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O N A POTENTIAL PROBLEM WITH INCIDENT WAVE 
AS A FIELD SOURCE 

VLADIMIR DRAPALIK, VLADIMIR JANOVSKY" 

(Received March 13, 1986) 

Summary. A field source which is given by an incident wave in a neighborhood of an inhomo-
geneous body (in R 2) yields an integral equation on the boundary of Q. This integral equation 
may serve as a boundary condition for the field equation on Q. If Q is a circle then the existence 
and uniqueness of the new boundary value problem is proved and an algorithm for the approxi­
mate solution is proposed. 

Keywords: diffraction, nonlocal boundary condition, finite elements. 

AMS Subject classification: 31A30, 65N30, 35J15, 35J67, 78A20, 78A45. 

1. INTRODUCTION 

We investigate a classical problem of the wave scattering: Let f = f(x) be the 
density of an electric charge in ÍR2 (the support off, supp f is assumed to be compact 
in IR2). Let w = w(x) on IR2 be the potential of the electric field in vacuum. Provided 
an inhomogeneous body Q (Q is a bounded domain in IR2, Q n suppf = 0) is present, 
the field is changed. If u = u(x) is the potential of the resulting field in IR2, find u 
on Q. 

The classical mathematical formulation reads as follows: We say that u is a smooth 
solution if u = u(x) is continuous and bounded in IR2, all the first derivatives of u 
are piecewise continuous in IR2, and 

(1.1) 4 M S - A ( a , W ^ ) = / ( x ) 

on IR2 in the sense of distributions. Here and in the sequel, the summation convention 
of repeated indices i and j is used. 

We assume 

(i) strong ellipticity of A, i.e. au e L00(lR2), there exists a positive constant c such that 

a.Mj^cUi for each ^ ( ^ ^ e ť ; 
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(ii) atj(x) = Sij outside Q, where Q is a bouded domain in LR2, dQ is "smooth 
enough"; 

(iii) feL2(lR
2)? suppfis compact in LR2, suppfn .0 = 0. 

The function w = w(x) is called the incident wave. We assume w to be continuous 
and bounded in LR2, and to satisfy 

(1.2) -Aw=f 

in LR2 (in the sense of distributions). 
Thus, in order to find u on Q, one has to solve (1.1) in LR2. Traditional numerical 

procedures were based on an approximate reduction of LR2 to a "sufficiently large" 
bounded domain containing Q (of course, the larger domain, the better). 

The aim of this paper is to formulate a properly posed boundary value problem 
for u on Q. It means that u should satisfy Au = 0 on Q with a boundary condition 
on dQ. Moreover, the trace of w on dQ are the only data of the new boundary value 
problem. 

If Q is a circle then the boundary condition on dQ is considerably simplified. 
We give some proposals concerning numerical solution of the relevant boundary 
value problem. 

We suggest a practical strategy in the case of a "general" Q: Replace the given Q 
by any circle Q' which a) contains Q and b) does not intersect suppf; define atj = <5l7 

on Q' — Q, of course. Then Au = 0 on Q' with a comparatively simple boundary 
condition on dQ'. Naturally, the trace of w on dQ' is equal to the data. 

2. BOUNDARY CONDITION ON dQ 

According to our assumptions, the functions u and w are harmonic and bounded 
in a neighborhood of oo. It is well known that both u and w are continuous at oo, 
i.e. 

(2.1) lim u(x) = uoo , 
| x | - + oo 

(2.2) lim w(x) = ww . 
|JC|-+ + OO 

Moreover, the first derivatives vanish at oo, namely 

(2.3) — (x)= 0(\x\"2) as |x|-> +oo, 
dxt 

(2.4) ^ ( x ) = o ( | x | - 2 ) as H - + C O 
OX i 

for i = 1, 2. 
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Lemma 2.1. The equality 

(2.5) — f(y) log \x - y\ dy = w^ - w(x) 
2кJR2 

holds for each x e I D2 

Proof. The above formula is one of the classical Green's formulae. Thus, the 

proof is omitted. 

