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ON A POTENTIAL PROBLEM WITH INCIDENT WAVE
AS A FIELD SOURCE

VLADIMIR DRAPALIK, VLADIMIR JANOVSKY
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Summary. A field source which is given by an incident wave in a neighborhood of an inhomo-
geneous body (in R?) yields an integral equation on the boundary of Q. This integral equation
may serve as a boundary condition for the field equation on Q. If € is a circle then the existence
and uniqueness of the new boundary value problem is proved and an algorithm for the approxi-
mate solution is proposed.
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1. INTRODUCTION

We investigate a classical problem of the wave scattering: Let f = f(x) be the
density of an electric charge in R? (the support of f, supp f, is assumed to be compact
in R?). Let w = w(x) on R? be the potential of the electric field in vacuum. Provided
an inhomogeneous body Q (Q is a bounded domain in R?, @ N supp f = 0) is present,
the field is changed. If u = u(x) is the potential of the resulting field in R?, find u
on Q.

The classical mathematical formulation reads as follows: We say that u is a smooth
solution if u = u(x) is continuous and bounded in R2, all the first derivatives of u
are piecewise continuous in R2, and

(L.1) Au= — % <aij(x) "’g_f:)> — (%)

on R? in the sense of distributions. Here and in the sequel, the summation convention
of repeated indices i and j is used.
We assume

(i) strongellipticity of A, i.e. a;; € L(R?), there exists a positive constant ¢ such that

a8y =z &, foreach &= (¢, ¢&)eR?;
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(i) a;/(x) = §;; outside Q, where Q is a bouded domain in R? 9Q is “smooth
enough”;

(iii) f e L,(R?), supp f is compact in R?, supp f 0 Q = 0.

The function w = w(x) is called the incident wave. We assume w to be continuous
and bounded in R2, and to satisfy

(1.2) —Aw=f

in R? (in the sense of distributions).

Thus, in order to find u on €, one has to solve (1.1) in R?. Traditional numerical
procedures were based on an approximate reduction of R* to a “sufficiently large”
bounded domain containing  (of course, the larger domain, the better).

The aim of this paper is to formulate a properly posed boundary value problem
for u on Q. It means that u should satisfy Au = 0 on Q with a boundary condition
on 0Q. Moreover, the trace of w on 0Q are the only data of the new boundary value
problem.

If Q is a circle then the boundary condition on dQ is considerably simplified.
We give some proposals concerning numerical solution of the relevant boundary
value problem.

We suggest a practical strategy in the case of a “general” Q: Replace the given Q
by any circle Q' which a) contains Q and b) does not intersect supp f; define a; ;= 0i;
on Q' — Q, of course. Then Au = 0 on Q' with a comparatively simple boundary
condition on dQ’. Naturally, the trace of w on Q' is equal to the data.

2. BOUNDARY CONDITION ON 02
According to our assumptions, the functions u and w are harmonic and bounded

in a neighborhood of co. It is well known that both u and w are continuous at oo,
i.e.

(2.1) lim u(x) = u, ,
|x| =+ o0

(2.2) lim w(x) = w,, .
||+

Moreover, the first derivatives vanish at co, namely

(2.3) aal(x) = 0(|]x|7?) as |x| > +o0,
Xi

(2.4) jl(x) — 0(x|"?) as |x|- +oo
X

fori=1,2.
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Lemma 2.1. The equality
1
(2.5) ——J f(y)log|x — y|dy = w,, — w(x)
2 R2

holds for each x € R.

Proof. The above formula is one of the classical Green’s formulae. Thus, the
proof is omitted.

Notation. Let Q° be the complement of @ in R We denote by u = u(y) the
outward normal vector at y € 0Q° with respect to Q°. If y € 6Q° then the symbol
0u[ou(y) means the derivative of u at the point y along the direction p(y) “with
respect to Q°”, i.e.

ou 9f .0
—— = p(y) lim el (2)
aﬂ()’) = 0x;
where p = (11, ).
Lemma 2.2. The equality
1 1
(2.6) —J.ﬂﬁbﬂx—ywy=uw——ﬂﬂ—
21 J ge 2
1 ou dlog|x — y|
- - log |x — y| — u(y) —=—= da(y)
2n anc{aﬂ(Y) | ou(y)

holds for each x € 0Q°.

