Aplikace matematiky

Jaromir Jake§
A numerical method of fitting a multiparameter nonlinear function to

experimental data in the L; norm
Aplikace matematiky, Vol. 33 (1988), No. 3, 161-170

Persistent URL: http://dml.cz/dmlcz/104299

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104299
http://dml.cz

33 (1988) APLIKACE MATEMATIKY No. 3, 161—170

A NUMERICAL METHOD OF FITTING
A MULTIPARAMETER NON-LINEAR FUNCTION
TO EXPERIMENTAL DATA IN THE L; NORM
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Summary. A numerical method of fitting a multiparameter function, non-linear in the para-
meters which are to be estimated, to the experimental data in the L; norm (i.e., by minimizing
the sum of absolute values of errors of the experimental data) has been developed. This method
starts with the least squares solution for the function and then minimizes the expression Z(x?' +

i

+ az)”z, where x; is the error of the i-th experimental datum, starting with an a comparable
with the root-mean-square error of the least squares solution and then decreasing it gradually
to a negligibly small value, which yields the desired solution. The solution for each fixed a is
searched by using the Hessian matrix. If necessary, a suitable damping of corrections is initially
used. Examples are given of an application of the method to the analysis of some data from
the field of photon correlation spectroscopy.

Keywords: Nonlinear function, adjustment of parameters by L; norm, photon correlation
spectroscopy, analysis of experimental data.

INTRODUCTION

For many decades, the least squares method was the only numerical approach
used for fitting experimental data. Recently, in connection with the difficulties met
in adjusting the relaxation time distributions G(7) to the experimental correlation
functions measured in the photon correlation spectroscopy, use of the sum of abso-
lute values of errors as a measure of goodness of fit instead of the sum of their squares
has been suggested as an alternative to the least squares method [1]. For a linear
function of parameters adjusted, this problem may be solved by the simplex method
[1, 2]. This is the case of the analysis of the heterodyne autocorrelation data yield-
ing the field autocorrelation function g(f) sought as a superposition of several fixed
relaxation times (the so-called comb) with the amplitudes as parameters. However,
already in analyzing the homodyne autocorrelation data, where gz(t) with a sometimes
unknown base is measured, the problem becomes non-linear. An iterative method
bringing this problem back to the simplex method was developed [3], and several
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tens of data sets were analyzed with it. Another way of analyzing the homodyne
autocorrelation data used in Institute of Macromolecular Chemistry was to represent
the function g(f) as a superposition of several relaxation times with both the amplitudes
and the relaxation times adjusted by the least squares method [4] It turned out
that for comparing the results of the two methods and for understanding their
differences, the results of the adjustment of both the amplitudes and the relaxation
times by minimizing the sum of the absolute values of errors of experimental values
would be highly desirable. Here, the experimentally obtained correlation functions
(both heterodyne and homodyne) are strongly non-linear in the relaxation times
adjusted and we met with a serious difficulty since no numerical method of per-
forming such a non-linear adjustment in the L; norm was available. Due to this
fact, I developed a method for solving the problem, which is described in this paper.

MATHEMATICAL METHOD

A general method of minimization of a non-linear function F of parameters to be
adjusted is based on the calculation of the vector g; of the first derivatives of the
function to be minimized with respect to the adjustable parameters, and of the
matrix H; of the second derivatives for a trial vector x; of adjustable parameters.
Then, an improved trial vector is calculated as

