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TWO STEP EXTRAPOLATION AND OPTIMUM CHOICE
OF RELAXATION FACTOR OF THE EXTRAPOLATED S.0.R. METHOD
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Summary. Limits of the extrapolation coefficients are rational functions of several poles
with the largest moduli of the resolvent operator R(4, T) = (Al — T)~! and therefore good
estimates of these poles could be calculated from these coefficients. The calculation is very easy
for the case of two coefficients and its practical effect in finite dimensional space is considerable.
The results are used for acceleration of S.O.R. method.
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1. INTRODUCTION

In the paper [1] a possibility of improving the convergence of a sequence {x;} %,
which is obtained from a convergent iterative process

(1.1) Xj+1 = ij + b

for solving an operator equation
(2.1) x=Tx+b

in a Hilbert space X was investigated. The symbol T will always denote a linear
bounded operator on X with spectral radius r(T) < 1. Therefore for every x, € X
the sequence {x;} {2, obtained by using (1.1) is convergent with a limit x* = Tx* + b.
The scalar product in X will be denoted by (-, -) and the norm |x| = (x, x)'/?
for every xe X. Let I > 0, k, my, my, ..., m, be integers such that the inequalities

(3.1) k>m>m_;>...>m; >my=0

hold. For a given positive integer n let H = I — T". Moreover, we define the norm
x|l = |Hx]| for all x.

The principal idea given in [1] for improving the convergence consists in the
construction of new approximations
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k k k
Vi = 0§ + o, + o+ aPxi

to x*, where the condition for the complex numbers o is

1 1
(4.1) [x* = 3 % la = min  [x* =¥ Bixi |l s
i=0 0t e 1= i=0
BieC
1
@.1) Ta® 1.
i=0

This construction of a new sequence {y,} will be called an extrapolation and the
numbers (¥ the coefficients of extrapolation.

We put
(5.1) g=x*—x; m=I—-T)g,

(nlu nk)9 (nk—mla nk): ("k——mz, ’1k)5 ey (nk—m,, ”k)
(6.1) Qk = (nk’ nk—ml)’ (nk—mls nk-—ml)’ ("k—mz’ nlc—m1)7 RS (ﬂk—mn nk—ml)

(nk’ r’k—m;): (nk—mla nk—m;)’ (”k—mzs nk—-ml)s LR (”k—m;! r’k—m,)

and .
(7.1) a® = (@, o, ..., )T .

It is easy to see from (5.1) that

(8'1) N = Xggn — X«

We have proved in [1] that if the matrix Q, is positive definite then there exists
one and only one vector a® = (af, af?, ..., )T which solves the problem (4.1),
(4.1"). It was shown that

(9.1) a® = (e"Q,e) ™! Q; 'e, wheree = (1, 1,..., )™
Moreover, we have proved in [2] that there exists p > 1 such that
tim (Jx* — sl ~ %17) = 0,

and in the same paper convergence and limits of o were studied. Limits of the
extrapolation coefficients are rational functions of several poles with the largest
moduli of the resolvent operator R(4, T) = (AT — T)~ !, and therefore good estima-
tions of these poles could be calculated from o). The calculation is, indeed, easy
for I = 1 and its practical effect in a finite dimensional space is considerable.

Let us consider a system of linear algebraic equations

(10.1) Ax =b,
with a positive definite ¢t x ¢ matrix A. Let A = D — E — F where D is the diagonal
of A, while E and F are strictly lower and upper triangular ¢ X ¢ matrices, respectively.

The successive overrelaxation iterative method (S.0.R. method) applied to (10.1)
gives for w € (0, 2) the convergent iterative process
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(1L.1) Xj+1(0) = &£, xj(w) + c(w), where
Ly =(D - 0E)"' (oF + (1 — w) D) and c¢(w) = w(D — wE)™ ' b.

If A has property A, the optimal choice of w is given by w, = 2/(1 + \/ (1 - pd),

where y, is the spectral radius of the Jacobi matrix D™*(E + F). Let us put y,(w) =

= of x,(w) + af x,_,(w), where k = n is an integer. We shall see later that the

optimal w, which minimizes the R,-factor (i.e. the number lim sup [|x* — y,(w)]"*)
k—

is given by w, = 2/(1 + /(1 — u3)), where gy > p, > ... > p, > 0 are all positive
and mutually different eigenvalues of the Jacobi matrix. This is not convenient
for the practical use. Nevertheless, the investigation given in this paper leads to
an algorithm which gives very good estimates for w, without any knowledge of the
eigenvalues u;. Moreover, these estimates are calculated simultaneously with the iter-
ations and require only a little more work. Numerical examples show the effectivity
of this process in comparison with the optimal S.O.R..

The paper is organized in several parts. First, we present the theoretical investiga-
tion from which the behaviour of a{, a{® and y, as functions of k follows. Then
we calculate the first two poles of R(4, T'). Application to S.O.R. method and numeric-
cal results of a model example from reactor engineering conclude the paper.