Proof. Let x € 0Q° be given. We define the following sets depending on positive
parameters R and 4, R > §:

Brs={yeR%:6<|x —y| <R}, Ug;=BgsnQ°,
Sk ={yeR%*|x —y| =R}, Ss {yeR*|x — y| = 8},
K‘; = S‘,f\aUR,a, DJ = anmaUR’a.

Il

We assume R’s large and §’s small enough so that supp f < Ug s Clearly, Uy 5 =
= Sz UK, U D,

Let us extend the definition of u(y) to Sk and K,: If y € Sg U K, then p = pu(y)
is the outward normal vector at y with respect to Uy s, see Fig. 1. Moreover, we set

6 def . a
2= ) lim (%), o= (e m)-
op(u) Xy Ox;

We define
1
(2.7) h¢=~f f(y)log|x — y|dy.
2n Ur,s
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Fig. 1.

Since f = Au = —Au on Uy ;, the classical Green’s formula yields I 5 = y; + 72,
where
1 ou
71 = log |x — y|da(y),
211: OUR, 56 ( )
1 , 0log|x —
Y2 = —j u(y) J_J do(y) .
2n OUR,s a“(y)
Clearly, y; = 91,1 + 71,2 + 71,3 Where 7, ; and y; , and y, 3 are equal to
1 Ou_

———log |x — y| da(y)
Con rou(y)
where I is to be replaced by K; and D; and Sg, respectively. Similarly, y, = y2,; +
+ 5. + 72,3 Where y, ; and 7, , and 7, 3 are equal to

dlog|x — y
uy) LB =2 4y
on r ou(y)
where I' := K; and D; and Sg, respectively. All y’s are functions of R and 4.

Passing R — +oo and § —» 0,. we obtain 7, ; = 0, 75,1 = —3 u(x) (using the
smoothness of 09),

1 ou
V1,2 = log|x — y|d a(y),
2 a0 O1(y)
1 a1 -
’))2,2 - — u(y)__o_g_/!V—X_ldg(y)
21 ) aqe ouy)

446



Moreover, by virtue of (2.3) and (2.1) we can prove y, , — 0 and y, 3 — u,,. Finally,
(2.7) implies that

1
Igs— —j f(y)log|x — y|dy.
21 J ge

The formula (2.6) immediately follows from the above facts. Q.E.D.
Corollary. We have

Ly L . dlog|x —y|  ou o I — o) =
o) Jut) 5| fun T~ T og e~ ol ao()

= w(x) + U, — We

for each x € 0Q°.

Proof. Since supﬁfm Q = 0, we have
Jae f(¥) log |x — y|dy = [ga f(¥)log|x — y|dy.
Then (2.8) follows directly from (2.5) and (2.6). Q.E.D,

Notation. Let y € 0Q. We denote by du/dv(y) the derivarive of u along the co-
normal at y with respect to Q, i.e.

00) - () - tim 2.
a ( ) ze!) xj
Due to (1.1) and the Gauss theorem,
(2.9) ou _ v

o) ouly)
at any y € 0Q. The equation (2.9) expresses the continuity of “fluxes” through 0Q.

Theorem 2.1. If u is a smooth solution then

dlog |x —
(2.10) 309 = 52| fun ZeER A
u(y)
Ou log |x — y|} do(y) = w(x) + ¢
T »)
for each x € 0Q, where ¢ = u,, — w,,.
Proof. The assertion follows from (2.8) and (2.9). Q.E.D.

3. BOUNDARY CONDITION ON A CIRCLE

Let us assume © to be a circle; without loss of generality, @ = {x e R?: x| < R}.
One easily calculates that
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F 1
3.1 ——logix —y|=—75

foreach x € 0Q, y € 0Q, x + y.
Introducing polar coordinates (r, a): x; = rcos®% X, = rsina, we can write
(2.10) as

1 1 (2= 2% ?E(R
(32) 5u(R,oc)+4—ﬂL u(R,B)dﬁ+L H(x— )5 (R P df = w(R,2) + c,

where ¢ = u,, — w,, and

def

(3.3) H(w) = — —%[log R(2) + %log (1 = cos oc)] ;

the symbol (0u/dv) (R, B) means the value of 6u/8V(y) at the point y with polar
coordinates (R, B).

