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SOLUTION OF A MATHEMATICAL MODEL
OF A SINGLE PISTON PUMP WITH A MORE DETAILED
DESCRIPTION OF THE VALVE FUNCTION

IVAN STRASKRABA
(Received October 6, 1986)

Summary. In this paper a mathematical model of a fluid flow in a tube with a valve and a pump
is solved. The function of the valve is described in more detail than in [3], thus making the model
more complete.
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1. INTRODUCTION

The purpose of the present paper is the mathematical treatment of the flow of
a fluid in a pipeline with a piston pump. We use a model suggested by V. Kolar¢ik [1],
which will appear in a more general version in [2]. In [3] we have investigated
the same problem without taking into account the resistance of the open valve.
This new feature is now considered, thus making the mathematical description
of a fluid flow in the pipeline more complete. This research has arisen from a co-
operation between Mathematical Institute of the Czechoslovak Academy of Sciences
and Research Institute of Concern SIGMA — Olomouc, Czechoslovakia. Our
paper is divided into five sections. In Sec. 2 the problem is formulated as a boundary
value problem for a linearized Euler system of two partial differential equations.
This problem is transformed into a more appropriate form in Sec. 3. In Sec. 4 the
necessary notation is introduced. Finally, in Sec. 5 the initial boundary value problem
from Sec. 3 is solved.

2. FORMULATION OF THE PROBLEM

We consider the same configuration of the elements pump, valve, accumulator,
pipeline and tank as in [3]. We also use the same partial differential equations for the
pressure p = p(x, f) and the rate of flow Q = Q(x, f) in the pipeline:
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(2.1)
Q,+£px+kQ=0, 0x=<s1, t2t,.
Qo

Here g, and ¢, are the density and the sound speed of the still medium, respectively,
F and 1 are the cross-section and the length of the pipeline, respectively, #; is the
initial time (say, when the valve is closed) and k = ArFo[4R,FT, where 1 is the
coefficient of the friction of the fluid near the pipeline walls, R, is the hydraulic
radius, r — the radius of the crank, F, — the surface of the piston and T is the
period of one cycle of the pump. If the valve, placed at x = 0, is closed, we use the
boundary condition [3]

(2.2) C,p(0,1) + 0(0,1) =0, t,St<t,

where C, is the capacity of the accumulator and ¢, is the time of opening the valve.
On the other hand, if the valve is open then we consider the boundary condition

(23)  CoR{[Cy pu(0,1) + 040, 7)] + (Co + C,) pA0, 1) + 0(0, 1) = fo(1),
L St<ty+ T,

where C, is the capacity of the working compartment of the pump, R, is the re-
sistance of the open valve and fo(t) is a smooth function characterizing the motion
of the piston measured in the volume. The boundary condition (2.3) arises from the
balance of mass and momentum between cuts in the pump-valve-accumulator-pipe
system. The presence of higher derivatives is caused by the elimination of the redun-
dant quantities and seems to be rather unnatural. This question will be settled
in Sec. 3 by an appropriate reformulation of the problem. On the opposite side
x = I of the pipeline we suppose a constant pressure, i.e., we set

(24 p(l,t) = const., t = t, .

The equations (2.1)—(2.4) are to be complemented by initial conditions
(2.5) p(x, 0) = po(x),

(2.6) 0(x,0) = Qo(x), xe[0,1].

In both cases we suppose that the boundary conditions (2.2), (2.3) are prolonged
periodically for te[t;, ©) (or te R = (—oo, o0) if necessary) assuming that the
valve opens any time when t = t, + nTand closes att = ¢, + nT, n being an integer.
Thus, for (2.2), (2.3) we substitute the boundary condition

(2.7) W(1) CoR[Cy pu(0, 1) + Q4(0,1)] +
+ (v(t) Co + C;) pf0, 1) + Q(0,1) = f(1), t 2 t,,
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where
v(i)=0 for t; St<t,,
Wi)=1 t,st<t; + T,
W)=v(t+T), teR
and
f(O) =v(1) fo(t). teR.
3. REFORMULATION OF THE PROBLEM
In this section we carry out some arrangements of equations (2.1), (2.4)—(2.7)

which enable us to use methods for differential equations in Hilbert spaces. First,
excluding from the system (2.1) pressure p we get for Q one equation

