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Summary. The paper gives such an iterative method for special Chebyshev approximations
that its order of convergence is =2. Somewhat comparable results are found in [1] and [2],
based on another idea.
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1. THE ITERATION

The fixed symbols are as follows:
[a,b] e R, a closed and bounded interval;
f(x), acontinuous function on [a, b] ;
g1(x,) g2(x), ..., g.(x), a Chebyshev system of continuous functions on [a, b];
A¥ A3, ..., AF, the coefficients of the best Chebyshev approximation;
e(x) = AT gy(x) + ... + AF g,(x) = f(x), the error function of the best Chebyshev
approximation;
x¥, x¥ ..., x¥_,, asequence of extremal points, wherea < x} < x3 < ... < x,;
< band e(x]) = —e(xfy1),j=1,2,...,n.
Definition 1.1. Assume that f(x), g4(x), ..., g.(x) are twice continuously differenti-
able on [a, b]. The extremal point x}" is called a simple extremal point, if

e(x;)*0, if xf=a or b;

e¢(xf)=0 and e'(x})*0, if xf+a or b.

The number of different determinants in the formula of our iteration is 2n + 2.
These determinants differ from one another in the first row only. For the determinants
we shall use the following symbols:
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0 gi(x) galx) ...ognlx)  f(x) |
1 1(‘61) gZ(xl) gu(xl) f(xl)

l
1 1 g,(x) gz(xz) g,,(xz) f(xz) ,

* k%

ll o gi(x) - (X))

. (_1) gl(xn+ 1) g2(xn+1) gn(xn+ 1) f(X,,+1)
i=1,2,....,n+1;
| (1) g';gxi)) g;((xi)) g:Exi)) J;((x))
" " | g1\ Xy g2\Xq <o Gul Xy X1
g:(i:)*f (xi) | = i -]. 91(x2) gz(xz) .. g,,(xz) f(xz) \,
i

(_])" gl( HTI) g2(xn+1) gn(xn+1) f(xn+1
i=12,.,n+1.

Our iteration starts from x{», x%, ..., x{%, and its aim is to compute the sequence

Xi, X3, 0 Xnpq. (47, ..., AF are determined from x7, ..., x),; by solving a linear
system of equations.) The connection of the auxiliary variables u, v of the iteration
with x; = a and x,,, < b is given by the following formulas:

u=a+.(x, —a) u(o’ =a + J(x - )
b=b b — xS = b X,

X0 =a+ W - a)?, u*
X = b= (0D = bR o*

The formula of our iteration is as follows:

Il

a+ J(x1 - a) }
=b— /(b —x}y1)

(u - a) 0...gx(xy) ... f"(xy)

“=“‘\o...g,:(x1) f(xl)t‘H(u_a)z 0. gh(xr) .S (x1)
‘0...g;(xi)...f(xi)
xi:xi—sO...g;"(xi)...f”(xi)‘\’ F= 23 n:
0 - b)\ 0 gil0nss) - S (o)
v

I

_‘Ou-gllc(xnﬂ)n-f,(xnn) —2(p = b)z,0...g',:(x,,+1)...f”(x,,+1)‘

* % %

In the end of this part we remark that throughout the paper the order of convergence
is used like the Q-order in [3].
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2. TWO THEOREMS FOR CHARACTERIZATION OF THE ITERATION

Theorem 2.1. Assume that f(x), g4(x), ..., g,(x) are four times continuously
differentiable on [a, b] and x},x3,...,xy,, are simple extremal points. If & is
a sufficiently small positive number and |x;k - x§-°)| <8, XV = a,x{9, £ b,
Jj=12,...,n + 1, then the iteration is convergent and the order of the conver-
gence is =2.

Proof. In the first place we shall prove that x* = {x¥,...,x},,} satisfies the
equations of our iteration. To this aim we show:

(a) Ifx} # a or b, then x* satisfies the equation

[0 gi(x) ... f'(x

| * % %

>

but x* does not satisfy the equation

gi(x)) ... f"(x)

% ko

We can see that x* satisfies the system of equations

AT gi(xF) o+ A gD —sf(xf) +0. d*=0,
AT gi(xF) + .o+ A glxT) = sfGT) + a* =0,

Il

AT 91(X.T+1) +o. A gn(x:‘+1) - Sf(x:+1) + (=1yd* =0,

since ¢'(x}) =0 and e(x}) — (=1)d* =0, j=1,2,....,n + 1. Our system of
equations is linear in the variables A’f, ..., A¥ s, d* and has a nontrivial solution.
Therefore the determinant of the homogeneous linear system of equations equals 0,
thus the first property of x* is proved. Moreover, x* satisfies the system of equations

