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TWO STEP EXTRAPOLATION AND OPTIMUM CHOICE 
OF RELAXATION FACTOR OF THE EXTRAPOLATED S.O.R. METHOD 

JAN ZITKO 

(Received December 9, 1986) 

Summary. Limits of the extrapolation coefficients are rational functions of several poles 
with the largest moduli of the resolvent operator R(X, T) = (XI— T )" 1 and therefore good 
estimates of these poles could be calculated from these coefficients. The calculation is very easy 
for the case of two coefficients and its practical effect in finite dimensional space is considerable. 
The results are used for acceleration of S.O.R. method. 

Keywords: Iterative process, extrapolation, S.O.R. method 

AMS Classification: 65F10, 65B05 

1. INTRODUCTION 

In the paper [1] a possibility of improving the convergence of a sequence {xJJLo 
which is obtained from a convergent iterative process 

(1.1) xJ+l = Txj + b 

for solving an operator equation 

(2.1) x = Tx + b 

in a Hilbert space X was investigated. The symbol T will always denote a linear 
bounded operator on X with spectral radius r(T) < 1. Therefore for every x0eX 
the sequence {xj}f=0 obtained by using (1.1) is convergent with a limit x* = Tx* + b. 
The scalar product in X will be denoted by (•, •) and the norm [|x|| = (x, x ) 1 / 2 

for every xeX. Let I > 0, fc, m0, ml9..., mz be integers such that the inequalities 

(3.1) fc > ml > mz_! > ... > m1 > m0 = 0 

hold. For a given positive integer n let H = I — Tn. Moreover, we define the norm 

||X||H — \Hx\ f ° r a ^ x-
The principal idea given in [1] for improving the convergence consists in the 

construction of new approximations 
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yk = «0*^t + «i*Vm, + ... + « .*V m , 

to x*, where the condition for the complex numbers af* is 

(4.1) | |**-i« (. 'Vm(lH= min H X ' - E / J ^ - J H , 
i = 0 5o + ... + 5i = l i = 0 

i = 0 

This construction of a new sequence {yk} will be called an extrapolation and the 
numbers a(

f
fc) the coefficients of extrapolation. 

We put 

(5.1) efc = x* -xk; ! / * - ( / - Tw)8,, 

( v7*> >/*)> fe-mp fa), (-7jk-m2,fa),..., fe-B|, fa)\ 

( fa , fa-mi), ylk-m^ fac-mj, vfa-m2> fa-mj, •••J ylk-mv fa-mj I 

( fa , fa-mi), ( f a - m ^ fa-mj), ylk-m^ fa-mj, •••> ( f a - m r fa-m,)/ 

and 
(7.1) a(fc) = (a0

fc),a(
1

fc),...,a(fc))T. 
It is easy to see from (5.1) that 

(8.1) fa = ît+« — */c • 

We have proved in [1] that if the matrix Qk is positive definite then there exists 
one and only one vector a(fc) = (a0

fc), af\..., a\k))r which solves the problem (4.1), 
(4.1'). It was shown that 

(9.1) a<fc) = ( e ^ e ) " 1 Q ^ e , where e = (1, 1,..., 1)T. 

Moreover, we have proved in [2] that there exists p ^ 1 such that 

l im( |x*-y , | | / [ |x*-x , | |* ) = 0, 
fc-+oo 

and in the same paper convergence and limits of a[-k) were studied. Limits of the 
extrapolation coefficients are rational functions of several poles with the largest 
moduli of the resolvent operator R(X, T) = (XT — T)"1, and therefore good estima­
tions of these poles could be calculated from â fc). The calculation is, indeed, easy 
for J = 1 and its practical effect in a finite dimensional space is considerable. 

Let us consider a system of linear algebraic equations 

(10.1) Ax = b, 

with a positive definite t x t matrix A. Let A = D — E — F where D is the diagonal 
of A, while E and F are strictly lower and upper triangular t x t matrices, respectively. 
The successive overrelaxation iterative method (S.O.R. method) applied to (10.1) 
gives for co e (0, 2) the convergent iterative process 
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(11.1) xJ+1(co) = 3?<» Xj(co) + c(co) , where 

ym = (D - cDF)"1 (coF + (1 - co) D) and c(co) = co(D - coE)'1 b . 

If A has property A, the optimal choice of co is given by co^ = 2/(1 + ^/(l — /i^)), 
where ^ is the spectral radius of the Jacobi matrix D~1(E + F). Let us put yk(co) = 
= a0

fc) xfc(cD) + a(!fe) xfc_M(co), where k ^ n is an integer. We shall see later that the 
optimal co2 which minimizes the /^-factor (i.e. the number lim sup jjx* — yfc(co)|]1/fc) 

fc-*oo 

is given by cD2 = 2/(1 + V(l — A )̂)* where jx1 > jn2 > ... > JIS > 0 are all positive 
and mutually different eigenvalues of the Jacobi matrix. This is not convenient 
for the practical use. Nevertheless, the investigation given in this paper leads to 
an algorithm which gives very good estimates for co2 without any knowledge of the 
eigenvalues fit. Moreover, these estimates are calculated simultaneously with the iter­
ations and require only a little more work. Numerical examples show the effectivity 
of this process in comparison with the optimal S.O.R.. 