Lemma 3.1. We have

(3.4) Izn%(a — B)cos kB dp = %COS ko,

(3.5) ryw—mmww=5mm
. 2%k

for k=1,2,... and any 0 £ o < 2n. Moreover,
(3.6) A (e — B)dp = —R1logR
forany 0 < o < 2m.

Proof. It can be done by a straightforward verification.

The above lemma describes the spectrum of an operator K which is (formally)
defined as follows:

(Ko) (3) = J :"%(oc _ ) o(B) dp.

Later, we will make clear on which spaces K acts.

Notation. Weintroduce
s = s(@) = sinka, ¢, = ¢,(e) = cos ka

(functions of &) and parameters

=R for k=1,2,..
2%
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Let H'(0Q), r real, be the usual Sobolev space with the norm [-|, 0. The 1-D
manifold dQ is isomorphic to the interval [0, 2r), and it is well known that the norm
” . ",,m can be equivalently defined by means of the Fourier series:

Identifying L,(0Q) with its dual, let -, *) be the pairing of H"(3Q) and H "(0Q).
If v € H"(0Q) then

ki v, 1
v =10+ Y (0 + v_4c), where v, = <—’—Z,
k=1 2nR
Lo, s Lo,
Gy =", Vp=—"""".
nR nR

We set
2 def 2 d 2 2
[v]|2 20 = nR[v3 +k21(1 + k) (v + v2)]-
We want the operator K to positive. Thus according to (3.6) the operator K should
act on functions satisfying the condition (3" v(xt) do = 0. This motivates the following

Remark 3.1. Any solution u to (1.1) is determined up to a constant shift. Thus,
we may assume the smooth solution u to satisfy

(3.7) fo*u(R,B)dB = 0.
The same can be assumed about the incident wave w, i.e.
(3.8) *w(R,B)dp =0.

We define A"(0Q) = {ve H(0Q): (v, 1> = 0} for each real r, with the natural
norm |+|,. If ve A"(0Q) and v = Y (s, + v_,c,) is the relevant Fourier series then
k=1
def ©
o Z 7R S K02 + 02
k=1
By virtue of Lemma 3.1, we can specify our definition of the operator K on A"(0Q):

0
Let ve A" and let v = Y (v,s, + v_¢,) be its Fourier series. Then
k=1

def ©
(3.9) Ko =Y 4(vsi + v_ci)
k=1
and
def oo
(3.10) K-1p =’;12k_1(v,‘sk + V10 -

Lemma 3.2. The operators
K. [(00) - Br+(00),
K-1: {7(60) » 7~ '(09)
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are bounded for each real r. Moreover, KK™' = K™ 'K = identity (on H'(0Q)).

Proof. The proof follows easily from the asymptotic properties of the eigenvalues
A

Suppose u is a smooth solution. We easily observe that Au = 0 on Q. Thus,
integrating by parts (Green’s theorem),

2n au
0=| Audx = —R —(R,B)dB.
Q o Ov
The same is true in the weak sense, see Lemma 3.3.

def
Notation. a(w,v) = | a; ow v dx
o  O0x;0x;

for each w and v from H*(Q).

Remark 3.2. If u € H'(Q) then the assumption Au = 0 on Q in the sense of
distributions is equivalent to the condition

(3.11) a(u,v) = 0 foreach ve Hy(Q).

It is well known (see e.g. [5]) that the operator /dv maps H'(Q) onto F~/%(3Q)
continuously. Assuming u € H(Q) and (3.11), we can equivalently define du/dv
as follows:

(3.12) <g_u , v> = a(u,v) foreach veHY(Q).
v

Lemma 3.3. Let ue H'(Q) satisfy Au =0 on Q in the sense of distributions.
Then dufove H™?(0Q).