2. AUXILIARY THEOREMS

Let the symbol C denote the set of complex numbers. Let the spectrum of T
have the following structure: There exist finite sequences {i,} % of positive integers
and {Ak};=1 < C for some integer r > 2 such that each 1, is a pole of the resolvent
operator of the order iy,

(12) b= il > ol > sl 2 Pl 2 2
(2.2) i+ 4; for i#j, and
(3.2) {Aeo(T), A2, i=1,..,r}=|1 < |A,| .

For a fixed j e (1, r) let C; be the circumference with center 1; and radius ¢; > 0
such that

{AeCl]A— 4| £ o} na(T) = {4} .
Let K = {e C||A] = 7}, where © > r(T) and Co = {1e C ||| = g,}, where g,
is taken such that
{AeCl|A] £ 0} no(T)=0o(T) = {2y, ..., 4} .
We will assume without any loss of generality that

(4.2) Bjigo =0 forall j=1,2,..,r,

J
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where
B, = LI (A = 4)" ' R(A, T) dA
27i Cj

forallj =1,2,...,r and for every j we have i = 1,2, ..., i;.

Assumption 1. Let

(5.2) : l=1, i;=1,
(6.2) m, < i ij, i3 =max{i||| = |} - _ O
Put "
(7.2) _ n=m, and k,=max(i;) +n.
Let us denote
(8.2) vji = (I = T") Byigo[4;" .

Lemma 1.2. The equality

©) n=F 3(, ) o0

j=1i=1\} —

holds for k > kg, where

(10.2) o(k) = (I = ) (5}; j R T dl).

All vectors v;; are linearly independent.

Proof. We have

g = Trey = 1 j M R(A, T) go dA =
2w J
- —LJ 2 R(2, T) g di +—1j JR(2, T) e dA =
¢ 2ri

j=12mi Co

=3 Z ( k )ljf"”’ Bjieo + —1 A R(2, T) g d2.
sris\i— 1 27i J ¢,

Tl

From (8.2) the equalities (9.2) and (10.2) immediately follow. In order to prove
the second statement of this lemma, it suffices to prove that the vectors Bj;g, are
linearly independent. But this immediately follows by virtue of the relations B; ; .1 =
=0and B, = (T— AI)B,. O

The general formula (9.1) implies that the coefficients a”, af*” which solve (4.1),
(4.1’) are the solution of the linear system

(12 (o e (D) -(0):
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(11.2) oa® 4o = 1. o

It was proved in [1] that there exists an integer k; = ko, such that“jfor every k > k,
the matrix of the system (11.2) is positive definite, and if the dimension of X is
finite, then we can put k; = ko. In [1] (see Theorem 3 and Lemma 4) this assertion

is proved for every integer I < Y i.

i=1
If we use the notation 6,7, for the difference
(12-2) OiMe = M — Mig—n
then (11.2) and (11.2") yield
(13-2) (51’110 J171x) °‘<()k) = _(’7k«m 51’7k) >

(51'7::, 51’1k) 0‘(1k) = (”Ik: 51’7k) .

Now we shall describe the asymptotic behaviour of the numbers (r,_,, 5,1,) and
(8114» 61m;)- The following lemmas will be of assistance in completing the calculations.

Lemma 2.2. Let j e <1,r) and p be integers. If we put w(k) = k*2;* v(k), where
v(k) is defined by (10.2), then
(14.2) limw(k) = 0.

k= o0

Proof. The following inequality is evident:

Pt o)] = 4| 1 = T 2t max R ] oo =

= (11 = ™ eomax [RG. )] ) (25 )

The relation (14.2) now follows from the fact that g, < |4;]. 0

Remark. Let v = 0 be an arbitrary integer, u = {4;};%,, v = {v,};%, two se-
quences. The symbol u = O(,) denotes that |u,| < c|v;| for some constant ¢ for all
k= v. Ifu = O(v,) and v = O(u;) then we will write u = v. :

Lemma 3.2.If k and i, wherek > nand1 <i <k —n+ 1, areposztwe integers
then the equality ,

: k N\t /k—n n(i — 1)
(15.2) (i—l) (i_1>—1—~—r+<pk holds ,

where ¢ = {@,) 7,14 = O(1/k*). Moreover, ¢ = 0 if i =1

Proof. The assertion is evident for i = 1. For i > 1 we have

(2" CD-(D0 56t
(-D6-1E0) (2B -2
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where evidently {¢,};%,.; = O(1/k?). O
For the vector #, defined by (5.1) we have obtained the expression (9.2). Analogously
we can obtain a formula for #, _,,.

