s 2R
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It is well known that there exist homogeneous polynomials in R® which are harmo-
nic. In spherical coordinates they equal " Y,(«, 3), where n is an integer and Y, is
a spherical function of degree n. Setting v = " Y,(«, 9), we observe that

o _ v _ gt Y (0, 9) == on 4Q.

0s oOr R
Thus, substituting into (2.5), » = (2n + 1)/R Kv on 8Q. Since K acts on the trace
of v, we conclude that

on 09.

(2.6) Y, = 2"; Lky,

We recall the definition and basic properties of spherical functions: If n = 0 is
an integer then

L
2"n! dt"

P,(1) [( - 1y]

is the Legendre polynomial of the n-th degree. For each integer k, 0 < k < n, we
define the conjugate Legendre functions
d* P,(f)
PW(1) = (1 — 22—,
() = (1 - ey &0
The space of spherical functions Y, = Y,(«, 9) of degree n is spanned by the basis

{Y®r_ _,, where

Y{?(e, 8) = P,(cos a),

Y®(a, 9) = PP(cosa)sinkd, k=1,...,n,

Y®(x, 9) = P{®(cosa)cos k9, k= —1,...,—n.

The above basis is orthogonal in L,(0Q). The functions Y can be normalized in
L,(092). Namely, setting

No - (2R (n A [NV g,
" \en 41 (n = |K|) "

for k = —n,...,n, where ¢, = 2, ¢, = 1 for k # 0, we obtain the relevant ortho-
normal basis {N{}_ _, of spherical functions ¥,. Taking into account (2.6), we can
write

(2.7) KN® = —B———Nf,"’ on 0Q

SR |

for integers n = 0,1,... and k = —n, ..., n.
The spherical functions are eigenfunctions of the Laplace-Beltrami operator
Aon’
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def 2
pr™ L L2 ((ng?\ L2
sin 9 09 09 sin? § 02

for each sufficiently smooth Y defined on Q. Namely

(2.8) — ApgN® = LN® on 00
for integers n = 0,1, ... and k = —n, ..., n, where
(2.9) Ay =n(n +1).

The set {{N®};__,} =2, is known to be an orthonormal basis of L,(9Q).

Let H'(3Q), r real, be the usual Sobolev space with the norm |+ |, so. Identifying
L,(0Q) with its dual, let <, +) be pairing of H"(0Q) and H™"(6Q). The norm ||, ¢
can be defined equivalently by means of the Fourier series with respect to the eigen-
functions of the Laplace-Beltrami operator (see [ 2], Remark 7.5). In fact, if v € H"(9Q2)
then

(2.10) lolo0 = (Z(l + A > (o, N2

k=-n

We proceed with an extension of the operator K onto H'(0Q) by means of the
spectral representation of K, see (2.7): If v e H"(0Q) then
def R

2.11 Kv = v, N> N®
( ) nzo 2n + 1 k_z—n < ’

and, similarly,

def

(2.12) Kip=y 2t 1
n=0

Y <o, NOYNP.

K=Zn
Definition (2.11) is a natural generalization of the original formula (2.3).
Lemma 2.1. The operators
K:  H'(0Q) > H*(00),
K~': H(6Q) -» H"(3Q)
are bounded for each real r. Moreover, KK™' = K™K = identity (in H'(02)).
Proof. Let v € H'(0Q). Then, by virtue of (2.11) and (2.4),

n 2
"K0”r+1 o0 = Zo(l + Aty ( ) Co, N2

k=-n

2n + 1
With help of (2.9), the right hand side can be simply estimated as follows

+n+1
||Kv"r+1 00 = "””r arz S“P R? B—n'—‘ 2””“.- 0 ¢

e (2n+ 1
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Similarly, HK v”,_1 a0 S 4R™ 2"””, a0 The last statement immediately follows from
the definition of K and K™! Q.E.D.

By virtue of Lemma 2.1, the boundary condition (2.4) is meaningful in the cases
when w e H'(0Q), u € H'(0Q), du/dv € H"~1(9Q) for each real r. In the next step we
formulate problem (1.1), (2.4) variationally on Q.