Proof. It suffices to take v = 1in (3.12). Q.E.D.
We shall proceed with the formulation of a weak solution to the problem (1.1).
Notation. # = {u e H'(Q): the trace of u on dQ belongs to A'/%(3Q)}.
Problem. Let w € H'/*(0Q) be given. Find u € # such that

(3.13) Au=0 on Q in the sense of distribution ,
and
(3.14) %u+Ka—lf=w on 0Q.

v

Theorem 3.1. Let u be the smooth solution to (1.1) satisfying (3.7). Let w be the
incident wave satisfying (3.8). Then u is a weak solution, i.e., u satisfies (3.13), (3.14).

Proof. It is obvious that u € H'(Q). By virtue of the assumption (3.7), the trace
of u belongs to H'/*(9Q).
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The restriction of (1.1) to Q implies (3.11). As the boundary condition on 9Q is
concerned, we have already shown that a smooth solution u satisfies (3.2)
on 3Q. Thus, taking into account (3.7), we have
(3.15) 1u+K@=w+c

2 v
on 8Q, ¢ = u, — w,. It suffices to show that ¢ = 0 since then (3.13) implies (3.12).

Taking into account Lemma 3.3, we observe that (du/dv) (R, *)e H™/?(0Q).
Then Lemma 3.2 implies that K ou/ove H'*(0Q). According to the assumption
(3.8), the trace of w belongs to H'/*(0Q). Since u € H/?(0Q) ass well, (3.15) implies
ce A'*(0Q), ie. ¢ = 0. Q.E.D.

Assuming u to be a weak solution, then, by virtue of Lemumas 3.3 and 3.2, we can
write the boundary condition (3.14) as follows:

(3.16) e

1K"lu — K 'w.
v 2

Since (3.13) implies (3.12), we observe that u satisfies
(3.17) a(u, v) + 1<K, 15 = (K~'w, v

for each ve .
On the other hand, if u € # and (3.17) holds for each v € # then (3.11) is clearly
satisfied, i.e. (3.13) is true. Then (3.17) and (3.12) imply that

<§E, v> = — 1(K“u, v) + (K lw, )
av 2

for each v € 5. This statement means that (3.16) holds, i.e. (by virtue of Lemma 3.2
again), u satisfies (3.14).
We have proved the following

Remark 3.3. (Variational formulation.) u is a weak solution if and only if
u € # and (3.17) holds for each v e #.

def
Notation. |v]o = \/(a(v, v)) for each v € #. Clearly, ||, is an equivalent norm
on .

Theorem 3.2. The weak solution u uniquely exists for every choice of data.

Proof. We verify the assumption of Lax-Milgram’s theorem which is to be applied
te (3.17).

a) The right hand side {K~'w, +> is a linear bounded functional on s, since
K~'we H™'*(0Q) (see Lemma 3.2) and # is continuously embedded into H'/2(0Q).

b) The bilinear form on the left hand side is elliptic in the sense that
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a(v,v) + $(K~ v, vy = |v|5 foreach ves# .

In fact, a(v, v) = |v]2 and (see (3.10))

@
<K—_lv’ D> = Z }'1:1<vksk + V_yCps VS + U—mcm> =
kom=1

2, 2
=nR Y A (v +02) = = |ofij2,00 2 0.
k=1 R

This completes the verification. Lax-Milgram’s theorem implies the existence
and uniqueness of u. Q.E.D.

Remark 3.4. Taking v = u in (3.17), we easily obtain the following a priori
bound of the weak solution u:

1 2
I"lszk + E lu|f/z,a:z = R IWI1/2,an ]“|1/2,an ,

which implies
|“|1/2,ag = 2|W|1/2,m
and

|ule < 2R™'2|W| 2,00 -

4. HINTS AT NUMERICAL SOLUTION

In this section we assume 2 = {x e R? |x| < R} again. Remark 3.3 offers the
Ritz-Galerkin approximation to the solution u. Let S* be a finite dimensional sub-
space of H'(Q); let S" be spanned by a basis {¢@, ..., ¢y}. Define S" = {ve S*:
{v, 1) = 0}. The space §" is a natural approximation to .

We define u" € S* to be the Ritz approximation to u at S, i.e.

a(u®, #") + KK~ ", 3" = (K™ 'w, #") foreach #"eS".