Lemma 4.2. Assuming as before that k = k, then the vector n,_, satisfies the
formula

. r iy k .
(16.2) Neen = A"y, +.Zz ‘21 (i - 1) A "a; (k) + v(k — n),
j=2i=
where
(172)  aj(k) = <1 - w + <pj,~(k)> v;; and {@;(k)}ie, = O (l_clz>
for all j, i. Moreover, {¢;(k)}i, = O for i = 1.
Proof. In (9.2) we replace k by k — n and apply Lemma 3.2. 0
Denoting
ij—1
i_,’ i;l' if I= 2
ig‘l T < i
Yoooif j>2, '

i=1
we obtain from (12.2), (9.2) and (16.2) that
(18-2) O = Mk — My—n =

~ Bo + (iz k 1) Ag[vm + (iz k 1>—1 Ak {22 i, (i £ 1) oy, + v(k)}] _
~ - () A +
(s S ]

j=2i=1
In order to simplify the formula (18.2) we introduce

Assumption 2. Either
(A1) (011, 021,) £ 0 or
(A2) (v35,95) =0 forall j>1, 1ZiZi;. O
This assumption makes the formulas for #,_, and d,1, much simpler.

Lemma 5.2. There exist sequences of vectors {u;(k)};> ., _, = X and {u,(k)}%,, <
< X such that for k = k, the relations

- k -
(19.2) "k—n = A’i 011 + (i2 _ 1) l’; [inZ + ul(k - n)] s
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(20.2)  Syme = A5(L — AT oy + (iz 'i 1) B = 27" [025, + ua(K)] s
(21.2) (O}, = (i) it o>,
(222) (@2, = 0 (k*rl(%)k) i iy =1

2

hold. The relations (21.2) and (22.2) are valid for s = 1, 2.

Proof. The statements (19.2) and (20.2) follow immediately from (16.2), (17.2),
(18.2).

3. EXPLICIT FORMULAS FOR COEFFICIENTS o« AND &

From (19.2) and (20.2) we easily obtain formulas for the scalar products
(e—-n> 01m) and (8,1, 81mi). The structure of the spectrum of the operator T was
described in the previous part. We suppose the assumptions 1 and 2 are valid. For
the sake of simplicity we put

A

1

(1.3) Y _ qe'®, where q =

A4
The integer k, was defined by (7.2).

Lemma 1.3. There exist sequences of complex numbers {B}iy, = O(1) and
{n}exx, = O(1) and positive integers %4, %, such that the equalities

(2.3) (Me=m 011) = 22 A7"(1 — AL" "vuﬂ [1 + kg*B,],
(3.3) (0111, O4me) = A3° |1 — AL"[? ”'-’11"2 [ + k*g**y,]

hold. If the case (A1) holds in assumption 2 then *y = i, =1 and %, = 1. If,
moreover, A, is real then

(4.3) (B = {1},
and if (vy,, v5;,) *+ id for some real d then
(4.3) {nhizee = {1} -

If (A2) holds then %, = 2(i, — 1), %, = 2 and the relations (4.3) and (4.3") hold.
Proof. First, we shall prove (2.3). From (19.2) and (20.2) it is obvious that
(Mh—n> B31) = leln AT"(L = A7™) (044, 014) +

-n k \g—F==
w7 ) T2 oo+ 9) +
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k -
T o) [y [

2 ———
# (1,5 1) B T ol = ) 9.
.

k 1 - 2 i, —
i = k™ ! 1 - 1-= 2 =
Since we have(i2 _ 1) - 1)1 ( k) ( k) ( P )

= kiz~1 | _ 1 + l//k>, for i 21 and k > ko, where {y}>,, = O l) if
(i, — 1)! . k
i, > 1 and {y,} = 0 for i, = 1, we obtain by easy calculation

—_nf71 s =n iy — —i 1 - A,—"
(11,‘_", 51”]() == A%kﬂl (1 h 2,1 ) ”011”2[1 + k 2 lqk{e k(ﬂ szn (”11’ U2i2) +
1

-n
ikp )'2

) + 91}/ [on |2/ = 1)t +

(5.3) .+ e

4 g {‘2" L= o)+ %(k)} / o |2/((Gs ~ 1)!)2] ,

g
1
(E) if lz >1

k
(k‘3‘1< 3)) if i, =1
A2

i 011) + 91(")}/””11“2/("2 -,

where accordmg to Lemma 5.2
O, = <

fors = 1. 2. Putting
(6.3)

. ﬂ,—
1 —-
B = {e o 1 (011, U35,) + e'k"’ =
- 7" A

o3 = B (vzlz,vzmsz(k)}/ o G = 17,

A"l —
we have from (5.3)
(83) (M S1m) = AFA7"(1 = A7™) [oaa]? [1 + K=714(BY + K2 1g*)] .
Substituting in this formula
93y - = B 4+ KR

we immediately obtain (2.3). The relation {Bi}res, = O(1) follows evidently from
(6.3), (7.3) and (9.3). Assuming (A1) and 1, real we have ,