We define the bilinear form

def 3
a(w,0) = Y aij-a—w a—vdx
iji=1)gq = 0x;0x;
for each w and v from H*(Q). If u € H'(Q) then the condition (1.1) on Q is equivalent
to

(2.13) a(u,v) = 0 foreach ve Hy(Q).

The conormal derivative 0Ju/dv can be defined variationally as follows:
oulov e H™*(0Q),
(2.14) <Z—u,v> = a(u,v) foreach ve H'(Q).
v
Due to (2.4)
ou 1

——=—u+3+K'u—-K'w in H Y*0Q).
dv 2R

Substituting into (2.14), we obtain a variational condition on u € H(Q):
(2.15) a(u, v) + KK 'u, vy + ;E {u, vy = (K™'w,v)> foreach ve H(Q).

It motivates the following definition: We call u € H'(Q) a weak solution to (1.1)
in Q if the variational condition (2.15) holds. Clearly, each smooth solution being
restricted to Q is a weak solution. The trace w e H'/2(9Q) of the incident wave is the
only data of the problem (2.15).

Theorem 2.1. For each w € H'/*(0Q) there exists a unique weak solution u € H'(Q).

Proof. We verify the assumption of the Lax-Milgram theorem:

The bilinear form a(+,+) + $(K™' +, +> + 1/2R(-, *) is continuous in H'(Q) x
x H'(Q). We should note perhaps that the continuity of the term <K™* -, - follows
from Lemma 2.1 and from the well known continuous embedding H'(Q2) = H'/*(0Q).

Moreover, the bilinear form is H 1(Q)-elliptic. Indeed, we estimate

L AN 1
(2.16) a(v,v) + 3K v, 0> + — (v ) = Z — dx + 2 (v, v)
o \0X;

for each v e H'(Q), where we have used the ellipticity assumption (ii) in order to
estimate a(v, v) and employed the definition formula (2.12) in order to estimate
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{K~'v, ) 2 1/R{v, v}). The right hand side of (2.16) is the square of an equivalent
norm in H(Q).

As we have shown above, <K' -, +> is a continuous bilinear form on H'(Q).
Thus the right hand side of (2.15) is a bounded linear functional (of v) in H'(Q)
for each fixed w e H'/*(0Q).

This completes the verification of the assumptions, which means that the Lax-
Milgram theorem implies the assertion of Theorem 2.1. Q.E.D.

3. APPROXIMATION

The variational definition (2.14) of the weak solution u suggests the Ritz-Galerkin
approximation of u. Let S* be a finite dimensional subspace of H*(Q); let S* be
spanned by a basis {@y, ..., ¢y}. Then we define u" e S" to be the Ritz-Galerkin
approximation of u in S" if

(3.1) a(u", v) + KK~ v) + 21_R i, v) = (K 1w, )

N

for each ve S". Naturally, u* solves (3.1) if and only if u* =) a,p;, where o =
=1

= (ay, ..., ay)T € RY satisfies a set of linear algebraic equations

(3.2) Bx + Mo = f,
def
B ={b;}ij-1,.n> by = a(o;, ¢;) + <‘PJ’ DE
def
f =( la'--ny)T9 fj
def
= {m,”,J 1,..,N> M= 12'<K_1(Pj’ o -

<K—lwa <0]> >

The operator K™! is defined via (2.11) which means that the evaluation of f; and

m;; requires the Fourier expansions of w and each ¢; into spherical functions
{{N®Y_ )20 on L,(0Q). In the actual implementation, we are able to evaluate
a few first terms of these expansions only. In fact, we replace the operator K™!
by an operator K, ! which is defined as follows: p is a positive integer,

"“" 2n+1

(33) -3

Z (v, N® N
k=-n
for each v € H'(0Q); r is arbitrary.