The paper is organized in several parts. First, we present the theoretical investiga­
tion from which the behaviour of oc0

k), a(
1
fc) and yk as functions of k follows. Then 

we calculate the first two poles of R(X, T). Application to S.O.R. method and numeric-
cal results of a model example from reactor engineering conclude the paper. 

2. AUXILIARY THEOREMS 

Let the symbol C denote the set of complex numbers. Let the spectrum of T 
have the following structure: There exist finite sequences {ik]

r
k = 1 of positive integers 

and {Xk}
r
k=1 c C for some integer r > 2 such that each Xk is a pole of the resolvent 

operator of the order ik, 

(1.2) Xl = \X1\>\X2\>\X3\ = \X4\ = ... = \Xr\, 

(2.2) Xt 4= Xj for i =¥ j , and 

(3-2) {X G a(T), X * Xh i = 1,..., r} => \X\ < \Xr\ . 

For a fixed j e <1, r> let Cj be the circumference with center Xj and radius Qj > 0 
such that 

{X e C | \X ~ Xj\ = Qj} n a(T) = {Xj} . 

Let K = {X e C | \X\ = T}, where T > r(T) and C0 = {X e C \ \X\ = Qo], where Q0 

is taken such that 

{A e C | |A| £ eo} n a(T) = cr(T) - {A., ..., Ar} . 

We will assume without any loss of generality that 

(4.2) Bjtje0 * 0 for all j = 1,2,..., r, 
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where 

2mJCj 

for allj = 1, 2, . . . , r, and for every; we have i = 1, 2, ..., fy. 

Assumption 1. Let 

(5.2) / = 1 , i, = 1 , 
r 

(6.2) mx < X 0 > *3 = max {*. 1 N = \K\) • • 
1=i 

Put 

(7.2) n = m1 and k0 = max (ij) + n . 

Let us denote 

(8.2) Vj^il-^BjfiojX)-1. 

Lemma 1.2. The equality 

(9-2) ^ i | ( ^ ) f e + Hk) 

holds for k > k0, where 

(10.2) v(k) = (I - Tn) f— f Afe K(A, T) e0 dA ĵ. 

All vectors vjt are linearly independent. 

Proof. We have 

ek = Tks0 = — • | Afe R(A, T) 20 dA = 
2™J* 

= Z — f A* R(X> T) £o d;i + — [ # R(*> T) £o dA = 
j=i27rijc. 27iiJCo 

= .Z f (, * t) ̂
i+i Bjto + ~ J Afe R(A, T) £o dA . 

From (8.2) the equalities (9.2) and (10.2) immediately follow. In order to prove 
the second statement of this lemma, it suffices to prove that the vectors Bj^Q are 
linearly independent. But this immediately follows by virtue of the relations Bjij+1 = 
= 0 a n d B M + 1 =(T-XjI)Bjk. • 

The general formula (9.1) implies that the coefficients a0
fe), a(k) which solve (4.1), 

(4.V) are the solution of the linear system 

(112) ((,.,,.),(,.-.,,.) \(«n,v(;v 
\Vlk> <\k-n)i y\k-m Vk-nfJ \ a l / \ V 
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(11.2') a0
fc) + a<k) = 1 . - \y ' 

It was proved in [1] that there exists an integer kt _ fc0 such that for every fc > fcx 

the matrix of the system (11.2) is positive definite, and if the dimension of X is 
finite, then we can put kt = k0. In [1] (see Theorem 3 and Lemma 4) this assertion 

r 

is proved for every integer / < ]T ijm 

1=1 

If we use the notation d^k f ° r the difference 

(12-2) dink = nk- nk-n 

then (11.2) and (11.2') yield 

(13.2) (dxnk, sxnk) oc(
0

k) = ~(nk-n, ^ink) , 

Now we shall describe the asymptotic behaviour of the numbers (nk-n> ^l^t) and 
(Sxnk, ^i^/c)- The following lemmas will be of assistance in completing the calculations. 

Lemma 2.2. Let j e <1, r> and ja be integers. If we put w(k) = k^XJk v(k), where 

v(k) is defined by (10.2), then 

(14.2) lim vv(fc) = 0 . 
k~* oo 

Proof. The following inequality is evident: 

^kfXj" v(k)\\ g k%\~k \\I - T"\\~2nQoe
k
0 . max ||R(A, T)\ \\B0\ = 

2% \^\~QO 

= (||/-T1|,0max|]R(A;T)|||£o||)/c"(-^-Xfc 

\M=Qo \|Aj| 

The relation (14.2) now follows from the fact that gQ < \Xj\. • 

R e m a r k . Let v = 0 be an arbitrary integer, u = {uh}k=:v, v = {vk}k=zy two se­
quences. The symbol u = 0(vk) denotes that \uk\ S c\vk\ for some constant c for all 
fc = v. If u = 0(vk) and v = 0(uk) then we will write u ^ v. 

Lemma 3.2. If fc and i, where fc > n and 1 = i = fc — n + 1, are positive integers 
then the equality 

(«*> (.It)"{,--!)-l-*r* + *> hM°-
where <p = {<Pk}k=n-i + i = O(l/fc2). Moreover, <p = 0 if i = 1. 

Proof. The assertion is evident for i = 1. For i > 1 we have 

fc Y"1 /fc - n\ A ri\ 
_ 1 - - i _ _ _ _ _ .. . i 

^ - V V - V V feД * - - Г Л ^ - í + 2 
i--,(i-i„Ш*-Ш_-,n-1-ï<ł-*+-
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where evidently {<pk}^n+i = 0(l/k2). • 
For the vector rjk defined by (5.1) we have obtained the expression (9.2). Analogously 

we can obtain a formula for r\k_n. 