(3.1) Qn+ 290, — 50, =0, xe[0,1], 121,
where
y = rFo_ ‘
8R,TF

Secon dly, inserting the first equation in (2.1) into (2.7), (2.4) we find

(32) W(t) CoR, [—C1 Q(;:g 0.(0,7) + Q:(O,t)] -

- () Co + Cy) Q;’;g 0.0, 1) + 0(0, 1) = v(1) £o(2),

0L)=0, t=1.
From (2.5), (2.6) we get the initial conditions

(3.3) O(x, ) = Qo(x),
(3.4) 0% 1) = = pp (x) — k Qo(x) = 04(x), xe[0,1].

0
If te[t; + nT, t, + nT), n integer, then v(¢) = 0 and the problem (3.1)—(3.4)
is solved by the formulas given in [3]. A more detailed account is given in Sec. 5.
Let te[t, + nT, t; + (n + 1) T). After obvious arrangements the problem (3.1) to
(3.4) can be written as follows:

(3-5) Uy + 2yu, — coue =0, x€(0,1),
te(t,+ nTt; + (n + 1) T)
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(3.6) u, (0, 1) — oy u (0, 1) + a u,(0, 1) — a3 u(0, 1) = (),

(3.7 u(l,t)y=0, te[t,+nTt; +(n+1)T],
(3.8) u(x, t, + nT +) = u(x, t, + nT-),

(3.9 u(x,t, + nT+) = ufx, 1, + nT-), xe[0,1].
We have put here

O(x, 1) = u(x, 1), u(x,t;) = Qo(x) = uy(x),

wle, ) = = - po) — k Qo) = uy(x),

0
(3.10) a1=_F5, OCZ:_CL:['&’ a3:_*€__5,
C100¢ CoCiR, CoC1R00¢5
F . fot
(3.11) 7 = 240

C0C1R1Qo‘:3

The conditions (3.8), (3.9) mean that the solution and its derivative with respect
to time are continuously connected to the solution on the preceding interval [tl +

+ nT, t, + nT]. The boundary condition (3.6) is not yet in the proper form. It can
be written as

(3.12) u (0, 1) — oy u 0, £) + ;[ (0, 1) — o, u(0, )] +
+ (o0, — a3) u(0, 1) = f4(£) .
To be definite, set n = 0. As

u 0, 1) — oy u(0,1) = % [0, 1) — o; u(0, 1)]

we get from (3.12) an ordinary differential equation for u,(0, ty — &, u(0, t), so that
(3.12) is equivalent to

(3.13) u,(0, 1) — a; u(0, 1) = e[y (0, t,—) — a, u(0,1,—)] +
13
+ j e 2 (g — oy0,) u(0, 7) + fi(r)] dr .
ta
According to (3.2) we have

20C5 —
- C, —qux(O, t,—) + u(0,t,=) =0,
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i.e. (cf. (3.10))
u (0, t,—) — o, u(0,1,—) = 0.

Thus we have found the final form of the boundary condition (3.2) on the interval
[tz,t, + T]:

u (0, 1) — o, u(0, 1) = j " ey — ayay) u(0, %) + £3(e)] de

t2

Generally, instead of (3.6) we now have

(3.14)  u,(0,1) — a, u(0,1) = j‘t e [(ay — ay05) u(0, 7) + fl(’c)j dr,

to+nT

te[t,+nTt, +(n+ 1)T], n=0,1,...