Our aim is to estimate the error in calculation of u" when replacing K~* by K;*
in the formulas for f and B in (3.2). The impact of other factors (numerical integra-
tion, approximation of the domain @ by isoparametric elements, etc.) on the
total error can be studied by standard techniques and thus it is ommited here.
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Notation (convergence norms). If u € H'(Q) then

def 3 au 2 1/2
|u]1,0 = (Z J ("—) dx)
i=1 ) o \0x;

(i-e., ||3 q is the Dirichlet integral) and

lul = (uf + L] o)

We start with two simple embedding statements:

Lemma 3.1. There exists a linear mapping #: H'/2(0Q) —» H'(Q) such that

a) if ve H'*(0Q) then fv = v a.e. on 0Q,

b) If”ll,:z = ”Uullz,aﬂ'

Proof. For a given v e H'/?(0Q) let z € H'(Q) be the solution of the problem
Az=0 in Q, z=v on 9Q.

def
Weset fv=1z.

Since —fo Az zdx = |z|} o — 40 (02/0v) zdo, v being the outward normal,
we have

A harmonic function z can be expanded by making use of the harmonic polynomials.
Namely,

z=3 (1> 3 (0, NPYN®.
n=0 \R/ k=—n

Then we calculate

J‘ Z—Zvda—z Z (v, N2
)

o OV =0 k=-n
and estimate

I 92 4o < X (1 + D)2 5 <0, NP = [olf2.00-
a n=0 =-—n

a OV
Thus, |z} o < |v]|3/2,00, Which implies the last statement of the lemma. Q.E.D.
Lemma 3.2. Each v e H'(Q) satisfies
(3.4) lo 112,00 = (oli 0 + [0]53,00)"* = lo]e

Proof. Since #v is harmonic, it minimizes the Dmchlet integral over the set
of H'(Q) — functions having the same trace, i.e.

lfvh,n = |5l1,n
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for each # € H'(Q), # = v on 9Q. In particular,

(3:5) |#0]1.0 < V)10
In the same way as in the previous lemma, we find
|#0]f 0 = f AL),, 45 = Z z (v, NP2
o0 n=0 k=-n

by wusing the expansion of _#v into harmonic polynomials. Clearly,
(1 + n(n + 1))"> < n + 1 for each integer n = 0, i.e.

"”"1/2 o = ; =Z_ (v, N9Y? + ”””g,an = ]/vlf,n + “””(zy,an-

Taking into account (3.5), we immediately obtain the estimate (3.4). Q.E.D.

Notation. We introduce variants of problems (2.15) and (3.1) where the operators
K~* are replaced by the “truncated” versions K, see (3.3).
Let u, € H'(Q) satisfy

(3.6) a(u,,v) + <K 'u,, vy + % {up, vy = (K;'w,v) foreach ve H'Y(Q).
Let ul, € S" solve

(3.7) a(ub, v) + KK 'ub, vy + EIE Cub,v) = <K;'w,v) foreach veS".
Letu) , € S"*solve

(3.8) a(ul . v) + KK, ub 0> + 5113 Cutly 0y = (K 'w,v) foreach veS".

We note that the above problems (3.6)—(3.8) are uniquely solvable for each
choice of we H'/*(0Q); the proof of this statement would follow the argument
of the proof of Theorem 2.1.

Subtracting (3.8) and (3.7) yields

a(ub ,, — ul,v) + KK (uh, — ub), 0> + (Kt — K™Y ul, o) +

+§<upm u;av>:0;

— ot
weset v = u, ,

clupm — upli,0

The second term is nonnegative since K ! 1s clearly positive definite, i.e.
(K71, 0> = 0.

Thus, we easily deduce the estimate

Cillupm — upla < (Ko = K™ up| - 172,00 [#hm — 3] 1/2.00 5

— uh. Due to the assumption (ii), the first term can be estimated by
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def
where C; = 2 min (c, 1/(2R)). By virtue of (3.4) we find
(3.9) Cillupm — w50 = |(Ka' = K™D up]-1/2.00 -

We note that
(K=K, o = i 2+ 1 i (v, Ny N®

n=m+1 R k=-—n

for each ve H'/*(9Q). One can simply derive an estimate

— _ 4 had n
(et = K020 = o5 X (L nln+ D)2 3 (o, N

2
==n
In order to interpret its right hand side, we introduce

Notation. If v e H'(0Q), r arbitrary, let v = ). Y (v, N> N be the relevant

n=0k=-n
Fourier expansion. For each positive integer m we define the projection IT,,:
H"(0Q) » H"(0Q) as follows:

def m n
(3.10) Oo=Y Y <o,NOYN®,

n=0k=-n

i.e., IT, truncates the Fourier expansion of v.
Making use of the projection IT,,, we can estimate