N o t a t i o n . Let Qc be the complement of Q in U2. We denote by \i = \i(y) the 

outward normal vector at y e dQc with respect to Qc. If y e dQc then the symbol 

du\dpi(y) means the derivative of u at the point y along the direction fi(y) "with 

respect to Qc", i.e. 

du d e f , v... du , x 

~r\= w)lim 7~ (z) 
where/x = (^i,/^)-

Lemma 2.2- The equality 

I f 1 
(2.6) — f(y) log |x - y\ Ay = W o o - - u(x) -

2n J QC 2 

2^J^l^(y) My) J 
holds for each x e dQc. 

Proof. Let x e 5.QC be given. We define the following sets depending on positive 

parameters R and 8, R > 8: 

BR,s = {y e U2: 8 < \x - y\ < R} , UR>d = BR>d n Qc, 

SR = { j ; G ^ 2 : | x - y | = K}, Ss ={yeU2:\x- y\ = 8}, 

K8 =SdndUR>5, Dd =dQcn8UR>3. 

We assume K's large and <5's small enough so that supp f c UR>d. Clearly, dURd = 

= SR u K§ u D5. 

Let us extend the definition of ^( j) to SR and K^: If y e SR u K5 then \i = ^(y) 

is the outward normal vector at y with respect to URt&, see Fig. 1. Moreover, we set 

= fi((y) lim Jt (x) , // = (//1? /^2) . 
ôџ(u) x-+y дxt 

xeUR,ô 

We define 

(2-7) Iw = f í / ( . v ) l o g | x - y | d y . 
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Fig. 1. 

Since f = Au = —Aw on U^, the classical Green's formula yields IR5 = y1 + y2, 
where 

ľi = 
t ÔU 

2nJwR,Jn(y) 
log \x - y\ da(y) , 

h\ u{y) 

2nJevR,6 

d log |x - y\ 
d<т(y) . 

2nUvR,d

 v " Sn(y) 

Clearly, yx = y 1 4 + y1>2 + y1>3 where y 1 ; 1 and y,,2 and y1>3 are equal to 

үn\' -гhlo*\x- y\d<Ţ(У) 
du 

lrSfi(y) 

where F is to be replaced by Kd and D8 and SR, respectively. Similarly, y2 = 72,i + 

+ y2,2 + ?2,3 where y 2 ) 1 and y2t2 and y 2 j 3 are equal to 

l(u(y)д-^Һ^Ada(y) 
2тtJ г ðju(ҳ) 

where r := K5 and D5 and S^, respectively. All y's are functions of R and <5. 

Passing R -> +00 and <5 -> 0 + . we obtain y l f l -*• 0, y2>1 ~> - i w ( x ) (using the 
smoothness of dQ), 

ľ l , 2 " 

ľ2,2 

1 

2тг 

дu log |x - y| d o(y), 

- »(>>) 

esìc дџ(y) 

д log \x - y 

õfi(y) 
da(y) 
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Moreover, by virtue of (2.3) and (2.1) we can prove y1>2 -» 0 and 72,3 ~* u^. Finally, 
(2,7) implies that 

IR,S -* — f(y) log I* - y\ dy . 
2KJQC 

The formula (2.6) immediately follows from the above facts. Q.E.D. 

Corollary. We have 

= w(x) + u^-w., 

for each x e dQc. 

Proof. Since supp fn Q = 0, we have 

$ncf(y) log \x - y\ dy = JR2f(y) log |x - y\ dy . 

Then (2.8) follows directly from (2.5) and (2.6). Q.E.D. 

N o t a t i o n . Let y e dQ. We denote by du\dv(y) the derivarive of u along the co-
normal at y with respect to O, i.e. 

= ^ f y ( y ) - ( - M y ) ) - l i m 

dv(y) z-*y dxj 
v ' zeQ 

Due to (1.1) and the Gauss theorem, 

du du 
(2.9) 

dv(y) dfi(y) 

at any y e dQ. The equation (2.9) expresses the continuity of "fluxes" through dQ. 