4. NOTATION

Let I = R be an interval, k = 0 an integer, B a Banach space. Then C¥(I; B)
denotes the space of all functions from I into B which are continuous together
with their derivatives up to order k with respect to the norm in B. H¥(I; B) is the
Sobolev space of functions from I into B which are square integrable together
with their all distributional derivatives up to order k, H*(I; R) = H¥I), H%(I; B) =
= I’(I; B). If A: D(4) = B — B is a closed linear operator then for v e D(4) we
denote by ||v| ps) = [[v]|s + [ Av| s the graph norm of A under which D(A)is a Banach
space. In particular, if B = H is a Hilbert space and 4 is positive definite, i.e. [ Ao, =
> m||v||y, ve D(A), where m > 0 is a constant, then we denote |[v] ey = ||4v]
for ve D(A). For a selfadjoint positive operator 4 in H we take m = inf o(4),
where o(A) is the spectrum of the operator A.

5. THE INITIAL VALUE PROBLEM

In this section we solve the initial value problem given by equations (3.5), (3.14),
(2.7), (3.8) and (3.9). As we want to use an abstract method for the construction
of a solution we must prepare an appropriate notion of the solution. Let us start
with the definition of a solution on the intervals [t, + nT, 1, + nT), n integer.
To be concise, set n = 0. In this case our problem reads

(5.1) Uy + 2pu, — chu, =0, xe(0,1), te(ty,ty),
u0,1) — o, u(0,1) =0, u(l,1)=0, te[t,1],
u(x, 1) = uy(x),

u(x, 1) = uy(x), xel[0,1].
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Note that if we wanted u to satisfy these equations in the classical sense the com-
patibility conditions

(5.2) u(0) — oy uo(0) = 0, wy(l) =0,
ui(0) — oy ug(0) =0, wj(l)=0
would be necessary.

Let H = I*(0, I) with the norm |-|| and let A be a positive selfadjoint operator
in H the square of which is defined as follows:

(5.3) D(A%) = {ve H¥0,1); v'(0) — &, v(0) = 0, v'(]) = 0},
(4%) (x) = —c3v'(x), x€(0,1), veD(4?).

It has been shown in [3] that this definition is correct and that D(4) = H*(0, I).
We interpret the problem (5.1) as a set of equations in H:

(5.4) w'(t) + 2y u'(t) + A% u(t) = h(7),
u(ty) = u,,
u'(ty) = uy,

where in this case h(r) = 0 (otherwise h: [t,,1,] — H) and ug, u, € H.
Definition 5.1. The function
(5.5) u(t) = e 77 cos [(t — 11) (42 — y*)* ] u, +
+e77UT (A2 — y2) "V 2sin [(1 — t,) (4% = y*)?] (uy + yuo) +

t
+ J e 7TI(4% — y?) " 2sin [(t — 1) (4% — y*)Y?] h(r) dz,

te [ty t;]
is called a solution of (5.4) (or (5.1), if h = 0)on [t,, t,] if u € C'([ty, t,]; I2(0, 1)) n
n C([t,, t,]; H'(O, 1)).

Lemma 5.2. For uy e D(4) = HY(0, 1), u; € H = I*(0, I) and h e C([t,, t,]; D(A))
the formula (5.5) represents the unique solution of (5.4)

Proof. This is a standard result. See e.g. [4] or [3]. Note that the formula (5.5)

can be wtitten in the form

(5.6) u(t) = [Kit, ) + vK(t, 11)] o + K(t, 1) (ug + yuo) + j " K(t, ) h(z) de,

ty

teti,ta],
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where
(5.7) K(t,7) = e 79(4% — y?)" Y2sin [(t — 1) (4% — yH)V/?],
tyStSt=t,, K(t,t)u, means d/di[K(t,7)u,].

If ¢ € H then the function v(f) = K(t,7) ¢, t; < 7 < t < t, is a solution of the initial
value problem

(5.8) v"(t) + 2y v'(r) + A%0(t) = 0,
() =0,
V) =¢, t,ST<t=<t,.

Lemma 5.3. Let m = inf 6(A) > y. Then for ¢ € H we have

(5.9 [K(t,2) o] < (m? —3?)7 1270,
(5.10) [K(t, 7) @] sy = <Z i zz> e 79 g,
(5.11) [Kt7) @] < (1 + o 2)1/2) e =9 g, \

t1§1§t§t2.