(]) Xy = X; — Hi_lgi,

and the whole procedure is repeated with this new trial vector. The matrix H is
called the Hessian matrix. This general scheme applied to the least squares problem
leads to the Newton-Raphson method [5]. For a quadratic function of the parameters
adjusted, the Hessian matrix does not depend on the vector x and the convergence
of Eq. (1) is attained within a single refinement cycle. If, for a general function,
we make an initial guess x; of the parameter vector close enough to the final solution
Xuins 8O that the matrix H; differs little from the matrix H,;,, the iteration of Eq. (1)
proceeds by the very fast quadratic convergence. The performance of various methods
developed to treat the cases where such a close initial guess is not available was
compared by Box [6]. Later, an alternative method was given by Murtagh and
Sargent [7]. Perhaps the simplest way of solving the problem may be to scale (i.e.
to multiply by factors less than unity) the corrections x;,; — x; in Eq. (1), which
may better be attained by adding some non-negative constants (damping factors)
to the diagonal elements of the matrix H in early stages of the iteration [8, 9]. As
I felt that using some general scheme for selecting the damping factors (e.g. pro-
portional to the diagonal elements of H with the proportionality constant sought
by a trial and error method as in [9]) may result in a nonnecessarily large number
of iterations, I decided to control the damping factors from a terminal in an inter-
active calculation.
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An obvious necessary condition for using the iterative scheme (1) is that the
derivatives appearing in g; and H; do exist. This is not the case for the absolute
value function which has neither the first nor the second derivative at the zero value
of the argument. So, the general method mentioned above is inapplicable for fitting
the experimental data in the L, norm. To avoid this difficulty, I replaced the function
|x| in the norm by the function (x* + a2)'/2, which for a = 0 is identical with |x]
and for a > 0 has the desired derivatives. Further, (x> + a®)"/? = a + x?/(a +
+ (x* + a®)'/?), which is close to a + x?/(2a), i.e. to a linear function of x* appear-
ing in the L, norm, for large a. Thus, minimizing the expression

@) P = 3((fi = R+ @)

with f; and f; being respectively the calculated and the experimental values at the
i-th experimental point of the function f to be adjusted, leads in the limit a — oo
to the same solution as the least squares method.

Now, on the basis of the preceding paragraph, the following scheme of adjusting
the parameters of a non-linear function f by minimizing the L, norm of f — f may
be outlined: First, we adjust the parameters using the L, norm, i.e., solve the problem
by the least squares method. Then we minimize expression (2) starting from the least
squares solution, and use a value of a large enough to obtain a reasonable conver-
gence. A value comparable with the root mean square error of least squares (its
half or third) turned out to be suitable for this purpose. Then we use the solution
obtained as the starting approximation for minimizing (2) with a smaller a and
repeat the whole procedure until the solution for an a small enough to represent
the solution of (2) for a = 0 is obtained. Decreasing a by a factor of about three
in each step turned out to be appropriate, as it gives a reasonable convergence in
the next minimization of expression (2). Whether an a is already small enough to
represent the solution for ¢ = 0, may be judged from a comparison of the solutions
from two subsequent minimizations with various a’s. Still much faster convergence
may be obtained by using the linear extrapolation of the last and the last-but-one
solutions already obtained as the starting approximation for calculation with the
next smaller a, especially when a is already small enough compared with the mean
square error of the least squares solution.

In the least squares method, the expressions for the elements g; and Hj, of the
vector g/2 and the matrix H/2 (halves are usually calculated here to remove the com-
mon factor of two) are as follows:

(3) gj:'Z(fi_.fi)afi/axjs
(4) Hj = Zi:((afi/axj) afi/axk + (fz - f;) azfi/(7xj a-xk)a

where x;, x; are the parameters adjusted. These are the formulae for the Newton-
Raphson method. The respective formulae for minimizing expression (2) differ from
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them only by two multiplicative factors common for all parameters adjusted, but
varying from one experimental point to another. They read as follows:

(5) gj=;Fx(fi“fi)afi/axj’
© Hyy = S(F(000%) fos, + FAf, ~ 1) 860,55,

where F; = ((f; — f;)* + a*)™"*[2 and F, = a*((f; — f;)* + a*)~3/?|2. Thus, once
the Newton-Raphson method of least squares for some problem has been pro-
grammed, one can proceed straightforward to modify the program for minimizing
expression (2).