Lemma 4.2. Assuming as before that k _ k0 then the vector r\k_n satisfies the 
formula 

(16.2) nk_n = A*-. . . + t2 £ ( . * . ) X)-aSi(k) + v(k - n) , 

where 

(17.2) a.i(fc) = ( l - f c i ) + (p, i(fc))^ and {</>,((fc)}„_*0 = O ( 1 ) 

for a//j, i. Moreover, {<Pji(k)}™=ko = 0 for i = 1. 

Proof. In (9.2) we replace k by k — n and apply Lemma 3.2. • 
Denoting 

0 - i 
I • if J = 2 

X __• if j>2; 
í = l 

we obtain from (12.2), (9.2) and (16.2) that 

(18.2) o*!^ = r\k - %_.. = 

- A>..+(, - 0 4°"-+G, - 0 " v L-. I; (' -1)*"+°w}] -
- <-».. - ((j _ ,) 4-[»„,M + 

+ ( , - > ) " v " l ? 2 1 ; G -. i) A!""a"w+-> -"'}] • 
In order to simplify the formula (18.2) we introduce 

Assumption 2. Either 

( A l ) (t>ii>i>2*2)*0 or 

(A2) (t>llf *,,) = 0 for all j > 1, 1 = i = i, . • 

This assumption makes the formulas for r\k_n and d ^ much simpler. 
Lemma 5.2. There exist sequences of vectors {u1(k)}™_=ko_n c Z and {u2(k)}%Lko c: 

c: K swc/i that for k __ k0 the relations 

(19.2) ,__, = A.-"pn + ( ^ * . ) „_-"[«_., + «i(fc - »)] , 
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(20.2) SlVk = Af(l - XI") » u + ( k_ \ X\(\ - X?) [v2h + u2(fc)] , 

(21-2) {W*)D}r-*.= o Q if * 2 > 1 . 

(22.2) { | |» s(fc)l}s%„=o(fc"-1(^J) if i2 = l 

hold. The relations (21.2) and (22.2) are ua/id for s = 1, 2. 

Proof. The statements (19.2) and (20.2) follow immediately from (16.2), (17.2), 
(18.2). 

3. EXPLICIT FORMULAS FOR COEFFICIENTS oc0
k) AND a*!** 

From (19.2) and (20.2) we easily obtain formulas for the scalar products 
( ^ - /P dtfk) a n d (Sxrjk, 5xr]k). The structure of the spectrum of the operator T was 
described in the previous part. We suppose the assumptions 1 and 2 are valid. For 
the sake of simplicity we put 

(1.3) — = q e1* , where q = 

The integer k0 was defined by (7.2). 

Lemma 1.3. There exist sequences of complex numbers {j8fc}̂ Lfco = 0(1) and 
{yjj£Lko = 0(1) and positive integers xu x2 such that the equalities 

(2.3) (%.., *.-.») = X,2k A7"(l - A,"") 1»„I2 [1 + W%1, 

(3.3) («,%, 8ink) = A2* |1 - Ap|2 |K,[|2 [1 + fc*lrt] 

ho/d. If the case (Al) holds in assumption 2 then xx = i2 — 1 and x2 = 1. If, 
moreover, X2 is real then 

(4-3) {/?,},%„ 3. {1} , 

and if(vlu v2h) 4= idfor some rea/ d fhen 

(4.3') {y*}r=*„ = {1} • 

If(A2) /10/ds rhen x?! = 2(i2 — 1), x2 = 2 and the relations (4.3) and (4.3') hold. 

Proof. First, we shall prove (2.3). From (19.2) and (20.2) it is obvious that 

(nk-a,s1tik) = |A,|2*A-"(I - >:*) (»,!,»«) + 

*i~"*-(,2 * i ) ( T ^ V ) (»«, f2i2 + «*(*)) + 
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*kA~џĹ -i)^ ~ V ) (»2Í2 + "i(fe - «)• »íl) + 

/ * Y ЛJ" |Л2|
2* (T^V) (o2І2 + «.(* - и), t>2Í2 + «a(*)). 

/c*--1 f + <M, for i2 S: 1 and fc > fc0, where {^}£Lio = 0 ! ^ ) if 
V(ia " 1)! / W 

i2 > 1 and {i^J -s 0 for i2 = 1, we obtain by easy calculation 

(*-**л) - AfЯľ"(i - xv) Ы 2 [ i + ť - - ү { в - * j ^ (,..,,,,,, «,) + 

(5.3) + ^ g ( i ; a i 2 , V l l ) + S1(fc)}/|K1«
2/(i2-l)! + 

* 1 

+ ^ ^ y ^ ~ ^ (»ab, »a„) + - ^ / h - l T O - ~ 1)02] , 

where according to Lemma 5.2 

{ # S W J 7 C = /ÍO 

0 / - ) if i2 > 1 

0 łfc м-iß 

fors = 1. 2. Putting 

(6.3) 

® ) • if i, = 1 

i - л-; »- Л7" tf) = r 'irl'^^ + "•"'̂  ("-«.•»»)+ *-(fc>j/l«--la/(*a - 1 ) 1 . 