A" ,l(vu, ”ziz)l _ I‘gl(k)|-

L e

1— A"
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But 9,(k) — 0and k">~ 'g*B>> — 0 and therefore in order to prove (4.3) it is sufficient
to show that |(1 — A7")/(1 — A7")| — |A7"/A1"| # 0. Evidently we have

1-4"_ 4 + 0 and 1= 4" +%—2——
1—27" A" 1—A7" A"

+0.
If assumption (A2) is fulfilled then B{" = 0, and substituting B, = B in (8.3)
we obtain (2.3). From (7.3) we have

A2
A"

1— A"
1— A"

”021'2”2

[ouil? (Ga — D97 °

lim inf |B,] =

k=0

Analogously we can construct numbers

L1 — A"
(’1) — e—-lktp 2
Tk { 1= A"

1— a5
— (v2i,, ¥ +
1—1;"(2 11)

(011, v25,) + elke
(10.3)

+ ‘9'1(]‘)}/"”11”2/("2 -1,

1— A"

13 o = ([F5E] oul? + 509) [leaPU - 7,

where {3;(k)} >, equals O(1/k) or O(k™™'(13/4,)¥) in the same way as {34(k)} iy,

Putting

(12.3) he=10 + k2T

we have (3.3). The rest of the proof is obvious. ' [}
The relations (6.3)—(12.3) imply that

P e

Sp =B — =€ <"“ )(vziza ”11)/””11“2/(iz — 1!+ 95(k) +

R
(13.3)

N R N 9
e {——‘——— ('11_" 1= l;") "”11”2 (i, — DY)? + 8500

where {95(k)}, {95(k)} equals O(1/k) or O((23/4,)* k™~ "). Evidently

(14.3) lim sup |5, < + o0 and for areal 1, we have
k=0
(14.3") lim inf |§,] > 0.
k= o .

From (13.2) and Lemma 1.3 it follows that

HNic—n> 51’1k) 1 %1 %2k

(153) “(k) =~ ( = n (1 + k lq ? ok) ’
° (51’% 51’7k) 1 -2

where . : .

(16.3) O = Sk 4 \94(’() and - {94(k)} - O(kquzk) .
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From (11.2') it follows that

(17.3) o = — (14 amgty),
17

where

(17.3) 8, = &,/47 .

This all is valid not only for sufficiently great k but for all k = k, as we shall see
in Part 4.

Remark. Assumption 2 is no restriction. Supposing some other orthogonal
relations to hold between v;;, we obtain for «{ and «{*’ the formulas (15.3) and (17.3)
again where %, is a nonnegative integer (in general %; + i, — 1) and |q| < 1 (in
general |g| # [12/A,|). The other relations are valid.

Let us summarize all the results.

Theorem 1.3. Let X be a Hilbert space, Te [X], r(T) < 1. Let 1, ..., 4, be poles
of R(4, T) of order iy, ..., i, respectively, and suppose that (1.2)—(7.2) and

Assumption 2 are valid. Let us denote q = [lz/ld.

Then there exist sequences {3}y, = O(1) and {9 }i=s, = O(1) such that

1
1=
(k) A'; ®y %2k N n
af? = — —2—(1 + k*'q¢***9,), where 9, = §,/1}.

11—

If (A1) in Assumption 2 is valid, then x, = i, — 1 and %, = 1.If (A2) in Assumption 2
is valid, then », = 2(i, — 1) and x, = 2. If, moreover, A, is real then {5} oy, =
~ {1} in both cases.

o =

(1 + kxquzkak) ,

4. CALCULATION OF A; AND 1,

The question to be considered in this section is that of finding the poles 4, and 4,.
The equations (15.3) and (17.3) provide formulas not only for the calculation of 1,
but, also as we shall see, for 1,. However (15.3) and (17.3) imply only that af” =+ 0
for all k = k;, where k, is an integer greater than k, defined by (7.2). According
to (13.2), as a first step toward the expression of A, and 1,, it will be shown that
in general , & 0 and d,n, + O for all k = k,. Let us assume the contrary.

Lemma 1.4. If for some k, = k, the relation n,,_, = 0 holds then x,, = x* =
= Tx* + b.

The proof is obvious.
It is natural to introduce

g

Assumption 3. Let the iterative process (2.1) be not finished after a finite number
of steps, i.e. let the equality x,, = x* be not valid for any k, = k.
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Lemma 2.4, Let Assumption 3 be valid. Then

(1.4) M+ 0 and &, + 0
for all k 2 ko = max (i;) + n. 0
j=1 r

.....

The proof is obvious.

Asumption 3 makes it possible to define a sequence {,(n, k)};>,, by the formula

(2.4) 2, k) = —a® el .
Theorem 1.3 implies
9, -9
3.4 An, k) =201 4 kg "k},
( ) 1( ) 1[ q 1 + kquzkék]

If we denote
)
4.4 =01 -1 ——F——
( ) k ( 1)1 + kxquzk(sk
then using (3.4), (13.3) and (17.3") we can formulate the following theorem.

