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GENERALIZED LENGTH BIASED DISTRIBUTIONS
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Summary. Generalized length biased distribution is defined as i(x) = ¢.(x)f(x), x >0,
where f(x) is a probability density function, ¢,(x) is a polynomial of degree », that is, ¢.(x) =
= a,(x/u}) + ...+ a,(x"/u}), with a; >0, i=1,...,r, a;+ ...+ a. =1, u} = E(x') for
Sfx), i=1,2,...,r. If r = 1, we have the simple length biased distribution of Gupta and Keating
[1]. First, characterizations of exponential, uniform and beta distributions are given in terms
of simple length biased distributions. Next, for the case of generalized distribution, tize distribu-
tion of the sum of n independent variables is put in the closed form when f(x) is exponential.
Finally, Bayesian estimates of ay, ..., a, are obtained for the generalized distribution for general
S(x), x > 0.

Key words: length biased distributions; exponential, beta and uniform distributions; Bayesian
estimates
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1. CHARACTERIZATIONS

Consider the simple length biased distribution (SLBD) represented by

(1) h(x) = (x/w) f(x), x>0

with u = E(x) for a probability density function f(x). Putting f;(x) = f(x), f2(x) =
= h(x), (1) can be rewritten as

) fa(x) = [x[uini] f1(x)
where p(y,; = p = E(x) for f(x). Let the n-th order SLBD be

(22) fulx) = [/t =131 ] fu1(x)
where p(;y; = E(x) for fi(x), i = 1,2, ..., n.

(a) Exponential: f(x)is E(0, 0)

Now

(3) filx)=0e", x>0

354



and 1y, = 1/0; from (2),
(3a) fo(x) = (6x) 0 e~
and fi(2); = 2/6*. Hence

) f3(x) = [X/l‘£2)1]f2(x)

(5) = e "(0x)* 0/2
Continuing in this way, one gets
©) Si(3) = e (0~ 0/ (n)

Now, the characterization is as follows: f(x) in (1) is E(0, ) if and only if £,(x)

is of the same form as f®(x) where f®(x) is the n-fold convolution, F(x) = f(x) % ...

.. * f(x). “If” part is proved above. To prove “iff”” part, let (6) be true. The from
(2a), we have

(7) e‘ex(gx)n* ! O/F(n) = (x/:u(’n— 1)1) fn— l(x)
From (7), it follows
(®) Jue1(%) = Bu—1y1 € "(0x)"~2 02/ (n)

and since f, _,(x) is a pdf, we get from (8)

©) i), 27) =1

n—1
and hence y(,_,, = (n — 1)/0.
From (8) and (9), we get
(10) Ju-i(x) = e ™(0x)""2 0/1(n — 1)
Continuing in this way, one gets fi(x) = e~ % x > 0.
(b) f(x) is uniform U(0, 0)
Now let
(11) fx)=1/0, 0<x<0

The characterization is as follows: f(x) in (1) is U(0, 0) if and only if f,(x) is of the
same form as f(x,,) where x(,) = max (x, ..., x,)

Proof. From (2), we get for this case that

(12) 1(x) = [x/usy] [1/6]

and from (11), p(,, = 0/2. Then

2
(13) fz(x)=(7):, 0<x<9,

355



and from (13), we get y,,, = %0. Further, from (4)

(14) fi(x) =3x*0°, 0<x<6

Continuing one gets

(15) fulx) = nx""1/6"

and (15) is of the same form as f(x,,). To prove “iff,” let (15) be true. Then
(16) fn(x) = nxn—l/on = [x/.uén—-l)l]fn—l(x)

hence

(16a) Jam1(x) = (tin=1)1) (nx"72/0)

Since f,_ ;(x) is a pdf, (16a) gives

[ia- 1] [n)(n = 1) 6] = 1

Hence

(16b) Hin-1y1 = (" — 1) 0/n

(16a) and (16b) give

(17) Juca(x) = (n — 1) x""2/0""* .
Continuing, one gets

(17a) fl(x)zé, 0<x<¥

(c) f(x)is beta distribution B,(a, b)
Let f(x) in (1) be
(18) f(x) = [x*"'(1 = x)*"'/B(a, b)], O0<x<1,

where B(a, b) = I'(a) I'(b)[[(a + b), a,b > 0. Then u(,, = B(a + 1, b)/B(a, b)
and (2) gives

(19) fo(x) = x*(1 = x)*"'/B(a + 1, b)

(19) gives ui2y1 = B(a + 2, b)/B(a + 1, b) and now from (4), one gets
(20) f3(x) = x**(1 — x)*"'/B(a + 2, b)
Continuing, one gets,

(21) fi(x) = x@H D=1 — x)P"1B(a + n — 1, b)

Hence the characterization is as follows: f(x) in (1) is B(a, b) if, and only if, f,(x)
is By(a + n — 1, b). “If” part is shown above. “Iff”” can be proved similarly to cases

(a) and (b).
2. MOMENTS
(i): From(2), we have
(22) Mzt = Hina[Hay
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where p(y,; = E(x’) for f,(x) and (22) gives

(22a) Hyz = Btk -
Continuing, we get
(23) .“El)n = ﬂ£1)1!‘22)1 ﬂénn

In (23), the right-hand side is a product of E(x) for f(x), ..., f,(x) respectively
while left-hand side is E(x") for f,(x). If f1(x) is E(0, 6) then

(23a) iy = E(x") for  fi(x) = n![0"
and
(24) Ky = (i[0)

From (23a) and (24), (23) follows. Similarly, one can check (23) easily for U(0, 8) and
B,(a, b) cases.