(7.3) ^2> = | ^ f 5 ^ < ^ ^ t > 2 i ; ) + ̂ (fc^a^if/CO. - I)!)2, 

we have from (5.3) 

(8.3) (,»_,, ^ ) = AfAr«(l - A"") l ^ n i 2 [1 + fc'-VCM0 + fc'»"W>)] . 

Substituting in this formula 

(9.3) A - ^ } + k , a"V/5i2 ) 

we immediately obtain (2.3). The relation {j8*}£Ljfc0 = 0(1)! follows evidently from 
(6.3), (7.3) and (9.3). Assuming (Al) and,X2 real we have 

|Ä è 1 -,AГ" 
1 - XV xv 

h ^ - \m\ • 
» i i 
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But #j(k) -» 0 and k12 1qkP(

k

2) -> 0 and therefore in order to prove (4.3) it is sufficient 

to show that | ( l - AJ")/(1 - X^n)\ - [^ "Mi"", * °- Evidently we have 

1 ~"" Aj A7 _ , 1 — A"% Ao „ 

4- 0 and -^- + ~2-~ #= 0 . 
1 - AГ" Л"" 1 — И 1 — І Î 

1 1 

If assumption (A2) is fulfilled then p[l) = 0, and substituting & =- j8<2) in (8.3) 
we obtain (2.3). From (7.3) we have 

lim inf \fík\ = 

Analogously we can construct numbers 

A2 1 - ЛJ" A2 

i - ĂГ Ы\2((Һ~.Щ 
> 0, 

ľ ( D _ ] e - * И - V 

(ю.з) 

(11.3) 

^ b («„, «2,) + *"* | - i p (v2h, vlt) + 

)}/«» + Si(fc)W|K1||
2/(i2-l)!: 

УÍ2) 1 "ASaKlla + «.(fc))/Mal(('---)Oa. i - яг' 
where {̂ (fc)}*°°=*o e < l u a l s 0(l/fc) or o(fc''3-1(A3/A2)

t) in the same way as {ds(k)}?=ko. 
Putting 

(12.3) yk = tf> + fc^yj^ 

we have (3.3). The rest of the proof is obvious. • 

The relations (6.3) - (12.3) imply that 

'|| - f _ 4 p ) fe.,. «_)/hi||2/(*- - 1)! + Ss(fc) + 

,1.-1,,* f E - e f_L" _ L- V\ IKJ2 + fc''2_1a 
U - i r " W " i-Arvhi | | 2 (( i2-i)0 

where {33(fc)}, {S3(fc)} equals o(l/fc) or 0({X3jk2f fc''3_1). Evidently 

(14.3) lim sup | ^ | < + oo and for a real A2 we have 
k-*oo 

(14.3') lim inf | 5 t | > 0 . 
' ft-* 00 „ , 

From (13.2) and Lemma 1.3 it follows that 

i + ВД. 

(15.3) 

where 

(16.3) 

ү(ft) (*/fc-W> _!__) _ 1 - (i + Í W Ч ) , 
(^ť/*. ^i%) i - -*; 

í t = 4 + a4(fc) and {94(fc)} = 0(kXlqXlk) . 
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y ( * ) _ 

From (11.2') it follows that 

(17.3) a«=-_iL_(l + /c'«V^)) 
1 —' Ai 

where 

(17.3') 9k = 5kjX\ . 

This all is valid not only for sufficiently great k but for all k ^ k0 as we shall see 
in Part 4. 

Remark. Assumption 2 is no restriction. Supposing some other orthogonal 
relations to hold between vjU we obtain for a0

k) and (x[k) the formulas (15.3) and (17.3) 
again where xx is a nonnegative integer (in general xx =f= i2 — 1) and \q\ < 1 (in 
general |q| 4= |A2/Ai|). The other relations are valid. 

Let us summarize all the results. 

Theorem 1.3. Let X be a Hilbert space, Te [X], r(T) < 1. Let Xl9..., Xr be poles 
of R(X,T) of order il9 ..., ir, respectively, and suppose that (1.2) —(7.2) and 
Assumption 2 are valid. Let us denote q = |A2/Ai|. 

Then there exist sequences {0Yf£°--fco = O(l) and {3fc}̂ °=Jlco = 0(1) such that 

— — (1 + k**q*2kSk) , 
1 - X\ V J 

^ = "" rr^(1 + k*i(?2k^' where s*= w • 
If(Al) in Assumption 2 is valid, then xx = i2 — 1 and x2 = 1. If(A2) in Assumption 2 
is valid, then xt = 2(i2 — 1) and x2 = 2. If, moreover, X2 is real then {S^^ko = 
£ {1} in b0th cases. 

4. CALCULATION OF Xx AND A2 

The question to be considered in this section is that of finding the poles Xx and X2. 
The equations (15.3) and (17.3) provide formulas not only for the calculation of Xx 

but, also as we shall see, for X2. However (15.3) and (17.3) imply only that a(
o
fc) + 0 

for all k ^ kx, where ki is an integer greater than k0 defined by (7.2). According 
to (13.2), as a first step toward the expression of Xx and X2, it will be shown that 
in general t)k =t= 0 and 5^ + 0 for all k ^ k0. Let us assume the contrary. 