Theorem 1.4. Let us suppose that the assumptions of Theorem 1.3 and Assumption 3

are satisfied. Let {A,(n, k)}i>.,, be defined by (2.4). Then there exists a sequence
{&} ik, = O(1) such that

(5.4) An, k) = 2] + k¥1g**¢,

holds. The numbers x,, %, and q are the same as above in Theorem 1.3.
Let, moreover, A, be real. If (A1) is valid and if we denote

(6.4) 5= (lz‘ "1 /15") ] (0210 911)

AT 1 =27 oaa)|? (i = 1Y
then
(7.4) E=(1—=21")6 + 94.4(K).
If (A2) is valid and if we denote
(6.4 =12t (12:" - A?) ool

1= 27" \AT" 1= 27" Joga | (GG = 1)Y)?

then
(7.4’) Ee=(1—=21)0 + 9;,.(k).

In both cases, for s = 1, 2 we have
0(—11;) if i;>1
94,s(k) =

k K
O(max [:(43) kPt (113) ]) if i,=1
2 R
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and {& e, = {1} o . O
From (19.2) we have . -

-n
1

def ., e oo
(8.4) ol = — A, = k2712 <1 - 12 >(v2i2/(i2 = D+ u)

where
, 1
0<—> if i,>1
k
iz = <

N o((2) 1)) it =1

However, what happens if we do not know 4, a priori? We should use only A,(k, n)

instead of 1, in this case. Substituting (5.4) in (8.4) gives
def

(94) wk = r,lc - ;Ll(na k) Nk—n =
= o) — kg E [N,y + KT (0,,,)(i = 1)+ uy(k — n)],

k
where {[uy(k — n)||&i, equals O <Ilc> or O <<4—3> k"’”) . .

Ay
We are interested in the second term on the right hand side of (9.4). We have q =
= |2,/4,] and if Assumption 2 is not valid, the inequality g < |4,/4,| may hold.
This inequality implies that w, = o{" + 0((12/4,)) for k - oo and the same is
true if %, = 2. Hence (Al) in Assumption 2 represents the most pessimistic case.
In the sequel, let (A1) hold. We have

k
w, = of? — k271 {(%) e ML oy + lgﬂk} >
1
whete ([} = 0(K~ (1)1,
Substituting w{" from (8.4) we obtain

(10.4) w, = k71 '1_1 — 42" V2, = € O EAT VG F 2 |
Ay — 1)

where the sequence {[|z,]};%;, behaves in the same way as {3, ,(k)} in (7.4). If 4,
is real, then we can put (1 — A7") § instead of &,. The above considerations yield.

Theorem 2.4. Let us suppose that the assumptions of Theorem 1.4 are satisfied.
Then there exist sequences {w,' &y, and {z,} =, such that

(11.4) (wel}ese = 0(1), we 0 Vi = ko,

0 1) if ip>1-
(29) (i =< ( , , ;
ool o] v e
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and the equality
(13.4) w, = k7125 (w(k) + z(k))
holds. If A, is real then w(k) = w = 0 is independent of k. Moreover,

(14.4) (e ARER()
(wln wk)

and

(15.4) @ @) _ 19,
(wk, wk)

where the behaviour of the sequences {v(k)} and {v,(k)} is the same as above in
(12.4). o

5. BEHAVIOUR OF AN EXTRAPOLATED VECTOR

Concluding our theoretical investigation we give an explicit formula for the
vector y, = af?x, + a{Px,_,. Denoting

(1.5) uy; = Bjigo[Ai!
we obtain from (8.2), (19.2) and (5.1) that
(2.5) oxe = x* = (w4 KT uy, + 24(R)])

where {[z,(k)]} equals O(1/k) or 0((%>k ki3"1>

2

depending on i, as above.
Hence, using (15.3) and (17.3), we have

(3.5) yie = aPx, + oaPx,_, =

= x* + k2710 [{(/1;" — 1) uqq + (i”z_n - 1) uz,.z}/(l -7 + zk],
1

where the behaviour of {|z,|} is given by (12.4).

Theorem 1.5. Let us suppose that the assumptions of Theorem 1.4 are satisfied.
Then there exist sequences {w,} i, and {z;} 2, with the same behaviour as in
Theorem 2.4, such that

(4.5) yi — x* = k2715 (w, + z,)

holds. If A, is real then w, = w % 0 is independent of k.
Moreover, there exists a sequence {z ;' -y, such that {||z,[} = O(k™7*(4,/2,)"),

(5.5) Yirr — X% = Ty — x*) + zy4
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and
(6.5) Vier = Ty + b + 2y O

Proof. The statement of this theorem follows from (15.3), (17.3) and the calcula-
tions at the beginning of this section.