CONVERGENCE CONSIDERATIONS

Let us start the discussion of convergence of minimizing (2) by investigating the
convergence properties of the function (x> + a?)*/2. Its first and second derivatives,
x[(x* + a*)"/? and a?/(x* + a?)?/?, respectively, give the correction —x(x* + a?)/a’.
We see that the desired correction — x is overestimated by the factor of 1 + x2/a2.
Convergence is obtained if this factor is less than two, i.e. if |x| < |a|. In the opposite
case, the iteration process (1) oscillates. The best value of the damping factor to be
added to the second derivative to improve convergence is x2/(x* + a?)*?, leading
immediately to the correct value. For a given ratio of x/a, this value is inversely
proportional to a.

It is known that if the function of the adjusted parameters is linear, the solution
minimizing the L; norm fits exactly as many experimental points as is the number
of the adjusted parameters [2]. The deviations f; — f; at these points are independent
linear functions of the original parameters and may be regarded as a new parameter
set. The left and right derivatives of the L; norm with respect to the new parameters
at zero value differ by sign as the absolute value function, but generally they also
differ in their absolute value unlike the absolute value function. Due to this, minimiza-
tion of (2) with a non-zero a leads to some offset of experimental and calculated
values even at these points. For small a this offset is expected to be proportional
to the value of a. It may be inferred that, if in the adjusting scheme a is decreased
by the same factor in each step and a strategy for minimizing (2) is found, then the
same strategy but with the damping factors increased by the same ratio by which a
is being decreased is expected to work about as well in the next step. In the non-linear
case, the number of points fitted exactly may be smaller than that of the adjusted
parameters and the situation becomes more complicated. Experience shows that
in this case some damping factors should be incredsed with decreasing a while others
should not. Furthermore, experience shows the following strategy as appropriate:
we fix some parameters (those weakly affecting the function f) at their trial values
by giving them very large damping factors, and try to adjust the remaining ones.
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If expression (2) increases, a return to the previous cycle is made and some other
parameters are fixed. If (2) increases even with a single parameter adjusted, then the
latter is given a non-zero finite value of the damping factor found by trial and error
and decreased to zero in the course of adjustment. Once a group of parameters
has been adjusted to a reasonable extent (not to full precision), one or several para-
meters so far fixed are given zero damping factors and the adjustment is re-tried.
If adding a single parameter to the adjustment increases (2), this parameter is again
given a non-zero finite damping factor, and this factor is later decreased to zero.
This process is repeated until all parameters have been given zero damping factors,
at which stage it already rapidly yields the final solution. In accordance with what
has been said above about the convergence properties of the function (x2 + a?)'/2,
the necessity of using finite non-zero damping factors in this strategy frequently
appeared in minimizing (2). The damping factors should be controlled from a terminal
in an interactive mode with a program allowing interference after a prescribed
number of iterations to decrease the damping factors, and also if the computer
finds unreasonable (e.g. negative) values of parameters obtained by (1) or an in-
crease in expression (2), or if the damped H matrix is found not to be positively
definite.

As (x* + a®)'? — a < |x| < (x* + a?)V/* (a positive), the desired minimum
value of the L, norm of the errors is bounded by F-na and F (cf. Eq. (2)), where n
is the number of experimental points. Thus, by selecting a small enough, we can
obtain the minimum of the L, norm with any desired accuracy. When high accuracy
is required, difficulties due to the loss of significant digits may appear in the case
when the number of the experimental points fitted exactly is smaller than that of the
adjusted parameters; switching to a higher (quadruple) precision solves this problem.

After decreasing a some two or three orders of magnitude below the root mean
square error of least squares, a comparison of errors of the individual experimental
points from two subsequent minimizations with different a allows us to find points
fitted exactly by the solution sought: errors of these points decrease approximately
by the ratio of the a values, whereas the errors of the other points remain approxi-
mately constant. Then, in cases when the number of points fitted exactly is equal
to that of the adjusted parameters, the minimal L; norm solution can be found
by solving the system of nonlinear equations originating from the conditions of exact
fit much faster than by a further decrease of a: using the approximate solution
already found as the starting iteration for the Newton method should yield fast
convergence. In the cases when the number of points fitted exactly is smaller than
that of the adjusted parameters, the conditions of exact fit should be added as con-
straints to the minimization problem. After removing the absolute values by using
the signs of errors from the approximate solution, this problem can be solved by
the method of Lagrange multipliers, again using the approximate solution as the first
iteration. In both cases, a post-check should be made whether, if the parameters are
varied so that the exact fit is violated at a single point, the L; norm increases in both +
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and — directions. A linear transformation of differentials of parameters is sufficient
for this purpose.