Theorem 2.1. If u is a smooth solution then 

(2.10) Ï -M-Ѓ Í U>)Щ^ 
2 2^JðSìl w ) 

+ 

^ - log |x - y| V dcľ(j;) = w(x) + c 
) 

du 

My) 
for each x e 8Q, where c -- ^ - w a . 

Proof. The assertion follows from (2.8) and (2.9). Q.E.D. 

3. BOUNDARY CONDITION ON A CIRCLE 

Let us assume Q to be a circle; without loss of generality, Q = {x e U2: \x\ < R}. 
One easily calculates that 
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for each x e dQ, y e dQ, x 4= y. 
Introducing polar coordinates (r, a): xx = rcos a ? *2 = r s ina , we can write 

(2.10) as 

i i c2n r2n du, 
(3.2) - u(R, a) + — u(R, P) dp + \ jf(a - J8) — («, j8) d/J = w(R, a) + c , 

2 4rcJ0 J 0 ^v 

where c = ux — wx and 

(3.3) jf(a) = - — [log R .7(2) + - log (1 - cos a ) ] ; 
2TC L 2 

the symbol (du\dv) (R, 0) means the value of du\dv(y) at the point }> with polar 
coordinates (R, /?). 

Lemma 3.1. We have 

/»2n 
I tfict - /ft cos fcr? d/? = 

2fc 

2fc 

(3.4) í j f (a - j?) cos fcjS d£ = — cos fca , 

2rc n 

sin kpdfi = — sin fca 
/*2n 

(3.5) Jf (a - fi) si 

far fc = 1, 2 , . . . and any 0 ^ a < 2TT. Moreover, 

(3.6) J J" Jf (a - jB) djS = - K log # 

for any 0 = a < 2n. 

Proof. It can be done by a straightforward verification. 

The above lemma describes the spectrum of an operator K which is (formally) 
defined as follows: 

(Kv)(a)đ=ГjГ(a-ß)v(ß)dß. 

Later, we will make clear on which spaces K acts. 

N o t a t i o n . We introduce 

sk = s/c(a) = s 1 n ^ a ? ck — cfc(a) = cos fca 

(functions of a) and parameters 

A* = — for fc= 1,2,... 
2fc 
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Let Hr(dQ), r real, be the usual Sobolev space with the norm |• [|rafi. The 1-I) 
manifold dQ is isomorphic to the interval [0, 2n), and it is well known that the norm 
II * ||r,0fl c a n be equivalently defined by means of the Fourier series: 

Identifying L2(dQ) with its dual, let <•, •> be the pairing of Hr(dQ) and H~r(dQ). 
Ifve Hr(0Q) then 

w \ <M> 
v = v0 + £ (¥k + *-*<*) > w h e r e *>o = ——-, 

fc«=i 2%R 

„ _ <"> 5/c> „ _ <», Cfc> 
vk — s y - f e — 

7ГR 71K 

We set 
def oo 

H2,*> = «*[>$ + ~ (- + fc)2r (»* + »-*)] • 
fc=i 

We want the operator K to positive. Thus according to (3.6) the operator K should 
act on functions satisfying the condition JQ" v(a) da = 0. This motivates the following 

Remark 3.1. Any solution u to (1.1) is determined up to a constant shift. Thus, 
we may assume the smooth solution u to satisfy 

(3.7) fi'u(R,p)dp = 0. 

The same can be assumed about the incident wave w, i.e. 

(3.8) 5l*w{R,P)dfi = 0. 

We define Hr(dQ) = {v e Hr(dQ): <t>, 1> = 0} for each real r, with the natural 
oo 

norm | • |r. If v e Hr(dQ) and v = £ (vksk + V-kck) is the relevant Fourier series then 
fc=i 

def oo 

H2 = ̂ Zfe>*2 + ^ ) -
fc = i 

By virtue of Lemma 3.1, we can specify our definition of the operator K on Hr(dQ): 
00 

Let ve Hr and let v = J] (vusk + V-kck) be its Fourier series. Then 
fc=i 

def oo 

(3.9) Kv - X Xh(vksk + v_kck) 
/ c= i 

and 

(3.10) K'^^t^iWk + v-A). 