Lemma 1.4. If for some kt ^ k0 the relation r\kl-n = 0 holds then xkl = x* = 
= Tx* + b. D 

The proof is obvious. 
It is natural to introduce 

Assumption 3. Let the iterative process (2.1) be not finished after a finite number 
of steps, i.e. let the equality xkl = x* be not valid for any kx 2> fc0. 
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Lemma 2.4. Let Assumption 3 be valid. Then 

(1.4) ifc * 0 and 8M * 0 

for all k ^ fc0 = max (f,.) + n. Q 
1=i,...,r 

The proof is obvious. 
Asumption 3 makes it possible to define a sequence {Xt(n, fc)}^^ by the formula 

(2.4) A1(n,fc)= -a?>/a?>. 
Theorem 1.3 implies 

(3.4) /Lx(n, fc) = A? l~l + k*"q** &k - 3fc 1. 

If we denote 

<44> '̂-̂ iw*. 
then using (3.4), (13.3) and (17.3') we can formulate the following theorem. 

Theorem 1.4. Let us suppose that the assumptions of Theorem 1.3 and Assumption 3 
are satisfied. Let {Ax(n, fc)}£L-ko be defined by (2.4). Then there exists a sequence 
{&}£.*. = 0(1) such that 
(5.4) A.(B, k) = A" + kXlqx*kZk 

holds. The numbers xt, x2 and q are the same as above in Theorem 1.3. 
Let, moreover, A2 be real. 7/(Al) is valid and if we denote 

(64\ /A2" 1 -A 2 " \ (v2i2,vu) 
K'' W i -ArvkPCa-i)! ' 
fhen 
(7.4) ^ = (l-Ar")<5 + 34)1(/c). 

If(A2) is valid and if we denote 

(64') y , 1 - ^ V ^ " - - * - " \ 1K.J2 

i - ArBVA:B I - K") ||-..|-((i2 -1)!)2 

then 
(7.4') ^ = ( 1 - A " ) 5 ' + S4>2(fe). 

In both cases, for s = 1,2 we have 

. M / ° © ' f i 2 > 1 

• H ^ G M • f І, = 1 
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and {&}_•__, £_ {1}. 
From (19.2) we have 

D 

(8.4) 

where 

def / )~n\ 

ail) = »._ - A X - = fe''2_14 í 1 - jf__J 0 W 0 2 - 1)! + «*) 

O 

*fell/ft--*o 

O г^ 

Іf i2 > 1 

A 

However, what happens if we do not know At a priori? We should use only Xx(k, n) 
instead of A_ in this case. Substituting (5.4) in (8.4) gives 

def 

(9.4) cok = nk - Xt(n, fc) »/k__ = 

= col» - k*>q*2%[A-"Vu + fc'"2-14-"(t'2i2/(i2 - 1)! + «!(fc - »)] , 

where {flu.(fc - n)||t»_„0 equals o Q or o / Y ^ V " 1 

We are interested in the second term on the right hand side of (9.4). We have q = 

= |A2/A_J and if Assumption 2 is not valid, the inequality q < |A2Mi| m a y hold. • 

This inequality implies that cok = cOfc

1} + o((X2l
Ai)k) for k --» oo and the same is 

true if x2 = 2. Hence (Al) in Assumption 2 represents the most pessimistic case. 

In the sequel, let (Al) hold. We have 

©___ ©<-> - fc^-1 

where {||ufcj|} = 0{ki^\X2\X1)
k). 

Substituting co^ from (8.4) we obtain 

_ — n _ — n 
A l ~ A2 

-ikЧÅ-nVii + A_Й_l, 

(10.4) o>_ = fc'2-1!. » 2 . _ - e - * * W r " i > i i + - ~ _ , 

where the sequence {llzj 

Ur(i2 -1)! 2 

tPfcll/j.L/,0 behaves in the same way as {#4,_(k)} in (7.4). If X2 

is real, then we can put (l - XJn) 5 instead of £fc. The above considerations yield. 

Theorem 2.4. Let us suppose that the assumptions of Theorem 1.4 are satisfied. 

Then there exist sequences {wk\%Lko and {zfc}*__fc0 such that 

(H-4) {|h|}r=*„ = 0(1) , wk 4= 0 Vfc __ fc0 , 

T 

(12-4) {||zfc||}fc«Lfco = 

0 

OÍ max 

if ř2 > 1 • 

if i2 = i , 
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and the equality 

(13.4) aok = kf2"x4(w(k) + z(k)) 

holds. If X2 is real then w(k) = w =f= 0 is independent of k. Moreover, 

(14.4) (a)fc+„, cofc+„) = |^|2M + ^ 

K> cok) 

and 

(15.4) K + w ? <pfc) = A, + ^ ^ 
(co f c , co fc) 

where the behaviour of the sequences {v(k)} and {vx(k)} is £he same as above in 
(12.4). • 

5. BEHAVIOUR OF AN EXTRAPOLATED VECTOR 

Concluding our theoretical investigation we give an explicit formula for the 
vector yk = a0

fc)xfc + af ^ _n. Denoting 

(1.5) Uji = B^eoM}"1 

we obtain from (8.2), (19.2) and (5.1) that 

(2.5) x, = x* - {A*«u + fc'W4["2i2 + *x(fc)]} 

where {|_i(fc)||} equals 0(l/fc) or o / ( — ) fc'3"1 

depending on i2 as above. 
Hence, using (15.3) and (17.3), we have 

(3.5) yk = <$>xk + « ? V . = 

c* + fc'-"1^ ri(Ar" - 1) _»«.. + ( p j - l ) «_.,}/(- - A?) + - * 1 , 

where the behaviour of {||zfc]|} is given by (12.4). 