1gl(x) +A*g(x —sf"(x¥) +0. d*=c,
AT g,(x7) + L+ A g,.(xl) —sf(x}) + a* =0,
AT gi(xF 1)+ o+ A g(xn ) = sf(xy) + (1) dx =0,

since ¢’(xf) =c+0 and e(x;)—(—-1yd*=0, j=1,2,...,n+ 1. The in-
homogeneous linear system of equations is solvable for the variables A%, ..., A¥, s, d*.
Besides,

gi(xf) ... ogux) 0
1

!.]1(x;k) gn(xl)

él(x;al) o) (=1p 0

since by a well-known property of the Chebyshev system the sign of the determinant

C
% 1o,
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gl(zl) . .g,,(zl)

:gl(zn) e .g,,(z,,)

is permanentifa < z; <z, < ... <z, < b.
Hence
(D)) 6D o
gl(x’f) gn(x;k) J(xT) 1 +£0

él(x:+1) e ;]n(x::zl) }(x:+1) (”i)n

and the second property of x* is proved.
(b) If xT = a, then x* does not satisfy the equation
!0 e gi(xn) o f1(x0) | 0.

* % %

The proof is similar to the former case (starting from the equations ¢'(x7) = ¢ + 0
and e(x}) — (=1 d* =0,j=1,2,...,n + 1). .
(¢) If xy,, = b, then x* does not satisfy the equation

I 0... gl::(xnle) "'fl(xn+1)

* 3k ok

=0.

|

We can get this result from the equations e'(x;+1) = ¢ =+ 0 and e(x}) — (—1) d* =
=0,j=1,2,...,n+ 1.
Now, if we analyse the cases

xT # a(=u* *+ a), x5 F b(=v*+0b);
x} = a(=u*=a), Xy, * b(=0v**b);
xt # a(=u* +a), x5v1 =b(=v*=0);

x{ = a(=u*=a), xfy =b(=v*=0>),

then we can see that x* indeed satisfies the equations of our iteration.

Moreover, we shall prove that all partial derivatives of our iterative functions
equal 0 at £* = {u*, x3, ..., x;, v*}. (In the formulas, x; and x,., are used for the
sake of convenience only.) To this end we employ the following properties (£ =
= {u, X, ..., X,, 0}):

(1) Since x; = a + (u — a)?, therefore

0. gi(xa) - f"(0)1 | .

* %k

Dyy(8) = 2|0 iln) - S )

* 3k ok

=2(u — a)
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0 ...gilxy) - f(x)
0 gilxs).. f(xe)
= Z(u - a) ——1' {]k(xz) e f:(xz) »

(—i)n 'gk(xni—l) o f(Xus1)

% 3k 3k

Dyy(%) = ;f“ l 0o gilx)... /%)

ifi=2,3,...,n+ 1.
(2) Forj =2,3,...,n,
0

Dl' g = -
(=L

J

0...gu(x;) ... f'(x;)

* % % ’

=rmﬂmmmm

* k%
ifi =2,3,...,nand i = j;

0 ogi(x) o f(x)
1 gdxy) o f(xy)

_ (-f)f~2...gk(x,_1)...f(xj_l)
0 ...gilx) ... f'xp)
(—.l)j gk(x,-ﬂ) -~-f(xj-+ 1)

(—:1)" ék(xnﬂ-l) -‘-f:(xnn)

0... g;'c(xi) --~f,(xi)

* ¥ 3k

0
D ii(g) = 5;

J

-

ifi=1,2,..,n+ 1landi = j.
(3) Since x,.; = b — (v — b)?, therefore

Dn+1n+1(£) =
_ a210... 9i(*a+1) "'fl(xn-!—l)‘ = —2(v — b) 0. gi(Xus1) - S (Xas1)]
ov * k% | * %k ’
D) = £ |0 0T
v
0 gilx) ... f'(x)
1 v gilxy) o f(xy)
- 20 -b)| : I
(=1t glx) . f(x)
0 ~~-g;¢(xn+1) "'f’(xn+1)
ifi=12,...,n

(4) Among the functions D;;(2) of (1)—(3) the values of n(n + 1) — 2 functions
equal O at £*,

Namely,

Dil(g*) =Y, if i= 2’ 39 FERPN (3

Diy(#*) =0, if i=1,2,..,n+1;j=2,3,...,nand i * j;
Dy y(£%) =0, if i=2,3..,n
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For example, D,,(£*) = 0 because y 4, _ .

() = 0, e(x) — (~1Y d* =0 '(x%) = 0and by equations ¢/(x}) = 0,
’ J

»J=12,3,...n4+1 we obtain

Q;i(xz) o f(x5)
"‘gllc(xl) ~~f’(x1)
—:1 o glx2) L f(x,) ,=0
('—1)” gk(xn+x) "‘f(xn+1) l

= D,;(#*) = 0, or .= a = D51(#*) = 0. In the other n(n + 1) — 3 cases the proof
is quite similar to the proof if Dzl('&*) = 0.

(5) (” - b) Dn+11(f*) =0 and (u — a) Dy, (2% =0,

since v + b=¢'(xSy;) =0 and u + g = ¢'(x¥) = 0.