For the proof see [3], formulas (58) and above. Let us note that for A defined

by (5.3) we have m? = ¢ . A,,, where 1, is the least eigenvalue of the boundary
value problem

—v'(x) = Av(x), x€e(0,1),
v'(0) — o, v(0) = 0,
() =0.
It can be shown that for particular values of the physical constants in question

we have c24,, > 9% This is due to the multiplication by the square of sound speed
¢, which in water — our usual medium — is sufficiently large.

The above considerations are easily modified to any interval [t; + nT, t, + nT],
n integer.

Now we are going to interpret and find the solution of the problem given by
(3.5), (3.14), (3.7), (3.8) and (3.9) on the intervals [t, + nT,t; + (n + 1) T], n
integer.

Again, we suppose n = 0 with an easy modification for n general. On [¢,, t, + T
the problem reads

(5.12) Uy + 2yu, — cou, =0, x€(0,1), te(ty,t, + T),
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t

(5.13)  uf0,1) — o, u(0,?) =f e "N (o — ag0r,) u(0, 7) + f4(7)] dr,

t2

(5.14) u(l,t) =0, te[t,t, +T],

(5.15) u(x, tz) = u(x, t,—) = @y(x),

(5.16) ulx, t,) = ulx, t,—) =i (x), xe[0,1].
First, investigate the problem given by (5.12), (5.14)—(5.16) and

(5.17) u(0,7) — a, u(0,1) = g(t), te[tyt; + T]

with a given function g which is, say, twice continuously differentiable. Setting

(5.18) o(x, 1) = u(x, i) + ai 0,

1

we get for v the problem
(5.19) v, + 2y, — chv,, = i|:g"(t) +2y9'(0)], xe(0,1), te(tyt, + T),
%y

0,(0, ) — o; v(0,2) = 0,
v(l,t)=0, te[t,t, +T],

w&m=%w+iam,

v(x, 1) = @,(x) + “ilg’(tz) , xe[0,1].

The solution of this problem will be interpreted in the sense of Definition 5.1, where
we set

1
wiz o b= —[g"0) + 29 (9] 1,
1

tii=ty, ty:=t +T,
_ 1 _ L,
uo =iy +—g(tz) . 1, ug:i=1i, +—g'(t;).1
oy %y

where 1 means the function in I2(0, 1) identically equal to the constant 1. According
to Lemma 5.2 and (5.6), for i1, « H'(0, 1), it; € (0, I) we can write

(5.20) o(t) = [K(t 1) + v K(t,1,)] (ao + aig(tz). 1) +
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1
+K(t, tz)(ru + L) U4 9, + Lg(ty). 1) +
0y 2%}

t
+ ij [¢"() + 2y g’(®))] K(t,7) 1 de, te[tyty + T],
%1 Je,

where o(t) = o(+, 1), ve C'([t5, 1, + T]; (0, 1)) n C([t,, t; + TT; HY(0, 1)).
In what follows we set

(521) g(r) = -[ L (ay — oya;) u(0, ) + fi(e)] de, 1ty byt T].

t2

As ueC'([ty, 1, + T]; X0, 1)) n C([t2, 8y + T]; H'(0,1)) implies that u(0, +)
belongs to C([t,,t, + T]) but not necessarily to C'([t,, ¢, + T]), we can expect

t

g € C'([t5, t; + T]) only. That is why we integrate the term —1—J' g"(zr) K(t, 7) 1 dv
al t

in (5.20) by parts (take into account that K(t, 7) = —K(t, 7) by (5.7)), thus getting

the expression which makes sense also for g € C'([¢,, t; + T]):

(5.22) u(t) = oft) — aig(z) 1= [Kt 1) + 7 K(t, 1)] (7o + ;1- o(t) . 1) +
+ K(t, t,) (i1, + yiip + o—:)—g(tz). 1) - ai g(t). 1+

t
+ lj g’ (@) [Kt,7) + 2y K(t, 1) 1de, te[ty, 1y + T].
01 Jt,

Inserting (5.21) into (5.22) we can interpret the solution of the problem (5.12— 16)
as a solution of an integral equation. In the following definition take into account
that by (5.21), g'(t) = —a, g(t) + (a3 — o;,) u(0, £) + f4() holds.