6. OPTIMAL CONVERGENCE OF EXTRAPOLATED S.O.R.

In this section we show how the above results can be applied for improving the
convergence of the optimal S.O.R. without any a priori knowledge of eigenvalues
of the corresponding Jacobi and S.O.R. matrices, respectively. Let X be the t-di-
mensional space. We seek the solution of the matrix equation

(1.6) Ax = b,
where A is a given t x t positive definite matrix, t = 4. Let us write
(2.6) A=D(I—-L-U),

where D is the diagonal of 4, while Land U are strictly lower and upper triangular
matrices, respectively. The system (1.6) is equivalent to the system

(3-6) x=%x+d,

where

(46) Z,=(I-oL) ' (wU+(1—-w)D) and d= (Il — wL)™* D™ 'b.

It is well known that #(Z,) < 1 for w € (0, 2). We assume that the Jacobi matrix B
is weakly cyclic of index 2, consistently ordered and convergent. If

(5.6) By >y > >,

are all mutually different positive eigenvalues of B then the spectrum o(B) satisfies

(see [6], [7], [4])

(69 o(B) = (0] = (oo i — bt — 1)
Put u} = v;. Itis well known (see [6]) that
(7.6) (L) = {0} = {vi, ..., v,} .

Let f be a mapping, 2(f) = (0, 1), given by the formula

(8.6) f(x) =2/(1 + /(1 - x)).

Evidently R(f) = (1, 2). The numbers w; = f(v;) will be called i-optimal and the
numbers from the set (1,2) =~ {w;|i = 1,..., p} will be called regular. The function
r(£,,) is continuous in the interval (0, 2), decreases in (0, w,» and coincides with the
function @ — 1 in {wy, 2) and r(&,) = 1. Hence

(10.6) min {H(Z,) | we(0,2)} =0, -1 <1
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From (8.6) it follows that
(11.6) l<w,<Wpey <...<w; <2.

For any w; we have o}u} — 4(w — 1) = 0. The following theorem has been proved
in [6]. We only present it in a form suitable for our purposes.

Theorem 1.6. If we (1, 2) is regular, then &, is normalizable and the number
(13.6) Aaj-1(@) = ((0n; + (@1 = 4(0 = 1)))[2)?,
(14.6) Aoj(@) = ((wp; — V(@n] — 4o — 1)))[2)

forj=1,..,pand A =1 - o if 0e o(B) are eigenvalues of £, while no other
complex number is an eigenvalue of %, The multiplicity of A;;_,(w) and i, (w)
equals the multiplicity of p;.

If an integer i€ (1, p), then the matrix £, is not normalizable. In this case
£, possesses d; principal vectors each of grade 2, where d; is the multiplictty
of the eigenvalue pi;. All the other eigenvalues of £, are simple poles of the resolvent
matrix R(, Z,,). For an integer j e (1, p> and w € (0, ;> the eigenvalues (),
Ap(@), ..y Agj— 1 (@), A5/(@) of &, are real and fulfil the inequalities

(@) > A3(0) > .. > Ay (@) 2 Ayi(w) > ... > A(w).

The equality A,;_,(w) = A(w) holds only for o = w;.
For any integer j € {1, p) and real w € (w;, 2) the eigenvalues Az;_ 1(®), A, ,(w), ...
..» Azp(@) are not real and

[h2j-1(@)] = [ (@)] = ... = [A2p(@)] = 0 — 1.

The last equalities hold for w = w;, too. a
The proof of this theorem is based on the well known relation between the eigen-
values of B and %, of the form

(15.6) A+ o= 1) = 107>,

Let us remark that the Jacobi matrix B is normalizable and has real eigenvalues
since DY2BD~12 =] — D"Y24D~ 12 and the matrix on the right hand side is
Hermitian. Theorem 1.6 implies that for 1 < w < w, the relation (1.2) is valid,
and the second eigenvalue A;(w) of Z,, is real. In order to verify all essential assump-
tions in Theorems 1.3, 1.4, 2.4 and 1.5 we must discuss Assumption 2. Therefore,
we will discuss the eigenvectors and as the case may be, the principal vectors of Z,,.
For every 2-cyclic matrix A there exists a permutation matrix P such that PAPT
has the form

<gl’ ll): ) , where the submatrices D, and D, are square and diagonal. Since A
> 2

is positive definite we can form the corresponding Jacobi matrix
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(16.6) B= (0’ Bz),

B, 0

where B, = D;'E and B, = D7'F. It suffices to discuss the eigenvectors of B

of the form (16.6). Let us remark that all eigenvalues of B are real because A is
positive definite.