Lemma 3.2. The operators 

K. Hr(dQ)-^ Hr+1(dQ), 

K-1:8r(dQ)->Hr-1(dQ) 

449 



are bounded for each real r. Moreover, KK l = K *K = identity (on Hr(dQ)). 

Proof. The proof follows easily from the asymptotic properties of the eigenvalues 

K-
Suppose u is a smooth solution. We easily observe that Au = 0 on Q. Thus, 

integrating by parts (Green's theorem), 
•2xi 

0 = f Au dx = - K f " — (R, ß) dß 
Ja Jo дv 

The same is true in the weak sense, see Lemma 3.3. 

( \" f 8w dv A Notation. a[w,v)= atj dx 
JQ dxjdXi 

for each w and v from H 1(.Q). 

Remark 3.2. If ueHx(Q) then the assumption Au = 0 on Q in the sense of 
distributions is equivalent to the condition 

(3.11) a(u, v) = 0 for each v e H^(Q). 

It is well known (see e.g. [5]) that the operator djdv maps HX(Q) onto B~1/2(dQ) 
continuously. Assuming ueHx(Q) and (3.11), we can equivalently define dujdv 
as follows: 

(3.12) / — , v\ = a(u, v) for each v e H1^) . 

Lemma 3.3. Let u e HX(Q) satisfy Au = 0 on Q in the sense of distributions. 
Then dujdv e R-1/2(dQ). 

Proof. It suffices to take v = 1 in (3.12). Q.E.D. 

We shall proceed with the formulation of a weak solution to the problem (1.1). 

Notation. / = {«e HX(Q): the trace of w on dQ belongs to H1/2(dQ)}. 

Problem. Let w e H1/2(dQ) be given. Find ueffl such that 

(3.13) Au = 0 on Q in the sense of distribution , 

and 

(3.14) lu+K— = w on dQ. 
' 2 dv 

Theorem 3.1. Let u be the smooth solution to (1.1) satisfying (3.7). Let w be the 
incident wave satisfying (3.8). Then u is a weak solution, i.e., u satisfies (3.13), (3.14). 

Proof. It is obvious that u e H1^). By virtue of the assumption (3.7), the trace 
of u belongs to H1/2(dQ). 
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The restriction of (1.1) to Q implies (3.11). As the boundary condition on dQ is 
concerned, we have already shown that a smooth solution u satisfies (3.2) 
on dQ. Thus, taking into account (3.7), we have 

(3.15) -u + K— = w + c 
2 dv 

on dQ, c — u^ — w^. It suffices to show that c — 0 since then (3.13) implies (3.12). 
Taking into account Lemma 3.3, we observe that (dujdv) (R, •) e H~1/2(dQ). 

Then Lemma 3.2 implies that K dujdv e H1/2(dQ). According to the assumption 
(3.8), the trace of w belongs to H1/2(dQ). Since u e H1/2(dQ) ass well, (3.15) implies 
c e H1/2(dQ), i.e. c - 0. Q.E.D. 

Assuming u to be a weak solution, then, by virtue of Lemmas 3.3 and 3.2, we can 
write the boundary condition (3.14) as follows: 

(3.16) - — = -K-1u-K~1w. 
dv 2 

Since (3.13) implies (3.12), we observe that u satisfies 

(3.17) a(u, v) + KK~"V vy - (K^^, t?> 

for each v e 34f. 
On the other hand, if u e 2tf and (3.17) holds for each ve 2tf then (3.11) is clearly 

satisfied, i.e. (3.13) is true. Then (3.17) and (3.12) imply that 

_^, A = _ 1 <K-y vy + iK'xw, vy 
dv J 2 

for each t i e / . This statement means that (3.16) holds, i.e. (by virtue of Lemma 3.2 
again), u satisfies (3.14). 

