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A MONOTONICITY METHOD
FOR SOLVING HYPERBOLIC PROBLEMS
WITH HYSTERESIS
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Summary. A version of the Minty-Browder method is used for proving the existence and
uniqueness of a weak w-periodic solution to the equation u,, — div F(grad u) = g in a bounded
domain 2 = RN with the boundary condition u = 0 on 2%, where g is a given (generalized)
w-periodic function and F is the Ishlinskii hysteresis operator.

Keywords: Quasilinear hyperbolic equation, Ishlinskii hysteresis operator, periodic solution.

AMS Classification: 35B10, 35L70

INTRODUCTION

Hyperbolic equation with a hysteresis operator in the “elliptic” part describe
in a natural way the behavior of systems of evolution with hysteresis, e.g. vibrations
of non-perfectly elastic bodies in the sense of Ishlinskii [7], where Hooke’s law is
of a hysteresis type, or the electromagnetic field in ferromagnetic media.

For the sake of simplicity we demonstrate the method of solving such problems
by choosing the scalar equation

(¥) u, — div (F(grad u)) = g(x,1), xeQ, t=20,

where @ = R" is a bounded domain, g is a given (generalized) function which is
w-periodic with respect to ¢, and F is the Ishlinskii hysteresis operator ([8], [2]).
Using the Minty-Browder technique we prove that there exists a unique weak -
periodic solution to () with the boundary condition

(%) u(x,t) =0 for xedQ.

1. NOTATION, FUNCTION SPACES

In the sequel, Q denotes a bounded open domain in R with a Lipschitzian boundary.
Partial derivatives with respect to x;, (x5, ..., Xy) € Q and te R' are denoted by
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d;, 0,, respectively. We introduce the following spaces: L%, 1 < p < oo: the Lebesgue
space of all measurable w-periodic function v: R! — R* such that

[o], = (J§ [o(1)]? dt)/P < 0 for p <
and
|v|w = supess {|o(t)], te R'} for p = oo, withthenorm |+|,;

C,: the Banach space of all continuous real w-periodic functions with the norm I Iw;
IP(Q;L%), 1 < p < oo, 1 < q < oo: the space of all measurable functions: u: Q x
x R' - R' such that u(x, -) € L for a.e. x € Q and

[u]pe = (fa |u(x, )2 dx)!’? < oo, with the norm ||, ,;

for p = g we write simply L%(Q); I?(?; C,), 1 < p < oo: the subspace of all functions
u € I’(Q; LY) such that u(x, +) € C,, for almost all x € Q. .
The spaces IP(Q; L%) are Banach spaces (cf. [6]), and the same is true for I’(2; C,,),
which is a closed subspace of I7(Q; LY).
Let B4, ..., By be positive numbers, f, = min {Bi, i=1,...,N}. We denote by Z
the space of all ue L}*#(Q) such that du e L2(Q), du, 0, du e L'*P{(Q; L3), with
the norm

N
ul: = [t]1spo, 1000 + |0t]2.2 +_Zl([ai”|1+n,-,3 + 10: 07tt] 1 4p,.3) -
=

Let {e(x), k = 1,2,...} be a complete system of eigenfunctions of the Laplacian
in Q with zero Dirichlet boundary condition on 09, i.e.

IIA

Ae, = —de,, efx)=0 for xedQ, 0< i <4,
We define

sin@tek(x), k=1, j=>1,

(1.1) wilx, 1) = \

cosgljtek(x), k=1, j<0.
0]

Let us denote the closure of the linear hull of {wj, j integer, k = 1} in Z by Z°,
the closure of Lin {wj,, j # 0, k = 1} in Z by W*, and the closure of Lin {wp,, k = 1}
in Z by W. We can identify W with the anisotropic Sobolev space W¢''*#(Q) =
={ueL'*P(Q); oueL'*?(Q), u=0 on 0Q}. We have W*={ueZ’
fou(x,1)dt =0}and 2° = we W

Notice that for u € Z we have du e L' *#1(Q; C,).

Let us recall a useful lemma for periodic functions which follows immediately
from the Fubini theorem. V
(1.2) Lemma. Let ¢ € C3(R') be an odd function with support in (—w/2, w/2).
Then for each fe Lg, we have [§ [, o(s — 1) f(s) f(t) dt ds = 0.

Throughout the paper, c, ¢, denote any independent positive constants.
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2. ISHLINSKII OPERATORS

Let Fy, ..., Fy be Ishlinskii operators (cf. [8], [2], [3]) with the following properties

(2.1) F; is an odd continuous operator C,, — C, ,
(2.2) ¢;: (0, 0) = (0, )
are given twice continuously differentiable functions such that

(i) ¢, is increasing, @,(0+) = 0, 0 < @j(0+) < + 0,

(ii) @i(h) < c,h®* for every h > 0, where f; € (0,1)
(iii) y{(r) = c,r*72 for r = ry, where

2r) = inf (= gl(),0 < h 5 7],

(2.3) [Fi(u) — Fi(v)|o < 20{Ju — v|,) forevery u,veC,,
(24) 22 Fi(v) v dt £ —3yd(|v]) o [v']? dt
for every v € C,, such that v” is absolutely continuous;

(2.5) given zeR' and veC,, the difference
Fiv + z)(t) — Fy(v) (¢) is independent of ¢ for t = w. We have
Yi(v, z) = Fi(v + z) (1) = F,(v) (t) =

= sign (u + 2) [@(v + |1 + 2]) = 0:(»)] — sign (1) [@:(v + |1]) — @],

where
p = i(maxv + minv), v = }(max o — minov).