Theorem 1.5. Let us suppose that the assumptions of Theorem 1.4 are satisfied. 
Then there exist sequences {w^^ko an^ {zfc}fc°==/c0

 m ' ^ ^e same behaviour as in 
Theorem 2.4, such that 

(4.5) yk - x* = fc'--U*,K + zk) 

holds. If X2 is real then wk = w + 0 is independent of k. 
Moreover, there exists a sequence {zikk=ko such that {||_i„|} = 0(k,2~1(X2jX1)

k^, 

(5.5) yk+1 - x * = T(yk-x*) + zlk 
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and 

(6.5) yk+1 = Tyk + b + zlk. D 

Proof. The statement of this theorem follows from (15.3), (17.3) and the calcula­
tions at the beginning of this section. 

6. OPTIMAL CONVERGENCE OF EXTRAPOLATED S.O.R. 

In this section we show how the above results can be applied for improving the 
convergence of the optimal S.O.R. without any a priori knowledge of eigenvalues 
of the corresponding Jacobi and S.O.R. matrices, respectively. Let X be the l-di-
mensional space. We seek the solution of the matrix equation 

(1.6) Ax = b , 

where A is a given t x t positive definite matrix, t ^ 4. Let us write 

(2.6) A = D(I - L - U) , 

where D is the diagonal of A, while Land U are strictly lower and upper triangular 
matrices, respectively. The system (1.6) is equivalent to the system 

(3.6) x = se^x + d, 
where 

(4.6) 2m = (I - coLy^coU + (1 - co)D) and d = co(I - coL)'1 D~xb . 

It is well known that r(££,
ai) < 1 for co e (0, 2). We assume that the Jacobi matrix B 

is weakly cyclic of index 2, consistently ordered and convergent. If 

(5.6) 0! > \i2 > .... > ixp 

are all mutually different positive eigenvalues of B then the spectrum a(B) satisfies 
(see [6], [7], [4]) 
(6.6) a(B) ~ {0} = {fii9...9jip9 - pu ..., -ftp} . 

Put //? = vf. It is well known (see [6]) that 

(7.6) ^ « ) M o } - h ' , } • 
Let / be a mapping, @(f) = (0, 1), given by the formula 

(8.6) /(x) = 2/(1 + 7 ( 1 - x ) ) . 

Evidently R(f) = (1, 2). The numbers cot = f(vt) will be called i-optimal and the 
numbers from the set (1, 2) ~ {cot\i = 1,..., P} will be called regular. The function 
r(3?m) is continuous in the interval (0, 2), decreases in (0, cDj) and coincides with the 
function co — 1 in <col5 2) and r(j*?2) = 1. Hence 

(10.6) min {r(&m) \ co e (0, 2)} « cox - 1 < 1 
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From (8.6) it follows that 

(11.6) 1 < cop < cop-t < ... < cot <2. 

For any coj we have cojp,2 — 4(co — 1) = 0. The following theorem has been proved 
in [6], We only present it in a form suitable for our purposes. 

Theorem 1.6. If coe(l, 2) is regular, then <£\ is normalizable and the number 

(13.6) A2,_.(«>) = ((conj + V(o>V2 - 4(co - l)))/2)2 , 

(14.6) X2i(co) = ((cofij - V(coV2 - 4(co - l)))/2)2 

for j -= 1 , . . . , p and A = 1 — co if 0 e a(B) are eigenvalues of &\ while no other 
complex number is an eigenvalue of S£^. The multiplicity of X2j-.1(co) and X2j(co) 
equals the multiplicity of p.j. 

If an integer i e < l , P > , then the matrix 5£Uii is not normalizable. In this case 
^m possesses dt principal vectors each of grade 2, where dt is the multiplictty 
of the eigenvalue fit. All the other eigenvalues of S£mi are simple poles of the resolvent 
matrix P(A, J-^.). For an integer j e <1, p> and co e (0, cof) the eigenvalues /^(co), 
k2(co),..., A^-.^co), A2j(co) of££\ are real and fulfil the inequalities 

lt(co) > A3(co) > . . . > A^.^co) = X2j(co) > .. . > A2(co) . 

The equality X2j^i(co) = X2j(co) holds only for co = coj. 
For any integer j e <1, p} and real co e (coj9 2) the eigenvalues X2j^l(co), A2j(co),... 

• • •> ^2P((o) we not real and 

\l2j-i(o>)\ = |A2/a>)| = . . . = | A 2 > ) | = co - 1 . 

The last equalities hold for co = coj, too. ~~ 
The proof of this theorem is based on the well known relation between the eigen­

values of B and «^w of the form 

(15.6) (A + co - l ) 2 = AoYV . 

Let us remark that the Jacobi matrix B is normalizable and has real eigenvalues 
since D1/2BD~1/2 = I - D~1/2^D~1/2 and the matrix on the right hand side is 
Hermitian. Theorem 1.6 implies that for 1 ^ co < co2 the relation (1.2) is valid, 
and the second eigenvalue A3(a>) of S£^ is real. In order to verify all essential assump­
tions in Theorems 1.3, 1.4, 2.4 and 1.5 we must discuss Assumption 2. Therefore, 
we will discuss the eigenvectors and as the case may be, the principal vectors of j£?w. 
For every 2-cyclic matrix A there exists a permutation matrix P such that PAP1 

has the form 

( u I, where the submatrices D1 and D2 are square and diagonal. Since A 
\E, D2J 

is positive definite we can form the corresponding Jacobi matrix 
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('«) '-(-,.?')• 
where JE^ = D2

XE and B2 = D±1F. It suffices to discuss the eigenvectors of B 
of the form (16.6). Let us remark that all eigenvalues of B are real because A is 
positive definite. 