Definition 5.4. By a solution to the problem (5.12)—(5.16) we mean a function
u(x, t) such that

(523)  u(s,*)eC'([taty + T]; I*0,1)) N C([ts, 1, + T]; H'Y(0,1))

satisfies the integral equation

(524)  u(t) = d(u) (1) = [Kft, 1,) + yK(t, 1,)] 1, + K(1, 1,) (i1 + yido) —

1 te'“(’"’) [(es — ayo2) (0, 7) + fy(e)]dz. 1 + 1 J.t{(og — o,0,) u(0, ) +
%1 Je,

O1Je,

+ fi(z) = o, J"e_“(t—'d) [(os - o‘10‘2). u(0, 0) + f1(0)] d"} .

t2

JK (1) + 2y K(t,t)] 1de, tety,ty + T].
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Lemma 5.5. For e H'(0, 1), i, € I*(0, 1) and fy € C([ts, 1, + T]) there exists
a unique solution of the problem (5.12)—(5.16).

Proof. If suffices to prove the existence of a unique solution u € C([t,, t; + TJ;
H'(0, 1)) of the integral equation (5.24), since having such a function, we have
u(0, *) e C([t,, t; + T]) by the Sobolev embedding theorem which together with
the assumption on the data i, #; and f, yields continuous differentiability of the
right hand side of (5.24) in the norm of I*(0, /). So we shall use the Banach fixed
point theorem in the Banach space B, = C([t,,t; + T]; H'(0, l)) with the norm
lo)s = sup  (e7*~* |jo(t)]| u:) to the operator & defined in (5.24). A constant

1]

te[ta,t1+
k > 0is to be chosen so that @ be a strict contraction in B,. First, it is clear that ¢

maps By into itself. Indeed, for u € B, we have u(0, +) € C([1,, t; + T7])and the opera-
tors K,(t, ), K(t, 7) map D(4) = H'(0, I) continuously into itself. As 1e H(0, 1)
and f, is continuous the integrals in (5.24) are continuous functions of ¢ in H*(0, I).
‘The same may be easily shown for the remaining terms on the right hand side of
(5.24). Let us prove that a constant k can be chosen so that @ is contractive in B,.
Let w = v; — v,, where vy, v, € B,. Then by (5.24) for t € [¢,, t; + T] we have

0(0,) (1) — o(0;) (1) = 22 =% j Temnt=n (0, 7). 1 +

1 t2

_ t T
+ uﬁf {{W(O, 7) — azj e~ (77 (0, o) da} X
«

1 t2 t2

x [K{t,7) + 2yK(t,7)] 1 dz .
1t follows that

(5.25) e [ o(0y) (1) — B(0) ()]s =

< [ = 3] i { f '2|w(o, 9 del|L]s + j ' [|w(0, | + o f ;|w(o, 2| da] .

KA ) 1 + 20K (1 9) 1] df} .

Since the graph norm of 4 is equivalent to that of H'(0, I) (see [3], Lemma 2), there
exists a constant a > 0 such that

(526)  a Yz|m = ||z]pwy = [4z] £ a|z|m, ze D(4) = H(0,]).

Hence using Lemma 5.3 we get

(527)  |K(t,7) 1w < a][K(t,7) 1py = aAK,(t,7) 1] = a[K(t, 1) A 1] <

a1 + ol = e ] (s i,
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(528) [K(t,7) 1]m < a(m® — y?)"2e7 7D A 1] £ a¥(m® — 9?) 72 [1fgs -
As |[1]gr = 1'/2, we find from (5.25) that
(5-29) e HTD | @(v,) (1) — B(v,) ()] <

11/2|0!1062 — 063| e k(t=12) 'IW(O, T)I de+ a1+ 3y .
" (m?