One easily observes that a(u”, 1) = (K 'u" 1) = (K" 'w,1> =0 and S" =
= R! @ §". It means that u" can be defined equivalently as follows:
Find u" € 8" such that

(it 1> =0 and
(4.1) a(u”, ") + K™l oy = (K- 'w, o™y
for each 1v"e S"

We extend K~ to S": If v € S", let

-]
=10+ Y (S +v_c,) on 0Q.
=)
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We define
def 2 )
K ' = K™ '(v — vy) = 2 Y k(vesi + v-cy) -
k=1

Then u” solves (4.1) if and only if

where o = (0ty, ..., ay)" € R" satisfies

N
(4.2) gloci«pi, D=0
and
(4.3) Bo + Mo = f;

def
B = {b”7 i,j=1,..,N> bij = a((pj9 q)l) 5

def
f =o' i
def
M={mij}i,j=1,...,N’ m

Il

<K~1Wa (pt> )

= %<K_1(Pj’ Q).

The matrix M is symmetric. Its entries are calculated from the definition of K"'

i

@
Let Piloa = v + Zl(l’isk + vl )
k=
be the Fourier expansion of ¢; on Q. Then
e s 2 . .
K1, 0> =21 ) k(vog + vi,00,).
k=1

In the actual computation, the infinite sum should be replaced by a finite approxi-
mation. The same problem arises in the computation of the entries of f.

5. EXTENSIONS

The operator A inside Q can be nonlinear, e.g.

Au=-2 a;(x, u, Vu)@— for xeQ
0x; X
(Au = —Au outside @, of course). Then the boundary condition (2.10) will not be
affected. Ine case of a circular Q, Theorem 3.1 remains true. Moreover, assuming
a suitable concept of monotonicity (e.g. the strong monotonicity of A: H'(Q) —
— (H'(Q))), one can prove Theorem 3.2. as well.
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The analogous problem in three dimensions can be treated similarly. For example,
if Q is a ball {xeR>:|x| < R} the boundary condition on 9Q reads as follows:

w=1u+K%+LKu,
2 v 2R

where w is the trace of the incident wave on dQ and K is an integral operator. In the
spherical coordinates (r, o, 9):

R[> o(R, o', ') sin o do’ dY’

4nJoJo /(2(1 — sinasin o cos($ — 9’) — cos & cos ')

(Ko) (R, o, 8) =

Both the analysis and the numerical treatment rely on the spectral properties of the
operator K. Namely

R
2k + 1

v

where v = Y(«, ) is any spherical function of order k, k = 0, 1, .... Details are
to appear in a forthcoming paper.
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Souhrn

O JEDNE ULOZE TEORIE POTENCIALU SE ZADANOU
DOPADAIJICi VLNOU

VLADIMIR DRAPALIK, VLADIMIR JANOVSKY

Vysetfuje se dvoudimenzionalni model difrakce elektrostatického pole na omezeném nehomo-
gennim télese. Je formulovana nelokdlni okrajovd podminka, umoZiiujici fe§eni problému na
omezené fiktivni oblasti (napf. kruhu), kterd obsahuje zadanou nehomogenitu. Takto reduko-
vana uloha je aproximovana metodou kone&nych prvkd v kombinaci s Fourierovou metodou
na hranici fiktivni oblasti.
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Pesome

OB OZIHOYI ITPOBJIEME TEOPUU ITOTEHIIMAJIA C 3AAHHOW
ITAZTATOINEM BOJIHOM

V0LADIMIR DRAPALIK, VLADIMIR JANOVSKY

PaccmatpmBaeTCs IOByMepHas 3amada [AdGpakmum 3MeKTPOCTATAYECKOrO NOJS B 3aNaHHOK
(orpaHMYeHHOI) HEOQHOPOIHOM cpene. POPMyYIMPYeTCS HHTErPAIbHOE TDAaHHYHOE YCIIOBHME, IPH
IIOMOIITA KOTOPOro 3aJaYa KOPPEKTHO OIpeHeIAeTCS BHYTPH OrpAaHMYECHHON (GHKTHBHONK 0obOsacTH
(xpyra). 3aaya amIpOKCHMEpPYETCS METOJOM KOHEYHBIX NIEMEHKOB BHYTDH M METOLOM Pa3ioxe-
s Pypbe Ha rpanune GEKTHBHOM 06JIaCTH.
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