Theorem 2.6. Let [xt ^ [i2 §_ ... ^ \iq be all positive eigenvalues of the Jacobi 
matrix B, and let 

<"•<> (:•,)• ft) ft) 
be the corresponding eigenvectors partioned according to (16.6). Let z2q+i,... 
...,zt be the eigenvectors of B corresponding to zero and let (A2j_1(co))1/2 and 
(X2j(co)1/2 be defined by the formulas 

(18.6) (^j-MY12 = (cofij + J(co2n2 - 4(0) - l)))/2 

and 

(19.6) (A2j(co))1/2 = (coli, - ^(coYj - 4(co - l)))/2 . 

Then 

1) if co is regular (i.e. co 4= co, V, = 1 , . . . , q) then the vectors 

(20.6) U M ) I / 2 v ' U H ) I / 2 » J " • •' w i(«))i/a s. 

^ . ( o ) ) ) 1 ' 2 w j ' ((A^o)))1 '2 w j ' - ' ((A24(o)))^2 w j 

andz2q+1, ...,zt, are the eigenvectors corresponding to the eigenvalues X^co),..., 
X2q(co) and 1 — co, respectively and form a basis in t-dimensional space; 

2) if co is yoptimal (i.e. co = co, for some j) then A2j._1(co) = A2j-(co). If fij = 
= jU,+ 1 = . . . = ixh and fij 4= ^ V s ^ O ' , ^ ) then 

(21.6) A2j._!(co) = X2j(co) = A2,+ 1(co) = . . . = A ^ . ^ c o ) = A2j,(co) . 

The vectors 

(22.6) W » ) M / 2 WJ ' WAaXo,))-1'2 w,+J ' (KA^O,)"1 '2 W, + 2 ) ' -

•••'(«»))-1/2 *.,- J ' U^-(<-))-1/2 w,iy 
are the principal vectors of grade 2 corresponding to the eigenvalue X2J-i(co). 
If we put the vectors (22.6) in (20.6) instead of the vectors 

VJ\ ( vJ+i\ ( vh 
(A2,(co))1/2 wj ' V(A2j.+2(co)1/2 w , + J — V(A2j,(co))1/2 w7, 
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we again obtain a basis in the t-dimensional space. D 
This theorem contains results which have been proved in [6], pp. 234 — 239. If 

then evidently 
*(:)=«(:)fOT (:)*° 

' ( - : ) - < - < : ) • 

- - ( : ' , ) • - « = ( - : ' , ) 
for i = 1,..., q. The matrix Q whose columns are zu ..., zt reduces B to the Jondan 
canonical form. 

Lemma 1.6. Let B be a Hermitian matrix, I J, I , J two eigenvectors. Let 

:)-{(:')}• (:)-{(-:'•)}• 
Then 

(23.6) t>V = 0 and wTw' = 0 . 

Proof. The statement follows immediately from the equations 

( T O - - C)т(-:')=°- D 

According to Theorem 2.6 the same can be evidently said for the eigenvectors of 
S£m. For the matrix B we generally have only that D1/2BD~1/2 is a Hermitian matrix 
and therefore the orthogonality conditions (23.6) are not valid generally. The same 
is true for <£'w. 

On the basis of these investigations the following assertion holds: If B is Hermitian 
then we have 

(24.6) Dominant quotient = max j 2^ , I • - ] ) for co 6 <1, co2) • 

In this case Assumption 2 is not valid but it is easy to calculate (2.3) and (3.3) directly 
using the orthogonal properties of eigenvectors which guarantee the validity of 
Theorem 1.3 and the subsequent theorems. 

If the maximum in (24.6) equals (A3(co)//l1(Oj))2 then we can put q = A3(G>)/A1(G>)J 

K2 = 2 in Theorem 1.3 and the subsequent theorems. For %x we have KX = 2 if 
co = co2 and KX = 0 if co < co2. If the maximum in (2.4.6) equals (A2(o>)/.A1(a.))) 
then q = A2(cO)/A1(a>), K2 = 1 and xt = 0. 

If no orthogonal conditions hold, then 
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A>3(co) H 

q = -^—[, K2 = 1 
Kip) 

and 
/ 0 if co < co2 

*i = < 

\ 1 i f CO = o>2 . 

For the extrapolated vector y^ = yk(^o) we have from Theorem 1.5 

yk - x* = fc»« A*(a)) [w + « J , 

where w =t= 0 and 

and generally 

«*1) = °(r) if ^ = ^ 

íЫí • ° Ш ) , f co < co2 

Our theory provides an algorithm based on Theorems 1.3-2.6 and relation (15.6) 

which minimizes X3(co) in (0,2), and these together give an estimate for.Ai(co2), 

l3(co2), (ot, co2. In the next section we give numerical results which show the advant­

ages of our procedure. 