Theorem 2.6. Let py = fi; = ... 2 p, be all positive eigenvalues of the Jacobi
matrix B, and let

(17.6) (t:;) ’ (vw22> T (l::)

be the corresponding eigenvectors partioned according to (16.6). Let Zyq4 1,

..., 2, be the eigenvectors of B corresponding to zero and let (A,;_,(w))"/* and
(22/(w)"'? be defined by the formulas

(18.6) (haj- (@) = (op; + (@1} = 4 — 1))2
and

(19.6) (Raf(@)'? = (op; = (@1 — 40 = D)2. |
Then

1) if w is regular (i.e. ® + w;V; = 1,..., q) then the vectors
(206) ((xl(w»*“ w) ’ <(As<w»“2 w) ' ((AZq_ (@) w) ’
((lz(w) v l:le) ’ ((14(w))” * 1;2) Y ((hq(w))”2 quq>

and 25444, ..., Z,, are the eigenvectors corresponding to the eigenvalues ,ll(a)), ey
Ay(w) and | — , respectively and form a basis in t-dimensional space;

2) if o is joptimal (i.e. = w; for some j) then Ay;_,(w) = Arj(w). If u; =
= Wjp1 = ... = W;, and p; * p Vs ¢ <j, ji) then

(21.6) Aajo1(®) = dyj(@) = Ayjpq(@) = ... = Ayj,4(@) = Xy, ().

The vectors

(22.6) (12“(12;(@))—”2 ?v,) ’ (%(Azj(w))‘lﬂ 3”1) ’ <%(12j(w -1/2 3 _) -

Jj+

s (%(lzj(w))— 1/2 (v)vjl - 1) ’ (%()~2j(w))_ 1 (‘)"h)

are the principal vectors of grade 2 corresponding to the eigenvalue lzj_l(w).
If we put the vectors (22.6) in (20.6) instead of the vectors

((izj(w))” ’ :)vl,) ’ ((lzm(w)” ’ fvj:l) T ((lz,-l(w))” ’ I:VJJ)
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we again obtain a basis in the t-dimensional space. O
This theorem contains results which have been proved in [6], pp. 234—239. If

(0)=n(a) o ()0
s(_0)=cn(2)
s =(%), s (2)

fori =1, ..., g. The matrix Q whose columns are z, ..., z, reduces B to the Jondan
canonical form.

then evidently

Lemma 1.6. Let B be a Hermitian matrix, ( ) < >two eigenvectors. Let

el e o)

(23.6) 0o’ =0 and w'w' =0.

Proof. The statement follows immediately from the equations

JEO-om ) o

According to Theorem 2.6 the same can be evidently said for the eigenvectors of
2, For the matrix B we generally have only that D'/2BD~1/2 is a Hermitian matrix
and therefore the orthogonality conditions (23.6) are not valid generally. The same
is true for &,,.

On the basis of these investigations the following assertion holds: If B is Hermitian
then we have

, . Aa(@)  (A3(@)\?
24.6)  Dominant quotient = max ( 2 (———) ) for wedl,w,).
(49 ’ 1) 1) :

In this case Assumption 2 is not valid but it is easy to calculate (2.3) and (3.3) directly
using the orthogonal properties of eigenvectors which guarantee the validity of
Theorem 1.3 and the subsequent theorems.

If the maximum in (24.6) equals (13(w)/4,(w))? then we can put g = A3(w)/A,(w),
%, = 2 in Theorem 1.3 and the subsequent theorems. For x»; we have », = 2 if
o= o, and %, = 0 if ® < w,. If the maximum in (2.4.6) equals (1,(w)/,(®))
then g = A,(w)/A,(w), %, = 1 and %, = 0.

If no orthogonal conditions hold, then
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q , %y =1
Ay(e)
and ‘
< 0 if w<w,
® =
1 if o=ow,.

For the extrapolated vector y, = Yk(w) we have from Theorem 1.5
Ve — X =k (o) [w + u],
where w & 0 and

{IIukll} = 0(%) if ©=ow,

(el = o((ﬂcﬂ)) T

Ay(w)

Our theory provides an algorithm based on Theorems 1.3 —2.6 and relation (15.6)
which minimizes 43(w) in (0, 2), and these together give an estimaie for 1,(w,),
23(w,), w1, w,. In the next section we give numerical results which show the advant-
ages of our procedure.

and generally

7. NUMERICAL EXAMPLE

As an example we consider the numerical solution of the two-dimensional elliptic
partial differential equation

—(D(x, y) ug)s — (D(x, y) uy), + o(x, y)u = S(x,y); (x,y)eR,

where R is the square 0 < x, y < 2.1, with the boundary condition 6u/6n = 0,
(x, y) € I where I' is the boundary of R. The given functions D, ¢ and S are piecewise
constant, with their values given in a Table (see [7] pp. 302—303, Appendix B).
Using the method of integration based on a five point formula we derive the matrix
equation Au = 0 because S(x, y) was taken to be identically zero. Since the unique
vector solution has zero components, the error in any vector iterate u, arising from
an iterative method of solving Au = 0 is just the vector itself. We solve the system
by using S.O.R. method u; ., = L, u,. In Table 1 we compare the convergence
of the approximations for @, and w, in dependence on k and w. For the initial
approximation we take the vector u, = (1, 1, ..., 1)T. For a given number of iterations
k we introduce the approximation for w; and w, in two rows which are denoted by
w,(k) and w,(k).