The functions (v, +) are continuously differentiable and for every v € C,, z, z;, z, €

€ R! we have
(i) |‘//i(”: zy) — ‘//i(v’ Zz)l = Z‘Pi(%lzl - ZzD ’
(i) 9/0z oo, 2) Z Pi(|v]o + |2]),
(ii)) (v, 0) = 0;
(2.6) let u,veC, be absolutely continuous. Then
2 (F) — F0) @ — o) dr 2 0.

If moreover

(22 (Fu) = Fv)) (W' — ¢)dt =0, then u' =0 ae.;
(2.7) for uelI?’(Q;C,) we define F(u)(x,t) = Fu(x, *))(?)
for a.e. x € Q and every t € R'. We have

Fu)e L??(Q; C,) and |F(u) — Fi0)|,/5,0 S clu — o5,
for each u, ve I!(Q; C,).
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3. EXISTENCE AND UNIQUENESS THEOREM

(3.1) Theorem. Let F = (Fy, ..., Fy) satisfy (2.1)—(2.7),

F(grad u) = (Fy(04u), ..., Fy(0xu)) ,
and let G = (Gy, ..., Gy) be such that G,, 3G, e L' */#{(Q; L3/?). Then there exists
a unique u € Z° such that for every z € Z° we have
(32) fof2°(—0m .0,z + {F(grad u), grad z) + <G, grad z)) dtdx = 0,

where (-, *> denotes the scalar product in RN.
The method of the proof is classical (cf. e.g. [5]). We decompose u into v + w,
where v € W, w e W are solutions of auxiliary problems I, II.

Auxiliary problem I. Find v e W* such that
(3-3) faf2® (=00 0,z + (F(grad v) + G, grad z)) dtdx = 0

for every ze W

(3.4) Lemma. Let the assumptions of (3.1) be fulfilled. Then there exists a unique
solution ve W* to (3.3).

Proof of (3.4). Put v,(x, t) =k§1 . i i wi(x, 1), where v, satisfy
=1 j=m
j*0
(3.5) fa [2° (=0, 0w, + <(F(gradv,) + G, grad w;>)drdx = 0,
k=1,...m, j=—-m,....,— L1, ...,m.
We first derive apriori estimates which ensure the existence of v, satisfying (3.5).
We have

fa (20 (F(grad v,), grad 8}v,,» dt dx = [, [¢ <G, grad 9;v,,» dt dx .

Using (2.4) and the relation |0,,(x, *)| < ¢4]0; 8,9,(x, *)|5 we obtain

N
(3.6) '—21 fa7i(e1]0; 80u(x, *)|3) |0 Bom(x, +)|3 dx <

N
= ;1_"9!0:2 Gi(X, ')|3/2 |ai 0, l’m(x: )ls dx .

Putting M’, = {x € Q; |0, 0p.(x, *)|3 = rofc;}, where ry is defined in (2.2) (ii),
ML = Q\ M, we have [y_ |0; 9p,(x, *)|[37# dx < (rofc,)' *#i meas Q , and (3.6)
yields
(37) (i) |0:00m|14p,3 < ¢, hence

(i) |0i0m|14p,0 < €

(iii)  [Fi(0:0m)]14+ 17500 < €

Moreover, from (3.5) we derive
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fo 22 (= (0,0m)* + <F(grad v,) + G, grad v,») dtdx = 0,
hence
(38) lazl’mlz,z _S_. ¢, lvm‘Z,m Sec.

The estimates (3.7), (3.8) imply the solvability of (3.5) (cf. e.g. [2]). Moreover, we
find a subsequence {v,} = {v,} and ve W* such that v, - v, 9, ~ ;v in L2(Q)
weak, 0, 0,p, — 9; v in L'*P4(Q; L3) weak. We can assume that F,(0,,) is weakly
convergent e.g. in LL" /#¥(Q); we denote its weak limit by x;, x = (%1, --+» Xy)- Passing
to the limit in (3.5) we obtain

(3.9) 2|2’ (=00 8,z + {x + G, grad z)) dt dx = 0

for every z e W*. It remains to prove that v satisfies (3.3). We apply the Minty-
Browder method (cf. [5]).
Let o € C3(R") be a nonnegative even function,

[2oo(s)ds =1, suppo c(—9 2).