_ _ 2
(3.11) [(Ka* = K™) 0]~ 1/2.00 < R lo — )12 00

for each v e H'/*(0Q).
Applying (3.11) to (3.9) for v = u,, we conclude

I(Knt — K™ up] - 1/2.00 <

Jup = Moty 12,00 + [(Kn' = K™*) (u, — U - 1/2,00 <

x|

4
= ”u,, - Hm"p”l/z,asz + R ”up - “'}”1/2,39;

RN

the last inequality follows from the fact that

_ _ 2
1Kz 0] - 12,00 < [K™ 0]~ 1/2,00 < R lol 12,00

for each v € H'/?(9Q), see the proof of Lemma 2.1. Thus, using (3.9) and the embed-
ding (3.4), we obtain

2 4
(3.12) ”“;';m - ”’;”rz = a’l‘{‘ IJu,, - Hm”p”l/z.m + El—R ””p - “2”9
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The complete error u — uj , is then estimated by means of the triangle inequality:

G13)  Ju—upule = v = wle + [u, — wpllo + [upm — wplla <
< Ju = wyle + Collu, — Moy 12,00 + Cslu, — t3]q,

where C, = 2(C;R)™*, C; = 1 + 2C,. The contribution |Ju — u,||, is investigated
in

Lemma 3.3. The following inequalities hold:
_ - 2C
(3.14) ”“ - upl_l!? = C4H(K T K, 1) W”~1,2,ao = —1_1i ”W - prnuz,ao,

where C4 = (min (c, 1/(2R)))~".

Proof. We set v =u — u, Subtracting (2.15) and (3.6) yields a(v,v) +
+ 1/2R<v,v) + KK 'v,0) = ((K™* — K;')w,0). We note that a(v,0) =
2 clv|} o, <K~ "0, vy = 0 and due to (3.4), [K(K™* — K; ) w,0)| < |(K™* — K, ).
W[ = 1/2,00 [[?] o- The estimate (3.14) immediately follows. Q.E.D.

Remark. It can be shown that
(3.15) (K 1p,0) = 71{- [v]|}/2,00 foreach veH'?(0Q).

Using this inequality in the above proof, we can obtain (3.14) with a slightly different
constant C, = (2/R min (¢, 1/(2R)))""/?> which is better then the former one if
R is small.

We can conclude the question of convergence. According to (3.14), we can make
the error |u — u,|, arbitratrily small by taking p large enough. The error
lu, — IT,u,] /2,50 can be controlled by the choice of m. The contribution [Ju, — up|o
can be estimated by making suitable assumptions on the family of spaces S". In
standard situations, [u, — ub]o— 0 as h — 0. Thus we resume that the error
|4 — ul o can be made arbitrarily small by taking p — 00, m — oo and h — 0.

In the end we would like to make some remarks on the estimate of ||u - up"Q.
The bound which Lemma 3.3 offers might be misleading in the case when |w[|;/2,00
itself is small. In other words, the only reasonable quantity to be estimated is the
ratio

lu = ]
lull

Lemma 3.4. There exists a constant C such that

(3.16) [K= W]~ 1/2,00 < Cslulq
for each w e H*(0Q); u is the relevant weak solution. Let C be a constant satisfying
3 3 3
(iv) Y aitmy| = C(X &) (X ni)'?
i,j=1 i=1 i=1
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for each &, e R® a.e. on Q (see the assumption (i)). Then the constant Cs can be
taken as

1\ 1
C;=(C*+—) +—.
4R? R

Proof. For a given z € H'/*(0Q) we substitute v = #z into (2.15). Then

[K™'W|-1/200 = sup <K 'w,z) <
llzll1/2,02=1

< sup  a(u, £z) + 1(2R) u] - 172,00 + 3 [ K™ U= 1/2,00-

lizll1/2,02=1

By making use of (iv) we estimate |a(u, £z)| £ Clu, o |#2|1 0. According to
Lemma 3.1, | #z|, o £ |z] 12,00 = 1. Thus, |a(u, £z)| £ Clu]; 0.
We have shown (in the proof of Lemma 2.1) that

K] 1/2,00 < 2R |ul]1)2,00 -

By virtue of the embedding (3.4),

_ 1
1K™ ]| - 12,00 < R Julle-

N | =

Finally, we note that |[u]|_;,, 0 < |u]lo,s0. Combining the above inequalities, we
easily derive (3.16). Q.E.D.