0y — ,),2)1/2

t T 1/2 -
j' [lw((), 1-)] + MZJ |w(0, O-)I do'] d‘t} = l__‘&_zl eTkt—12)
t2 t2 221

. J ' [1 ta? (1 4 (——m;-ffm> (1 + at — r)):] (0, 9) de <

t2

1'2]oy0, — oy 3y

< . [1 + a? (1 + m) (1 + ay(t; + T— tz))].

t
I ek eI [3y(0, )| d .

t2

By the Sobolev embedding theorem there exists a constant b such that \
(5.30) w0, 7)] £ b. |w(*,7)|m:, Te[trty + T].
Denoting
M =MM[1 + a2<1 + L).(l + oy(t, + T— tz))],
o (mz _ ,y2)1/2

we find that (5.29), (5.30) yields
(531) e [@(0,) (1) = @(02) (1), <

t
MJ e 7V dr sup e 7FETD) |w(e, o) = %(1 — e7MTD) [w]ly, <
t2

te[tz,t1+T]

<M
k

[wla, = 2 s = o2l

Taking sup on the left hand side of (5.31) and a fixed k > M we get the con-

te[ty,t1+T]

tractivity of @ in B,. By the Banach contraction principle there exists a unique
u € B, satisfying the equation
u(t) = o(u) (1), te[tyt, + T].
This completes the proof. .
Lemma 5.5 allows us to construct the solution of the problem defined by the

equations (3.5), (3.14), (3.7), (3.8), (3.9) for any integer n. This result combined
with Lemma 5.2 makes it possible to define a solution of the problem.
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(532) utt + 2'))“, - céuxx = 0 ’ xe(o’ l) ’
te(ty + nT,t, + nT) VY (t, + nT, t; + (n + 1) T),

u (0, 1) — oy u(0,¢) = (1) L e [(e — ay5) u(0, 7) + fy(e)] de,

ty+nT

u(l,ty =0, te[ty +nTt; +(n+1)T],
y u(x, t; + nT +) = u(x, t; + nT —),
u(x,t; + nT+) = u(x, t; + nT =), xe[0,1], i=12,
u(x, t; —) = uo(x),
u(x,t; =) = uy(x), xe [0, 1],
n=20,1,2,...

Definition 5.6. By a solution of the problem we mean a function ue
e C'([ty, 0); I2(0, 1)) n C([t1, 0); H*(0, 1)) satisfying the relations

(5.33) u(t) = [K(t, t, + nT) + yK(t, t; + nT)]u(t; + nT =) +
+ K(t,ty, + nT) (w'(t; + nT =) + yu(t, + nT =)

forte[t; + nT, t, + nT]and

(5.39) u(t) = [K(t,t, + nT) + yK(t, 1, + nT)]u(t, + nT =) +
+ K(t,t, + nT) (u'(t, + nT =) + yu(t, + nT —)) -

t
_1 e (a3 — ayop) u(0, 7) + fi(7)] dr. 1 +
%1 Jty4nT
t T
+ 1 {(cx3 — oy0,) u(0, 7) + f1(7) — oczj e (a3 — age,) u(0, 0) +
oy ta+nT ta

+ f1(o)] do'} KAt ) + 2yK(t,1)] 1 de

for te[t, + nT,t; + (n + 1) T], n = 0,1, 2, ..., where we set
(5.35) u(x, t; =) = up(x), ufx,t; =) =uy(x), xe[0,1].

Theorem 5.7. Let uy € H'(0, I), uy € I*(0, I) and fy € C([t, + nT, t; + (n + 1) T])
for each n = 0,1,2, .... Then there exists a unique solution of the problem (5.32).

The proof is a trivial consequence of Lemmas 5.2 and 5.5.

The next theorem establishes the correctness of the problem (5.32) in the sense of
continuous dependence of the sclution on the data in the appropriate norms.

Theorem 5.8. There exist real constants M > 0 and w such that for any uye
e H'(0,1), u;eI’(0,1) and fieC([t, + nT,t; +(n+1)T]), fi(t)=0, te
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€[ty + nT, t, + nT), n =0,1,2,... the solution of the problem (5.32) satisfies

the estimates
t

(536 [ulOln 5 M (ol + sl + |

1

v(z) |fi(7)| dr),
[w(0)]e2 = M e (Juoms + [Jus]l2 +
+ J'v(f) @ d). (21

The constants M and w are independent of uy, u, and f;.