APPLICATION OF THE METHOD TO THE ANALYSIS
OF CORRELATION SPECTROSCOPY DATA

The above method was applied to the analysis of the homodyne autocorrelation
data, where the value of gz(t) + b, i.e., the square of the field autocorrelation func-
tion g(t) plus an unknown additive constant b, was measured. The function g(¢)
is the Laplace transform of the relaxation spectrum G(t), and the latter is sought
for as a superposition of N discrete relaxation times 7; with both times t; and their
amplitudes x; adjusted. All 7;’s and x;’s are requested to be positive. Including
the unknown base, the total number of adjusted parameters is 2N + 1. Sometimes, one
of the 7;’s converges to infinity and, if 1/z; is adjusted, to a negative value of 1/z;.
In this case, the respective 1, is fixed to 10*° and the number of parameters decreases
to 2N. If for the shortest experimental time f — f is negative, addition of a new
very short 7; decreases the norm, compensating for the error of this point and essenti-
ally unaffecting the other experimental points. This is equivalent to removing this
point from the data set. Hence, we have

(7) f(0) = g*() + b,
(8) 0] :~=§1xj exp(—t/t;), x;>0, 1,>0,

and a set of pairs (t;, f;) of experimental data for which
(9) Zillf(t:) _fil

should be minimized by adjusting x;, 7;, and b. Having a minimal solution for a given
N, we may try to find a new 7y, ; Which, if added to the g(t) with a very small positive
amplitude xy.. 1, decreases the norm. This can be achieved by calculating the derivative
of the norm with respect to Xy, at xy,; = 0. Where this derivative is negative,
the respective 7y, meets the above condition. If such a 7y, { exists, adjustment may
be continued to a better minimum, usually corresponding to N + 1, but it may also
happen that N decreases during the adjustment if some x; vanishes. If no such
Ty 41 €Xists, adjustment cannot be continued by increasing N. All solutions presented
below are of this last type unless otherwise stated.

For the analysis, four data sets supplied by R. Johnsen from Uppsala for an
IUPAC project of comparing various methods of analysis of homodyne autocorrela-
tion data were used. Data set 1 was simulated as a mixture of three relaxation times
at 65, 91, and 205 ps with the ratio -63: -30: -07, data sets 2 and 4 were doublets
at 63 and 82 ps with the ratio -82: -18 and at 51 and 76 ps with the ratio -89: -11. To
all these data sets a random normal noise with the standard deviation of 5 x 1074
was added and the base constant b was zero. Data set 3 was a real measurement
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of a mixture of two samples, each of which was expected to have a single relaxation
time while the ratio of the relaxation times was expected to be about 1-7 : 1. The
root mean square experimental error was about 5 x 10™* here. So closely spaced
doublets and triplet are hardly expected to be resolved even in the case when g(t)
instead of g*(f) + b is known, and the results presented below fully confirm this
expectation. All data sets give the values of g*(t) + b for ¢ running from 3 ps to
128 ps by the step of 1 ps. The results of the analysis by least squares (a = o) and
fora = 107°and a = 3 x 10~° are summarized in Table 1. Examination of Table 1
shows that in most cases five or more digits (significant digits in t;, decimal digits
in x; and b) are obtained in the adjusted parameters with a = 107°. The only ex-
ception is the value 7, for data set 3. Here, a very large but not infinite t was found.
Further decrease in a to 3 x 107'* and 107 ** led to some change in 7, (see Table 1),
but already with @ = 107? and a = 10~ '" the calculated values of the function f(t;)
differed only in the eighth or still less significant digit. Here the experimental values
of f; spanned the range from about zero to about 0-65. It is a general experience
with all the methods mentioned in Introduction that if a 7; beyond the region of ¢
where f(f) is measured is found, this ; is very ill-conditioned. In this connection,
the behaviour of 7, in data set 3 is not surprising. In data set 1, f — f is negative
for the first ¢, (3 ps). The removal of this experimental datum from the data set
leads to the same result as before in the L, norm calculation. This rather exceptional
behaviour is caused by the fact that both solutions fit exactly the same experimental
points (5, 12, 43, 92, and 117 ps) and the number of points fitted exactly equals the
number of the adjusted parameters. In all other data sets the number of points fitted
exactly is one less than the number of the adjusted parameters.