The true value for w, is 1:9177 (see [7] p. 304), for w, we have obtained 1-514.
In Table 2 we compare the numbers y;y,, where y, are the extrapolated vectors,
for various choices of the initial value of w.
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Table 1

k w— 1-5 1-45 1-40 135 1-25
12 y(k) 1-9184 19182 19165 1-9090 1-8552
w,(k) 1-5546 1-5048 1-4389 1-3850 1-2993
16 (k) 1-9180 1-9182 1-9184 1-9186 1-9140
, (k) 1-5167 1-5198 15049 1-4723 1-3995
18 (k) 19178 1-9180 1-9182 1-9184 19177
W, (k) 1-5071 1-5137 1-5125 1-4911 1-4366
20 (k) 1-9177 1-9178 1-9180 1-9182 1-9184
w,(k) 1-5142 1-5144 1-5151 1-5026 14568
26 (k) the same the same 1-9177 1-9178 1-9180
w,(k) the same the same 1-5142 1-5139 1-4880
30 (k) the same the same the same 1-9177 1-9178
@, (k) the same the same the same 1-5142 1-5074
40 (k) the same the same the same the same 1-9177
@, (k) the same the same the same the same 1-5140
Table 2
)

;\ 15 145 1-40 135 125 10
12 0:424,5-2  012049-2  0-153;9-1  0°550;q0 0-735,01 0-153,42
16 0:927,9-2  0-20049-2  0:494,5-2  0:706;9-2  0-117;40 0-131¢2
20 0-174;0-4  0-154;5-3  0°609;9-3  0:186,9-2  0:488;5-2  0:681,¢:
24 0:263;0-6  0-877,9-s  0:568;9-4  0:235;9-3  0219;9-2 011741
28 0-416;9-8  0467,9-6  0508;9-5 0218;5-4 0423,9-3  0:430,9-1

Table 3
Optimal Optimal
extrapol. S.O.R. S.O.R.
12 0-613,9-2 0-843, 01
16 0-834,5-3 0:579o1
20 0:620,¢-5 0-383, 01
24 0:290, -7 03060t
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In Table 3 we compare numbers y; ¥, of the optimal extrapolated S.O.R. (i.e.
= o, = 1-5142) with the numbers u{u, of the optimal S.O.R. (& = 1:9177).
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Souhrn Y

DVOUKROKOVA EXTRAPOLACE A OPTIMALNI VYBER
RELAXACNIHO FAKTORU EXTRAPOLOVANE METODY S.O.R. .

JAN ZiTKO

Limity extrapolaénich koeficientli jsou racionalni funkce nékolika p6li o nejvétsi absolutni
hodnoté rezolventy R(A, T)= (Al — T)~!. Dobry odhad téchto péld mize byti vypoditin
z téchto koeficientl. Vypodet je velmi snadny v pripadé dvou koeficientit a zejména v konecné
rozmérnych prostorech je mozné vyuzit téchto poznatkd k urychleni konvergence pii feSeni
soustav linearnich algebraickych rovnic metodou S.O.R. Numerické vysledky uvedené na konci
prace ukazuji efektivitu extrapolované metody S.O.R.

Pesrome

JABVXIIATOBASI SKCTPAITOJIALUA U OIITUMAJIBHASL BHIBOPKA
PEJTAKCALIMOHHOI'O ®AKTOPA 3KCTPAIIOJIMPOBAHHOI'O METOJA S.O.R.

JAN ZiTKO

TIpzaesbl 3KCTPANOIAUMOHHBIX KOIDPULUMSHTOB SBIAIOTCA PalMOHAIBHBIMM (GYHKUHAMH He-
CKOJIKAX MaKCHMaJIbHBIX IT0 MOIYJTIO ITOJTIOCOB P230JIbBEHTHOrO onepatopa R(A, T) = (Al — T)~ 1
IToeToMy M3 IKCTPANIOIALMOHHBIX KOS(HOHUM>HTOB MOYKHO IIOJIYYHTh XOPOIIME OLEHKH 3THX IIOJIIO-
COB. BolumciieHHe OCOGEHHO IPOCTO B ciydae ABYX K03hGHUHSHTOB. DTH PaKTHl MOXHO MCIIOJIb-
30BaTh HANPEMEDP B KOHEYHOMEPHBIX NPOCTPAHCTBAX NPH PSIIEHMH JIMHEHHBIX CHCTEM METOIOM
BepXHe#l penakcauyd. UMCIeHHbIE Pe3ysIbTaThl B KOHLE PaboOThl JeMOCTPAPYIOT 3(dHeKTHBHOCTH
3KcTpanonupoBanHoro merona S.O.R.

Author’s address: RNDr. Jan Zitko, CSc., Matematicko-fyzikalni fakulta UK, Malostranské
nam. 25, 118 00 Praha 1.
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