7. NUMERICAL EXAMPLE 

As an example we consider the numerical solution of the two-dimensional elliptic 

partial differential equation 

-(D(x, y) ux)x ~ (D(x, y) uy\ + a(x, y)u = S(x, y) ; (x, y) e R , 

where R is the square 0 < x, y < 2.1, with the boundary condition dujdn = 0, 

(x, y) G r where F is the boundary of R. The given functions D, a and S are piecewise 

constant, with their values given in a Table (see [7] pp. 302 — 303, Appendix B). 

Using the method of integration based on a five point formula we derive the matrix 

equation Au = 0 because S(x, y) was taken to be identically zero. Since the unique 

vector solution has zero components, the error in any vector iterate uk arising from 

an iterative method of solving Au = 0 is just the vector itself. We solve the system 

by using S.O.R. method uk+1 = 3?^. In Table 1 we compare the convergence 

of the approximations for cox and co2 in dependence on k and co. For the initial 

approximation we take the vector u0 = (1, 1, ..., 1)T. For a given number of iterations 

k we introduce the approximation for co1 and, co2 in two rows which are denoted by 

cox(k) and co2(k). 

The true value for cox is 1-9177 (see [7] p. 304), for co2 we have obtained 1-514. 

In Table 2 we compare the numbers y[yk, where yk are the extrapolated vectors, 

for various choices of the initial value of co. 
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Table 1 

1-5 1-45 1-40 1-35 1-25 

12 

16 

18 

20 

26 

30 

40 

cox(k) 1-9184 1-9182 1-9165 1-9090 1-8552 
co2(k) 1-5546 1-5048 1-4389 1-3850 1-2993 

cox(k] 1-9180 1-9182 1-9184 1-9186 1-9140 
co2(k) 1-5167 1-5198 1-5049 1-4723 1-3995 

cox(k] 1-9178 1-9180 1-9182 1-9184 1-9177 
co2(k) 1-5071 1-5137 1-5125 1-4911 1-4366 

cox(k) 1-9177 1-9178 1-9180 1-9182 1-9184 
co2(k) 1-5142 1-5144 1-5151 1-5026 1-4568 

cox(k) the same the same 1-9177 1-9178 1-9180 
co2(k) the same the same 1-5142 1-5139 1-4880 

cox(k] the same the same the same 1-9177 1-9178 
co2(k) the same the same the same 1-5142 1-5074 

cox(k) the same the same the same the same 1-9177 
co2(k) the same the same the same the same 1-5140 

Table 2 

1-5 1-45 1-40 1-35 1-25 10 

12 0-42410-2 0-12010-2 0-15310-i 0-55010o 0-73510i 01531 O-

16 0-92710-2 0-20010-2 0-49410-2 0-70610-2 0-11710o 0-1311Q2 

20 0-17410-4 0-15410-3 0-60910-3 0-18610-2 0-48810-2 0-68110i 

24 0-26310-6 0-87710-5 0-56810-4 0-23510-3 0-21910-2 0-11710i 

28 0-41610-8 0-46710-6 0-50810_5 0-21810-4 0-42310-3 0-43010-i 

Table 3 

k 
Optimal Optimal 

k 
extrapol. S.O.R. S.O.R. 

12 0-61310-2 0-84310i 

16 0-83410-3 0-57910i 

20 0-62010-5 0-38310i 

24 0-29010-7 0-30610i 
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In Table 3 we compare numbers y1yk of the optimal extrapolated S.O.R. (i.e. 
co = co2 = 1-5142) with the numbers uJ

kuk of the optimal S.O.R. (co = 1-9177). 
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S o u h r n 

DVOUKROKOVÁ EXTRAPOLACE A OPTIMÁLNÍ VÝBĚR 
RELAXAČNÍHO FAKTORU EXTRAPOLOVANÉ METODY S.O.R. 

JAN ZÍTKO 

Limity extrapolačních koeficientů jsou racionální funkce několika pólů o největší absolutní 
hodnotě rezolventy R(X, T) — (XI — T)"1. Dobrý odhad těchto pólů může býti vypočítán 
z těchto koeficientů. Výpočet je velmi snadný v případě dvou koeficientů a zejména v konečně 
rozměrných prostorech je možné využít těchto poznatků k urychlení konvergence při řešení 
soustav lineárních algebraických rovnic metodou S.O.R. Numerické výsledky uvedené na konci 
práce ukazují efektivitu extrapolované metody S.O.R. 

Р е з ю м е 

ДВУХШАГОВАЯ ЭКСТРАПОЛЯЦИЯ И ОПТИМАЛЬНАЯ ВЫБОРКА 
РЕЛАКСАЦИОННОГО ФАКТОРА ЭКСТРАПОЛИРОВАННОГО МЕТОДА 8.О.Я. 

^АN 2ГТКО 

Пределы экстраполяциэнных коэффициентов являются рациональными функциями не­
скольких максимальных по модулю полюсов резольвентного оператора К(Х, Т) = (XI — Т) ~ *. 
Поетому из экстраполяционных коеффициентов можно получить хорошие оценки этих полю­
сов. Вычисление особенно просто в случае двух коэффициентов. Эти факты можно исполь­
зовать например в конечномерных пространствах при решении линейных систем методом 
верхней релаксации. Численные результаты в конце работы демострируют эффективность 
экстраполированного метода 8.0.К. 

Ашког'з аМгезх: К^Ог. ^ап 2Нко, С8с., Ма1етаПско-1у21ка1ш ГакиИа ^ К , МаЬзггапзкё 
п а т . 25, ШООРгапа 1. 
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