The method was also applied to some measured (not simulated) data sets. The
largest value of N = 7 with one infinite 7; has been found (14 parameters adjusted).
Even in this case (as in all the others) no difficulty arose in calculations (with the
16 digit accuracy), although calculations appeared rather lengthy. In all the cases
considered, only small differences between the results of adjustments by the L,
and L; norms were found. Greater differences may be expected in cases when the
noise distribution deviates considerably from normality, e.g. if far-off outliers caused
by scarce rough errors appear in the experimental data.

CONCLUSIONS

A method of adjusting parameters of a function non-linear in the adjusted para-
meters by minimizing the L; norm of its deviations from the experimental data was
developed. This method, although rather laborious, yielded results without difficulties
in all the cases to which it was applied (about a dozen of data sets from the field
of photon correlation spectroscopy). In all cases considered, only small differences
between the solutions obtained by the L, and L, norms were found (cf. also Tab. 1).

The present hand-operated method may of course be used in the linear case as
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Table 1
Example of adjusting parameters of a nonlinear function by minimizing the L; norm.

7 T X 75 X; T; X;

Data set 1; 5, 12, 43, 92, and 117 ps fitted exactly at a = 0

a= o? a=10""° a=3x10"°
b = —-0043908945 b= —-0012934582 b= —-0012933735
1 70-9318850 724032234 689824695 +677667683 68-9823497 +677664468
') +047060425 218:705130 +091491892 218-696547 1091495056

Data set 1, point 3 us removed; 5, 12, 43, 92, and 117 ps fitted exactly at a = 0

a= oo? : a=10""° a=3x107°
b= —-0043210075 b= —-0012935282 b= —-0012935836
1 70-9687856 +724325458 68-9825974 *677671036 689827334  -677674528
2 0 046700110 218-713753 ‘091488580  218:722417 +091485120
Data set 2; 3, 10, 41, 110, and 126 ps fitted exactly at a = 0
a= o® a=10""° a=13x107°
b= —-0004853826 b= —-0001114527 b= —-0001114923
1 65-:0945173 767522175 65-3149917 769650163 65:3149625 769649913
2 0 -007090179 @0 -004701271 [e9) 004701561

3 2:51050180 -000538746 1-64107405 000236794  1-64107401 -000236740

Data set 3; 3, 17, 39, 43, 101, and 126 ps fitted exactly at a = 0

a= o? a=10""° a=3x10"°
b= —-0136693032 b= —+0140965650 b= —-0140957222
1 913964240  -715046762 911625488  -713410510  91:1622901  -713407309
2 0 -096547201 228786-582  -098466243 217608359  -098469014
3 2-80086484  -003087207  4-84871102  -001608514  4-84768792  -001608585
a=10"11 a=3x 10711
b= —-0140970246 b= —-0140970150
1 91-1626885  -713412241  91-1626856  -713412205
2 235344745  -098464748  235204-041  -098464779
3 4-84926652  -001608475  4-84925492  -001608476

Data set 4; 5, 23, 38, and 100 ps fitted exactly at a = 0
a= oo® a=10"° a=3x10"°
b = -0003326506 b = 0001641259 b = 0001641287

1 53:3214945 +784017862 54-0185340 762784884 540185254  -762785058
2 14-0554828 -002869849 31-8795824 1024058478  31-8796105 +024058297