Proof. Let uge H'(0, 1), u; € IX(0, ), f; € C([t, + nT, t; + (n + 1) T]), £1(t) =
=0,te[t; + nT,t, + nT),n = 0,1,2,.... To prove the estimates (5.36) we use
the formulas (5.33), (5.34). We restrict ourselves to t € [ty, t; + T], extending the

estimate on [#;, t; + T] by induction onto [t;, ) = U [t + nT,t; + (n +1)T]
Let 1€ [t,, 1,]. Then by (5.26), (5.33) and Lemma 5.3
(5:37) Ju@llar = alu®]ow = oKt 1) Au(t)] + 2]K(e, 1) Au()] +

+ [|AK(t, 1) w'(1)]| + y|K(t, 1) Au(ty)]] <

= [a (1 ! (mz——yvz)m> [u(t)]a: + ya(m? — y*)~ 172 {lu(t,)]| g +

+ (’"2 + yz)lfz [#'(2)]|c2 + va(m® — y*)~172 ""(H)Hm:l e 1t-1) <

m? — o?
< k[ Ju(ty)]ar + ”u’(tl)”m] e 7T
where (and in what follows) ky, ks, ... denote constants. Differentiating (5.33) and
using the identity K,(t,7) = —y K,(t,7) — 42 K(t, 7), quite analogously we get
(5-38) Jw' (D)2 £ Rt + [w'(t)]|z] €77

Let t € [t,,t; + T]. The first part of (5.34) containing the initial conditions u(t,~),
u'(t,—) has the same form as (5.33). Thus from (5.34) and following the idea of

(5.37) we obtain
[u(®)]|ms < kg e [u(t)]|me + [0'(22)]|22] +

+im%ffw”Wrme&ﬂ+mwwﬂ~

t2

+ ;} t{ los — ag0t,| [u(0, 7)| + | f1(2)] +

1Jt2
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o [ €70 [y = gl [0 o + 7] o}

ta

KA ©) ae + 29| K(2, 7) 1] ] dr
Using (5.27), (5.28), (5.30) and setting B = min (y, «,) we find

(5.39) lullae < Fey e L) Jan + (2] ea] +

t
e [ P B PCI P
o

1 t2

t
+ f— 1] e e"”“"'“j D | fy(7)| de +
1

t2

ablay — o0, 3y -t [F Beem
T 3061 . (] " (m* — v2)17> [t e .[:,em o

-nu<r>nmdc+i’f(1+ ) Il o7 jte’“"")lfl(f)|df+

1 (m2 - ')’;)T/E t2

. o,a%blay — a0, <1 - 3y ) 1] e‘ﬂ(r—tz)J‘t
(m* —

2\1/2
%y ?)/ t2

2 t ¢
ML TS f '[ O [1,(0)] do de S ky e P [fu(ty)]ms +

%y

f’e”("""’ |u(c)| do dr +

ty

124 t2

t t
+ e (t) o] + ks P j &1 | £,(2)] dt + kg PO j =12 [ (2) | de,

t2 t2

where the double integrals are estimated as e.g.

[ [ e = [ 90 Bt )

<7 J "= ()| do -

t2

Setting
() = 7 u(@)]a s

from (5.37), (5.38) (with ¢ = t,) and (5.39) we find
(1) < ks + k3) €77 [u(t) s + [w'(t)] 2] +

ks j e |1, (1) de + k4j'¢(r) dr < ks {e~ﬁ<u-~> Clts) s +

1 t2

t

# Wl + [ S @) el + k[ oy ae.

173 t2
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Although f;, ¢?“~* |f ()| dr is not constant, since it is a nondecreasing function
the Gronwall lemma can be used as with a constant absolute term to yield

o0) < kst { [t + (o) o] +

+ J’ | £, ) dr}

t2

which yields

(5.40) [u(t)]s < ks 4= {e“’"“"[llu(tl)llm + Jw(e)]e] + j 146 dr} -

= L0t + )] + 2 1) o

By appropriately increasing the constants k,, ks if necessary, quite analogously
we get

2

lw' )]z = a(t) CluC)]a: + Ju'(t)]l=] + _b_gt_)J" |f1(7)] dz.
We conclude that :

(5.41) lw @]z + |u(@]us < a(®) [Ju'(t)] + Jult)]m] +
+ b(1) f WO @) de, e[t + T,

where
a(t) = ke e 7“7, b(t) =0 for te[ty,1,)
and
a(t) = ks €407 PO 1 p(1) = ks €407 for te[tyt, + T].