We have proved the following 

Remark 3.3. (Variational formulation.) u is a weak solution if and only if 
ue2tf and (3.17) holds for each vetf. 

def 

Notation. \v\Q — y/(a(v, v)) for each ve Jf. Clearly, \*\Q is an equivalent norm 
on Jf. 

Theorem 3.2. The weak solution u uniquely exists for every choice of data. 

Proof. We verify the assumption of Lax-Milgram's theorem which is to be applied 
to (3.17). 

a) The right hand side <fC_1w, •> is a linear bounded functional on Jf, since 
K~xw e H~1/2(dQ) (see Lemma 3.2) and Jf is continuously embedded into H1/2(dQ). 

b) The bilinear form on the left hand side is elliptic in the sense that 
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a(v> v) + K K ~ % vy = \v\l for each vetf . 

In fact, a(v, v) = |t?|o and (see (3.10)) 
oo 

(K~% vy = £ 4 - 1 <^ f c + y-kcfc, t?msm + v_mcm> = 
fc,m=l 

= TCR £ At-
JK2 + t d t ) = I |t>|2/2>afl ^ 0 . 

fc=i K 

This completes the verification. Lax-Milgram's theorem implies the existence 
and uniqueness of u. Q.E.D. 

Remark 3.4. Taking v = u in (3.17), we easily obtain the following a priori 
bound of the weak solution u: 

1 2 
\u\l + - Mt/2,ao = ^ lw|i/2,ao |w|i/2,ao > 

iv 1v 

which implies 

and 
| M | l / 2 , 5 0 = 2 | w | 1 / 2 > a f i 

\ 

\u\Q^2R~^2\w\1/2>dQ. 

4. HINTS AT NUMERICAL SOLUTION 

In this section we assume Q = {x e (R2: |x| < R] again. Remark 3.3 offers the 
Ritz-Galerkin approximation to the solution u. Let Sh be a finite dimensional sub-
space of HX(Q); let Sh be spanned by a basis {cpu ...,<pN}. Define Sh = {veSh: 
<v, 1> = ()}. The space Sh is a natural approximation to ffl. 

We define uh e Sh to be the Ritz approximation to u at Sh, i.e. 

a(u\ vh) + i<K"1u \ v*> = <fC~1w, vh} for each vh e Sh. 

One easily observes that a(uh, 1) = <K~" V , 1> = <K_1w, 1> = 0 and Sh = 
= R1 © Sh. It means that uh can be defined equivalently as follows: 

Find uh e Sh such that 

Uuh, 1> = 0 and 
(4.1) \a(uh, vh) + KK~ V , tf*> = </C"1w, vh} 

(for each vh e Sh. 

We extend K~x to S/l: If v e Sh, let 

00 

V = t>fj + Z Ksfc + ^ - A ) o n 5*2 • 
fe=l 
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We define 
def r\ oo 

Kxv = K~\v - o0) = - Z Kvkh + v-kck). 
R fc=i 

Then uh solves (4A) if and only if 
N 

H* = Z a ^ / ' 
i = l 

where a = (a l 5 . . . , a^)1 6 RN satisfies 

(4.2) I <-,<«>., 1> = 0 
i = l 

and 

(4.3) Ba + Ma = f ; 

def 
B = {btj} »J=1,...,N > fci/ = «(<?/, ? l ) > 

def 

f = ( / i , . . . , / w ) T , / , =<K-1w)<P i>, 
def 

M = {mij}ij=i,...,N , rntj = i(K~ 1<pj, <pty . 

The matrix M is symmetric. Its entries are calculated from the definition of K"1" 
00 

Let <pj\da = vl + Z Hh + v-kck) 
j t=i 

be the Fourier expansion of <pj on dQ. Then 

<K" Vj , <?,•> = 2TT £ *0>& + vikvLk) . 
fc=l 

In the actual computation, the infinite sum should be replaced by a finite approxi­
mation. The same problem arises in the computation of the entries of f. 

5. EXTENSIONS 

The operator A inside Q can be nonlinear, e.g. 