272
For ¢ € (0, 1) we set

(3.10) o(x,1) = % j :Q C (t - s)) o(x, 5) ds = f “ o(s)olx, 1 — es) ds.

— 0

Setting z = d,v, and using (1.2), we obtain from (3.9)
fo [2° <x + G, grad 0,p,y dtdx = 0.

Since 8; d,v, = 9; 0,0 in L,*P¥(Q) strong as ¢ » 0+, this identity implies
fo f22 <x + G, grad 9py dtdx = 0.

On the other hand, (3.5) yields

lim o [2° (F (grad v,), grad d,v,» dt dx =

n—co

= — [ [2* (G, grad 0v) dt dx = [ [2° {x, grad d,v) dt dx .
In particular, for z € W* we have (cf. (2_6))
fa [2° <F (grad v,) — F(grad z), grad 6,0, — grad 9,z) dtdx 2 0.
Passing to the limit we obtain for z = y — xw, x > 0, we W*
fo 12 <y — F(grad v — 5 grad w), grad d,w) dtdx = 0.

Consequently, for % — 0+ we conclude (notice that we W* is arbitrary and F;
is continuous from L'*#(Q; C,) into L1 +1/#4(Q; C,))

fa 2 {x — F(grad v), grad z) dtdx = 0
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for every z e W*, hence v satisfies (3.3). The uniqueness in Lemma (3.4) follows
easily from (2.6). Indeed, let v*, v* be two solutions of (3.3). We put » = »' — »?
and z = d,v,, where v, is given by (3.10). From (1.2) we obtain for ¢ — 0+

fa §5° (F(grad v*) — F(grad v?), grad 6,0 — grad dp*) dtdx = 0
and (2.6) yields v* = v>. The proof of (3.4) is complete.
Auxiliary problem II. Find we W such that
(3.11)  fq <¥(grad v(x, +), grad w(x)), grad z(x)) dx = [ <G(x), grad z(x)> dx
for every zeW, where Y(grado(x,*), grad w(x)) = (,(d,0(x, ), d,w(x)), ...
o Un(@x0(x, +), Byw(x))) (cf. (2.5)),
G(x) = — i J "(6(x, 1) + F(grad v) (x, 1) dt,

and v is the solution of (3.3).
(3.12) Lemma. There exists a unique solution of (3.11).

Proof of (3.12). The space W is reflexive. Let ((+, +)) denote the duality between
W and W*. For w, ze W we denote by ((Tw, z)) the left-hand side of (3.11). We,
verify that the mapping T: W— W* thus defined is demicontinuous, bounded,
strictly monotone and coercive. The demicontinuity, boundedness and monotonicity
follow immediately from (2.5) (i)—(iii). To prove the coercivity of T we denote

Mi = {x e Q; |ow(x)| > max {ro, |00(x, *)|o}} »
M} = {xeQ, [ow(x)| £ [0n(x, *)|o} >
My = Q\(Mju M),

Il

where r, is defined in (2.2) (iii). By (2.5) (ii) we have
fa Wi00(x,*), 0w(x)) d,w(x) dx =
2 [q [ow()|* 0i(|0:0(x, )| + [0w(x)]) dx = €q [4] |0w(x)| P dx .

On the other hand, [y, e, [0w(x)|'™? dx < ¢, hence for arbitrary we W we
obtain the inequality

(v, ) 2 €3 . faon(3)] P = e,

which implies the coercivity of T. Lemma (3.12) follows now from the Minty-Browder
theorem (cf. e.g. [1]).

Proof of Theorem (3.1). We put u = v + w, where v e Wi, we W are the solu-
tions of (3.3) and (3.11), respectively. An easy verification of (3.2) completes the proof.
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Souhrn
METODA MONOTONIE PRO RESENf HYPERBOLICKYCH ULOH S HYSTEREZ

Pomoci jisté verze Mintyho-Browderovy metody je dokdzina existence a jednoznadnost
slabého w-periodického feSeni rovnice u,, — div F(gradu) = g v omezené oblasti Q < RN
s okrajovou podminkou ¥ = 0 na 92, kde g je zadana (zobecnéna) w-periodicka funkce a F
je hysterezni operator ISlinského.

Pesiome

METOJA MOHOTOHHOCTH JIs PEIMEHWS I'MIIEPBOJIMYECKUX 3AIAY
C I'MCTEPE31ICOM

PAVEL KREICE

HexoTopslit BapranT MeTona MuHTH-BpayAepa IpEMeHsIeTCs K 0Ka3aTelbCTBY CyIIeCTBOBAHUA
M eIMHCTBEHHOCTH CIabOro -NMePHOJMYECKOTO DPEelIeHHs ypaBHeHHA 4, — div F(gradu) = g
B OrpaHMYEHHOM obsacT 2 < RNc KpaeBbIM ycinoBueM ¥ = 0 Ha 0F2, roe ¢ — 3aganHast (0600meH-
Has) o - neproanyeckast GyHKums 1 F — rECTepe3ucHbIi onepatop WNUTMHCKOrO.
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