Lemmas 3.3 and 3.4 yield the estimate

lu — u,|e 1 (KT = Ky ) w]-1/2,00
3.17 I = 4lle < ¢, c: .
17 1K= W] - 12,00

As an illustration, we estimate the above error in the important case of a point
charge, i.e., we assume

w(x):l Q [ for each xeR?,
x—y

where Q is a constant and y e R® — @ is fixed. Without loss of generality, let y =
= (0,0, 0). Then 1/|x — y| = (¢® + r* — 2rg cos &)~ '/? in the spherical coordinates,

x = (r, o, ). Expanding (1 + &* — 2¢cosa)™'/? = iPn(cos o) &" we find
© n=0

w(x) = Qe Y. P,(cos ) (re)".
n=0

It is easy to project w to N®:
(w,N®Y =0 for k+0,

4n )1/2 R"

n=20,1,...

w, N> = R e
< >=¢ (2n+1 ot
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Then a simple manipulation yieds the estimate
(3.18) (LS, 0 L SV (5)"“ .
K= 'W] - 1/2,00 e

Let w, be the Taylor expansion of w of the first order at the origin, i.e.

3
Wl(x) = % + % A;xiyi >

the function w, is called a plane wave approximation of w in a neighborhood of the
origin.
One can check that in fact
1 n
wy =y Y {w,NP»NE.

n=0k=-n
Then (3.17) and (3.18) yield the estimate
-l < oy eucs ()
e 0

which gives a qualitatively meaning to the intuitive claim that a plane wave is a good
approximation of w if the source is “far enough”, i.e. if |y| = ¢ is large.
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Souhrn
NUMERICKE RESENI TRIDIMENZIONALN{ POTENCIALN{ ULOHY
VLADIMIR DRAPALIK, VLADIMIR JANOVSKY
Resi se tiirozmérny model difrakce elektrostatického pole na omezeném nehomogennim

télese. Pomoci vhodné nelokélni okrajové podminky lze ulohu formulovat na kouli, obsahujici
zadanou nehomogenitu.

Je ukazana existence a jednoznaénost feSeni redukované ulohy. Tato uloha je potom aproxi-
movana metodou koneénych prvkil s tim, Ze nelokdlni hrani¢ni podminka je nahrazena C4steg-
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nym Fourierovym rozvojem do vlastnich funkci hraniéniho integralniho operdtoru. Je analyzova-
na konvergence metody.

Pesiome
YMCJIEHHOE PEINEHUE TPEXMEPHOM 3AJIAYM TEOPUU ITOTEHLIVIAJIA
VLADIMIR DRAPALIK, VLADIMIR JANOVSKY

PaccmatpuBaeTcs Oubpakumsa 3JEKTPOCTATHYECKOTO IIONISL B 3aJaHHOM OTrpaHMYEHHON Cpene.
IIpy HOMONIM HHTErPALHOTO IPAHMYHOTO YCIIOBYs 3afava GOopMy MpyeTcs Ha mape, OKpYyKaro-
IMeM 3aJaHHOE TEIO.

IIpeqiaraeTcs 4YHCICHHOE PEIICHHE PeAYLMPOBAHHOM 3a/a4M METOLOM KOHEYHBIX 3JIEMEHTOB.
TI'panmyHOE YCIOBHE AINPOKCAMHPYETCs YaCTHYHON CyMMOM pasnoxenus Gpypbe IO COGCTBEHHBIM
dysxuMstM mHTErpaNBEEOrO omepartopa. ITOKa3eIBAETCS CXOAMMOCTH METOJA.
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