. d , „ x d w „ _ 
Au = «ij{^, w, VM) — for xGii 

dxt dxj 
[Au = —Au outside Q, of course). Then the boundary condition (2.10) will not be 
affected. Ine case of a circular Q, Theorem 3.1 remains true. Moreover, assuming 
a suitable concept of monotonicity (e.g. the strong monotonicity of A: H1^) -> 
-> (H1^))'), one can prove Theorem 3.2. as well. 
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The analogous problem in three dimensions can be treated similarly. For example, 
if Q is a ball {xeIR3: |x| < R] the boundary condition on dQ reads as follows: 

1 „,du 1 „ 
w = -w + K — + — Ku , 

2 dv 2R 
where w is the trace of the incident wave on dQ and K is an integral operator. In the 
spherical coordinates (r, a, #): 

def o m r2* v^9 a/? 5/^ s i n a/ d a / d 3 / def n (*n p2n 

(Kv)(R,*,&) = ±\ 
4TCJOJO л/(2(l — sin a sin a' cos ($ — $') — cos a cos a')) 

Both the analysis and the numerical treatment rely on the spectral properties of the 
operator K. Namely 

Kv = — v 
2k + 1 

where v = Yfc(a, 9) is any spherical function of order k, k = 0, 1,.... Details are 
to appear in a forthcoming paper. 

% 

References 

[1] V. Janovsky, 1. Marek, J. Neuberg: Maxwell's equations with incident wave as a field source. 
Technical Report KNM-0105057/81, Charles University, Prague 1981. 

[2] V. Janovskf, I. Marek, J. Neuberg: Maxwell's equations with incident wave as a field source. 
Proceedings of Equadiff 5, Teubner-Texte zur Mathematik, Leipzig 1982, 237—240. 

[3] A. N Tichonov, A. A. Samarskij: Equations of Mathematical Physics (in Russian), Nauka, 

Moscow 1977. 
[4] M. Brelot: Lectures on Potential Theory. Tata Institute of Fundamental Research, Bombay 

I960. 
[5] J. Nefas: Les Met.hodes Directes en Theorie des Equations Elliptiques, Academia, Prague 

1967. 
[6] C. Johnson, J. C. Nedelec: On the coupling of boundary integral and finite elements methods. 

Math. Comp. 35 (1980), 1063-1079. 

S o u h r n 

O JEDNÉ ÚLOZE TEORIE POTENCIÁLU SE ZADANOU 
DOPADAJÍCÍ VLNOU 

VLADIMÍR DRÁPALÍK, VLADIMÍR JANOVSKÝ 

Vyšetřuje se dvoudimenzionální model difrakce elektrostatického pole na omezeném nehomo­
genním tělese. Je formulována nelokální okrajová podmínka, umožňující řešení problému na 
omezené fiktivní oblasti (např. kruhu), která obsahuje zadanou nehomogenitu. Takto reduko­
vaná úloha j e aproximována metodou konečných prvků v kombinaci s Fourierovou metodou 
na hranici fiktivní oblasti. 
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Резюме 

ОБ ОДНОЙ ПРОБЛЕМЕ ТЕОРИИ ПОТЕНЦИАЛА С ЗАДАННОЙ 
ПАДАЮЩЕЙ ВОЛНОЙ 

V^А^Iмщ ^кАРА^^к, УьАШмйк. ^АNОV$к* 

Рассматривается двумерная задача дифракции электростатического поля в заданной 
(ограниченной) неоднородной среде. Формулируется интегральное граничное условие, при 
помощи которого задача корректно определяется внутри ограниченной фиктивной области 
(круга). Задача аппроксимируется методом конечных элеменков внутри и методом разложе­
ния Фурье на границе фиктивной области. 

Ашкогз' аййгеив: 1ШОг. VЫ^т^^ ВгараНк, (1ос. БШОг. VЫ^т^^ ^апоVзк^ С8с, МЕР ШС, 
Маюзггашкё пат. 25, 118 00 Ргапа 1. 
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