If we now determine the partial derivatives of our iterative functions (as derivatives
of fractional functions), then we can see (using (1)—(5) and (a)—(c)) that they equal
0 at £*. By using Theorem 10.1.7 of [3] the proof can be completed.

Theorem 2.2, Let g,(x) = 1, g,(x) = x, ..., g,(x) = x"~', where n = 2. Assume
that f(x) is four continuously differentiable on [a, b], and f®(x) exists on [a, b]
and f®(x) +0,Vxe(a,b). If § is a sufficiently small positive number and
X} — x| <6, j=2,3,..,n and x? =a(=u® =u*=x7), xP, =
= b(= v = v* = x,,), then the iteration is convergent (the limit is the unique
solution x§, X3, ..., X\ 1 of our problem) and the order of the convergence is =2.

Proof. If we prove that sequence x}, X3, ..., Xy 1 is unique and x§ = a, x},; = b
and the points x;‘, Jj=1,2,...,n + 1 are simple extremal points, then by Theorem
2.1. the proof is complete. The above mentioned properties of {x{, x5, ..., x5}
are proved in two parts.

(1) If ¢'(x) = 0 has at least n roots on [a, b], then ¢’’(x) = O has at least n — 1 roots
on (a, b) = ... = ¢™(x) = f™(x) = 0 has at least one root on (a, b). Hence x} = a,
X541 = band the sequence x¥, x3, ..., x) is unique and x}, x¥, ; are simple extremal
points.

(2) Ife"(x]) = 0,j€{2,3,...,n}, then (since e'(x}) = 0,/ = 2,3,...,n) e’(x) = 0
has at least n — 1 roots on (a, b) = ... = ¢"(x) = f®(x) = 0 has at least one root
on (a, b). Hence x},j = 2,3, ..., n are simple extremal points.

3. REMARKS FOR NUMERICAL APPLICATIONS

First we comment on the number of operations of one iterative step. The determi-
nants require 3 (n + 1)® new values of the functions g,(x), f(x), gi(x), f'(x), g7(x),
£”(x) in one iterative step. In addition, we must execute approximately 2(n + 1?3 +
+2(n + 1) (n + 2)> < 3(n + 2)° arithmetic operations, if we use the simple
Gauss-elimination for the determination of values of the 2(n + 1)determinants.
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(The value of an nth order determinant can be computed by ~2n*[3 arithmetic
operations in the case of simple Gauss-elimination.) The number of operations
of our method is essentially fixed by the above two facts.

The use of our iteration is recommended in two versions.

(1) If the conditions of Theorem 2.2 are fulfilled, then we can make a trial with
the initial values

b b-— —j+1
0 = q; x(.°)=a+ + 2a003<nn ]+ ), j=2,3,...,n;

J
2 n

0
X1 =b.

We have used the iteration in the following 12 examples:
fx)y=¢", [a,b]=[0,1], n=2345,;
f(x) =1Inx, [a,b] =[Le], n=234>5;
f(x) =sinx, [a,b] =[0,7/4], n=2,3,4,5.

(The iteration is convergent in each of these cases.)

(2) If we have a problem and have already computed “sufficiently much” by
a certain convergent (and slow) method, then we can compute a very accurate

approximation of {x{, x}, ..., x,,;} in a few steps. Now we show a simple example
for this version. Let [a,b] =[-12,13], f(x)=x*—2x* + x, g,(x) =1,
g,(x) = x. (Theexact solutionis x{ = —1, x3 = 0, xj = 1.) Here we must compute
the values of the determinants

001 f'(xi) 000 f”(x,.)

11 x, f(xy) 11 x; f(x) L

=11 x, f(x;) abd —11 x, f(x,) (i=123)
11 x5 f(x3) 11 x5 f(x3)

in each of the iterative steps. Hence, first we compute 9 new values of the functions
f(x), f'(x), f"(x) in every iterative step. (The values g,(x;), gj(x.), g7(x)), j = 1,2;
i = 1,2, 3 are given without computation.) Then the determination of values of the
six determinants needs 109 arithmetic operations, if we do not use the special features
of this example. (3(n + 2)* = 192.) If we start with the values

= -09, x¥ =01, x{ =09,

then we get
x{0 = —0:9914, x5 = 0-0021, x§" = 0-9973.

and
x(® = —0:99986, x$ = 000003 . xP = 099998 .
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Souhrn

RYCHLE ITERACE PRO STEINOMERNOU APROXIMACI

FERENC KALOVICS

V &lanku je poddna iteradni metoda pro specidlni CebySevovy aproximace, jejiz ¥4d konver-
gence je =2.

Pesrome
BBICTPASI UTEPALIMSA JIJ1SI PABHOMEPHOW AITITPOKCUMAILINLL
Ferenc KArovics

B craThe U3J10)KeH HTEPALMOHHBIN METO/I [T CIIENMAIIbHOM annpokcumanny YeOpimesa, mopsaaoK
CXOOMMOCTH KOTOPOro =2.
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