As the estimates (5.37), (5.38), (5.40), (5.41) do not depend on the particular choice
of the interval [t; + nT, t; + (n + 1) T] we find

(542) W @lls + [l < a() [t + nT)] 2 +
# s + nled <30 (9 [1,9) e,

te[ty + nT,t, + (n + 1) T],
where

(543)  a(t) =kge """ | p(t) =0 for te[t, + nT,t, + nT)
and -
(5.44) a(t) — k5 ek4(t—'2-—nT) e—ﬂ(!—tl-nT) , b(t) = k5 ekq(t—t;—nT)

for te[t, +nT,t; +(n+1)T).
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Set y, = [[u'(t; + nT)||p2 + |Ju(ty + nT)|g1,

to+(n+ 1)T
Z, =f V@) |fi(r)|de, n=0,1,....

ty+nT
Let t € (t;, 00) be arbitrary and let n be the greatest integer such that t; + n”T < t <
< t, + (n + 1) T. By (5.41) we have

(545) WO + [eOm S a@ye + 50 [ @) [720)] de

ty+nT
Further, it is clear from (5.42) that
(5.46) v <a(ty + kT) yyq + b(t; + kT) 24—y, k=1,2,...
By (5.44) we have
(5.47) a = a(ty + kT) = kg 4t1+7=1) g=8T

b= b(t, + kT) = ks eH41+T=12)

These constants are independent of k. Using (5.46), by induction we get
(5.48) Vo S Ao+ b(a" " zg + a" 2y + .o+ Z,y) .

It is clear from (5.43), (5.44) that there is a constant k, such that
a(t) £ ky, b(t) < kq independently of te[t; + nT, t; + (n + 1) T] and n. Thus

(5.45), (5.48) yield
[ ()2 + [u(®)]a: = kaly +ft+ TV(T) |£1(z)] de) =

RGUGEIE

@ 1ol de) | =
= kyexp (nIn a) [uo)m + [Jus]c2] +

+ kyb max {exp ((n — 1)In a), 1} . f e [f2()] de -

<k, [a"yo + b(@ zg + a2z + oo+ Z4y) +f
t

n—1
<k, [a"yo + b max (a""*, 1)(2 z; +f
j=o

ty+nT

Since n < (t — t;)|T, Ina = Inks + ky(t; + T — t,) — BT, the estimates (5.36)
immediately follow.
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Souhrn

RESENI MATEMATICKEHO MODELU JEDNOPISTOVEHO CERPADLA
S DETAILNEJSfM POPISEM FUNKCE VENTILU

IVAN STRASKRABA

V prici je feSen matematicky model proudéni tekutiny v trubici s ventilem a &erpadlem.

F unkce ventilu je popsana detailn&ji neZ v prdci [3] a ¢ini tak model GpIngjsi.
%

Pesrome

' PENIEHUE MATEMATHUYECKOY MOJEJIX OJHOITOPITHEBOI'O HACOCA
C BOJIEE ITOAPOBHBIM OIMMCAHUEM ®VYHKIIMU BEHTWIA

IVAN STRASKRABA

B pa6orte pemena MaTeMaTA4YeCKasi MOJEIb TeYEHUS JKUIKOCTH B TpyGe C BEHTUIIOM H HAaCOCOM.
OyHKIKS BEHTHI OIECaHa noapoGHee yeM B pabote [3] u memaer Mozmens Gojiee COBEPIICHHOI.

Author’s address: RNDr. Ivan Straskraba, CSc., Matematicky ustav CSAV, Zitna 25, 115 67
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