(ii): Now, consider the generalized length biased distribution (GLBD) whose
pdf is

(25) h(x) = [(x[w1) ar + .. + (¥'[i;) a,] /()

withx > 0,a; > 0,i = 1,2,...,r, E(x") = pjfor some pdf f(x),and a; + ... + a, =
= 1. Let g, be E(x’) for h(x). Then (25) gives

(26) U, = AU

where A" = (ay, ..., a,) and Uy = (o)1, ---» Ho)s)> and the (i, j)-th element of U
is U;; where -

(262) U= 1), i=12.,s; j=12,..,r
For U(0, 0), E(0, 0) cases, U,;’s can be evaluated very easily.

3. DISTRIBUTION OF THE SUM

(i): Consider (25). Suppose f(x) is E(0, 6). Since u; = i!/6", (25) can be written as

(27) h(x) =Y a;G(i + 1, 0, x)
i=1

where G(i, 0) is the gamma pdf

(27a) e”%(0x)'"* 0/T (i)

So, in this case of E(0, 0), h(x) is a mixture of gamma pdf’s. If qS(t) is the characteristic
function of h(x), then

() o0=5]a/(-5)"]
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and hence

(282) ¢"(1) oc Yaf' ... a{r/(] —_ g

>2j1+31'2+~~+(r+ Djr

where j; + ... 4+ j, = n and the sum Y is over all permutations of j,, ..., .. On
inverting, (28a), one gets the distribution of y = x; + ... + x,, where x; are i.i.d.
each having h(x) as pdf. Hence pdf of y is

(29) h(y) = aq Yal'af ...al" G(2j; + ... + (r + 1)j,, 0 y)

with j; + ... + j, = n and a, = n![j;!...j,"
If r = n = 2, then, we get (29) as

(29a) h(y) = ai G(4,0; y) + 2a,a, G(5,0; y) + a3 G(6, 0; y)
and forn = 3, r = 2, one gets
(29b)  h(y) = ai G(6, 0; y) + 3aja; G(7,0, y) + 3a,a5 G(8, 0; y) + a3 G(9, 0 y)

(i): Now suppose x;’s are independent but x; has the parameter 6, s = 1, ..., n.
Then

G s0=Ta0-T[ " Gros 2]

L N\ 2 t 1
Wiy - =%
03 95
where ¢(1) is the characteristic function of x,, that is

(31) A1) ZZ[/(‘ - E)]

Hence (30) is

n

(32) ¢,(1) = Ul[alb“ + ... + abg)
with .
i\k+1
bsk=1/<l——5) , o s=1,2,...,n; k=1,2,...,r.
We see that

r X Jr
(33) o)1) = Zkllaik[ Hlb(km)k]
with k,, = k,form *+ I; k,, k, = 1,2, ..., n. Thatis, k,, + k, for same k or different
2
k. For example, if n = 4, r = 2, for aja3, we have [] by,,)1be,)2- All (1,,)’s and
m=1

(2,,)’s are different within as well as between the products. Suppose r = 2, n = 3,
then (33) is, i

aiby1by bsy + a3byabyybss + a1a§[b11b22b32 + by1bysby, + b31b12b22] +
(34) + afaz[bnbnbn + byoby by + b32b11b21]~
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That is, in (33), the outside subscript k in (k,,) k repeats j, times when the exponent
of a, is j,.
Now, we have from (33),

(35) ¢(1) = 3. Ha’k["ﬁl(l/ (1 - %’";)HI)]

For example, if r = 2, n = 2,(35)is

R L O IR N (I
o f0=5) (= 8) T Lo 050 (-5) ]

On inverting (35), one gets the pdf of y.