8 Least squares solution.
For the meaning of the parameter a see Eq. (2), for the other parameters see Egs. (7) and (8).
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well, but here the fully automated algorithms, e.g. those referred to in monographs
[2], [10], and [11], should be preferred despite the fact that the present method may
consume considerably less CPU time than the LP methods in those cases when there
are many experimental points and few parameters to be adjusted.
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Souhrn
NUMERICKA METODA ADJUSTACE MNOHOPARAMETROVE
NELINEARN{ FUNKCE
K EXPERIMENTALNIM DATUM POMOCI L, NORMY
JAROMIR JAKES
Byla vypracovdna metoda adjustace mnohoparametrové funkce nelinedrni vzhledem k hleda-
nym parametrim pomoci L; normy, tj. minimalisaci sou¢tu absolutnich hodnot odchylek funkce

od experimentdlnich dat. Metoda vychazi z feSeni ziskaného metodou nejmensich &tvercli a potom
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minimalisuje vyraz }:,(xi2 + az)”Z, kde x; je odchylka i-tého experimentdlniho bodu, pti ¢emz

i
za¢ina s hodnotou a srovnatelnou se stiedni kvadratickou odchylkou feS§eni metodou nejmensich
&tverct a potom postupné snizuje hodnotu a k zanedbatelné malé hodnoté, kterd poskytuje
hledané feSeni. ReSeni pro kazdé fixované a se hledd pomoci Hessovy matice a na po&atku se
pouZiva priméfené tlumeni oprav parametra, je-li to nutné. Jsou uvedeny piiklady pouZiti této
metody k analyse experimentalnich dat z oblasti fotonové korelani spektroskopie.

Pesiome

YUCJEHHLIM METOA AIBIOCTALIM HEJIWHEMHOM ®VHKLIN
C MHOTHIMU ITAPAMETPAMU K DKCIIEPMMEHTAJIEHBIM JTAHHBIM
C ITOMOUIBIO HOPMBI L,

JAROMIR JAKES

Paszpaboran MeToA aJprocTali (hyHKIMH CO MHOTHMH IapamMeTpaMH, HEJHHBEHHOM IO OTHO-
LICHHIO K MCKOMBIM HapameTpaM, ¢ IOMOIIbI0 HOPMBI Ly, T. €. IyTeM MHHHMH3ALUMH CyMMBI
a0COJIIOTHBIX 3HAYCHHU OTKJIOHCHHM (GYHKUHH OT SKCIEPHEMEHTAJBHBIX JJaHHBIX. MeTOZ OCHOBaH
Ha PELICHMM, IIOJTyYCHHOM C MCIIOJIb30BAHUEM METOJa HAMMEHBINHX KBaJPAaTOB, IIOCJIE YeTO MUHH~-
MYIOT BBIPAXCHHE Z(xi2 + a2)1/ 2, rie Xx; — OTKIOHEHHE [-TOM SKCIEPUMEHTAJbHOH TOYKH,

i

MpHYEeM HAYMHAIOT CO 3HAYCHUSI @, COIIOCTABEMOTO CO CPE/IHEM KBAAPATHBIM OTKIIOHCHMEM PEILCHUS
IT0 METOAY HAMMEHBIUAX KBAJAPATOB, a 3aTeM IOCTEIIEHHO YMEHBIIAKOT @ [0 IPEHEOPEKIMO MaIoi
BEJIMYEHBI, KOTOPAsi NPUBOJMT K MCKOMOMY pemnreHuio. Perrenme aisi Kaxaoro (GpUKCAPOBAHHOTO
a HyT ¢ IOMOINbI0 MaTpHupl ecca; B Havajie, eClid 3TO HEOOXOOMMO, UCIOIB3YIOT COOTBET-
crByfollee OemMndHupoBaHME IOHNPAaBOXK ¥ Hapamerpam. IIpHBOAATCS IPHEMEDHl HMCIOJIb30BAHMA
JAHHOTO METO/Ia B aHAITA3€ HKCIICPUMEHTANIBHBIX JAHHBIX U3 001acTH POTOHHOM KOPPESIUMOHHOM
CINEKTPOCKOITHH.
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