4. BAYESIAN ESTIMATES

Let the priors for ay, ..., a, be the Dirichlet distribution given in Lingappaiah
[2], [3]- Thatis, f(a) = D(d,, ..., d,) where
(37) fla) = a®=" L atp (1 = o) YB(dy, .. dy)

whered; > 0,i < 1, ..., rand B(d, ...,d,) = I'(d;) ... ['(d,)/I'(d) with d = d; +
+dia=(a, .. a) a=a;+ ...+ a,_;.
Now from (25) the likelihood is

(38) Mw@=ﬁmm=ﬂwﬁmn+m+mwmwm>

(39) = 1—[ [alcsl + o+ arcsr]f(XS)

s=1
Similarly to (32), formula (39) can be written as

r . Ji n
(40) =ZU%THCWM[Qﬂm]
where Cy = ,,.)//lk’ k,=1,2,.
Then from (37) and (40), we get,

(41) L(x) = [L(x| a) f(a) da =

r Jk

= AYT] (11 Copi] Bs + dis -er dy + 1)

with e
(41a) A = [[L/C)]/B(@, .. ).
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From (41), we get the Bayesian estimate d, as
(42) g, = [a, L.(x | a) f(a) da/ [L(x | a) f(a) da =
Ay (] ]

C(km)k] B(]] + dla ---7jt + dt + 1, ],. + d,.)
(43) — Jit..tjr=n k=1m=1
L(x)
For example if n = r = 2, then (40) may be written as

(43a) afC“ + a1az(c12 + C21) + a%sz
where

Ci = XIXZ/(“;)Z , Chy = xfx%/(,u'z)z
Cp, = x1x§/(ﬂlxﬂ’2), Cy xfxz/(ﬂ'xﬂlz)

and for this case, the Bayesian estimate of a, is
(44) i, =
_ [B(d; + 3,d5)] Cyy + [B(dy +2,d, + 1](Cys + Cyy) + [B(dy + 1,d, +2)] Co,

[B(d, + 2,d,)] Cyy + [B(dy + 1,d, + 1](Cy, + C3y) + [B(dy, dy + 2)] Cas
For example, for the U(0, §) case, with x; = 25, x, =5, 0 =1, d, =d, = 1,
we get (with py = 1/2, py = 1[3), (44) as
(45) d, = 3148

Comments: 1. The origin and the usefulness of length biased distributions are
well explained in Gupta and Keating [1]. 2. By using (40), one can get the Bayesian
estimate of 0 (with a proper prior), which is included in f(x) and in p’s, i = 1, ..., 7.
3. Though for large r the summation Z over j, + j, + ... + j, = n, is somewhat
cumbersome, it can be easily performed on computers. 4. Only in the case of ex-
ponential and a few other cases, h(x) may turn out to be a mixture, while in general

h(x) = ¢,(x) f(x) where ¢,(x) is a polynomial of degree r. 5. For arbitrary f(x)
in h(x), it is quite difficult to find the distribution of y = x; + ... + x,.

It
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Souhrn
ZOBECNENA DELKOVE ZKRESLENA ROZLOZEN{
G. S. LINGAPPAIAH
Zobecnéné délkové zkreslené rozloZeni je definovano jako A(x) = ¢,(x) f(x), x > 0, kde f(x)

je hustota pravdépodobnosti, ¢,.(x) je polynom stupné r, to jest ¢.(x)= a;(x/u})+ ...
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oot a(x"[ul), kde @; >0, i=1,...,r, a, + ...+ =1, g} = E(x) pro flx), i= 1,2, ..., r.
Pro » = 1 mame jednoduché délkové zkreslené rozloZzeni Gupty a Keatinga [1]. V ¢&lanku se
nejprve charakterizuji exponencidlni, rovhomérné a beta rozloZeni pomoci jednoduchych délkové
zkreslenych rozloZeni. Dale pro zobecnéna rozlozeni pro pfipad exponencidlniho f(x) je odvozeno
rozloZeni souétu » nezavislych veli¢in. Kone¢né jsou uvedeny bayesovské odhady ay, ..., a,
pro zobecnéna rozlozeni.

OBOBIIEHHEBIE JUCTAHLIMOHHO CMEIEHHBIE PACIIPEAEJIEHUS
G. S. LINGAPPAIAH

O0606IIEHHOE AUCTAaHIIMOHHO CMEIEHHOe pacipeeeHue onpenensitcs hopmynoit h(x) = ¢,(x).
.f(x), x > 0, rnef(x) — IMIOTHOCTb BEPOSITHOCTAM @#,(X) — MHOTOYIEH CTeNeHu r BUAA @,(x) =
=ay(x/u)+ ...+ a ") rnea; >0 i=1,..,ra+ ...+ a=1up; = E(x%) nns
f(x)mi=1,2,...,r. Bcayyae » = 1 mosay4yaeTcsi IPOCTOE AUCTAHUMOHHO CMELIEHHOE pacrpene-
nerne I'ynra u Kutunra. B cTaThe mpexie BCEro ¢ IOMOIIIO NPOCTHIX AHCTAHIMOHHO CMEMIEHHBIX
pacupe/ielieHri XapaKTepu3yIOTCs SKCIIOHEHUMABHOE, paBHOMEpHOe M OeTa pacnpenenenms. ITo-
TOM [yIst O6OOIEHHBIX PAaCpeIeieHui M 3KCIIOHEHIMANBHOrO /(x) Hal{ZIEHO pa3iioKeHHE CYMMBI 1
HE3aBHCHMBIX BENMYHMH. VI HaKOHeN NpOBEICHbI OLEHKY Baiieca KOHCTaHT ay, ..., @, B Clydae
0606IIEHHBIX PACTIpeeICHUMR.
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