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A UNILATERAL BOUNDARY-VALUE PROBLEM
FOR THE ROD

MIROSLAV BOsAk

(Received September 30, 1986)

Summary. A unilateral boundary-value condition at the left end of a simply supported rod
is considered. Variational and (equivalent) classical formulations are introduced and all solutions
to the classical problem are calculated in an explicit form. Formulas for the energies correspond-
ing to the solutions are also given. The problem is solved and energies of the solutions are com-
pared in the perturbed as well as the unperturbed cases.
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INTRODUCTION

In his paper [1] E. L. Reiss solved in an explicit form the problem of branching
of the trivial solution of a homogeneous rod satisfying certain (bilateral) boundary-
value conditions. Being inspired by his work we try to do similar work in the case
of the unilateral problem. We give the explicit solutions and compare the correspond-
ing energies for which we also obtain explicit formulae. Both the unperturbed uni-
lateral condition and the perturbed one are considered.

The physical background of the problem is given in Section 1. In this section
we also introduce the variational inequalities modelling the unilarelal problems
in question and give their interpretation. As it is pointed here, we can equivalently
solve the problem in its classical formulation.

In Section 2 we calculate all solutions of the problem.

The main part of the paper is Section 3 where we calculate in detail the expressions
for the energies and prove their ordering.

1. PHYSICAL BACKGROUND OF THE PROBLEM AND ITS FORMULATION

An underformed rod R is meant to be a three-dimensional continuum whose
projection on the x-axis is the interval <0, ) and whose cross section S(a) =
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= {[x,y,z] € R; x = a}, a €0, m) is symmetrical with respect to its centre which

lies on the x-axis. In this paper we deal with a rod of constant cross section which
is made of homogeneous material. Moreover, we suppose that during the deforma-
tion each cross section S(a) remains planar.

These assumptions enable us to investigate only the deformation of the axis
of the rod, i.e. of the segment {[x, 0, 0]; x € <0, ©)}. We suppose that the deformation
takes place in the xz-plane.

Taking into account these assumptions and neglecting some higher order terms
we are led to Kirchhoff’s energy functional (see [2])

(L) E(u,w) = j

[

n

{é”?tf (u + 3w'?)? + %‘I (w")? — Xu — Zw} dx —

— (Xu + Zw + MwW)[5 ,
where
u(x), w(x) denote respectively the horizontal and vertical displacements of the
point (x, 0) (thus the coordinates of this point after the deformation are x + u(x),

w(x));

(X, Z) is the vector of the external force density which is a function of x;
(X, Z) are the vectors of the forces acting at the ends of the rod;

M are the moments of these forces;

& is Young’s modulus;

o is the cross-sectional area of the rod;

J = [sz? dy dz is the moment of inertia with respect to the xy-plane.

Provided X, Z e I*(0, m) the functional E is defined in the space Y = W2 x W22,
In what follows we denote the elements of Y by v = (u, w).

Let us now formulate the boundary-value conditions. The rod is supposed to be
simply supported at both ends, but the rotation of the left end is unilaterally restricted
(see Fig. 1). While the left end is fixed with respect to all displacements, the right
end can move horizontally. Using our notation we can write these conditions as

(1.2a) u(0) =0, w0)=0, w(0)=e,
(1.2b) w'(0) <0, [w/(0)—¢]w'(0)=0,
(1.2¢) u(n) = —c, wm)=0,

(1.2d) w'(n) =0,

wheree = 0, c € €0, TC) are the parameters.

Applying the Lagrange principle of minimum' of the potential energy we seek
the state of equilibrium of the rod among the critical points of the functional E
in the convex set K given by geometrical constraints (1.2a), (1.2c).
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The point v € K is said to be a critical point of E in the set K if it satisfies the Euler
inequality
(1.3) veK:DE(v, 5 —v) 20, Viek,

where D is the Gateaux derivative.
In what follows we treat the situation when

X=2Z =0,
X=M=0.

We give the specific form of (1.3) in this particular case.

2]

[x+u(x);w(x]]

[ _—m

1 1
t

0 [x0] T T x

Fig. 1.

Variational formulation of the problem

Denote
(1.4) K= {oew"?0,m) x [W>2(0, ) N W5?(0,m)]; u(0) = 0, u(r) =
. = —c,w(0)=¢}.

We want to find v € K satisfying the inequality
(1.5) f B + 1w [(@~u) + W@ —w)]+w(®—w)}dx <0
0

for all = (i, W) € K.

Remark 1.1. We divided (1.3) by €J > 0, denoting f = o/J. The term —Zw[g
in (1.1) vanishes since w e W§'3(0, m).
It can be easily proved that any sufficiently smooth solution of (1.5) solves the

following classical problem:
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Find (u, w) € C*(0, mY) X C*(<0, n)) satisfying the system of equations

(1.6a) u + 3w = - /%
(for some A€ R),
{1.6b) w™ 4+ w" =0

together with the conditions (1.2).

In the sequel we refer to this problem as to the problem (1.6).

The following theorem permits us to work with the classical problem (1.6) instead
of (L.5).

Theorem 1.1. Any solution of the variational problem (1.5) is of the class
C?(0, my) x C*(K0,n)) and solves (1.6). The problems (1.5) and (1.6) are then
equivalent.

We omit the proof of this regularity result — it can be done by the standard
method.

2. SOLUTION OF THE PROBLEM

All solutions of the problem (1.6) can be calculated explicitly and are given in the
tables below.

Remark 2.1. It is readily checked that the equation umcos um — sinun =0
has exactly one zero in each interval (n, n+ %), n=1,2.... We denote these
Zeros [,

Table 1, (Solutions of (1.6) in the case ¢ = 0)

for ¢> n’n/f, neN:

a2
u(x) = = Sx = =B
T 2nn

w(x) = % (\/C_Tnzn/ﬁ>sin nx ;

forc > 2 /B, n € N, where p, are the numbers defined in Remark 2.1:

u(x) = — H—: x — 2(6——5"27‘:/13) [x(% + cos? ) —
B T sin” wu,m

sin 2nx ,

.1)

(22) - 2 cos H sin p(x — m) + L sin 2p,(x — m) — En cos? y,m |,
u 4u 2

n n

w(x)__.L(\/L;ﬂéﬁlﬁ)[x_n;nsim(n—x)];
U 1 sin py,m
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for0 £ ¢ < m:

23) “e) = -2

w(x) =0.

Table 1, (Solutions of (1.6) in the case ¢ > 0)
for ¢ = n(e?/4 + n*[B), ne N:

2
u(x) = — <x — c———’ﬂgsinan,
1 2nn
(2.4) )
W(x) = g\/:._n__n_/ﬁsnl nx; ]
n T

for ¢ = An/p + (¢°n/4) P(ur) , where

2 4+ 1ysin2y — 2sin?
P(y) =2 3y si y - ! Y. ou=Ja,
(y cos y — sin y)

Ae(0,1) L G (W2, (n + 1) :
n=1

)

- A e 2 .2
25)  u(x)= 5 x T ————" [x((u)* + 2 sin? pr) +

pr? sin p(x — w) cos p(x — ©) — 4n sin pm sin p(x — w) + pn? sin pr cos pn —
— 4nsin® pr] ,

w(x) = ¢

_ [7sin p(x — m) — (x — =) sin pr] ;
UM COS um — sin um

for ¢ = An|p + (¢?n/4) Q(um), where
_y*+3ysh2y —2sh?y
o0) = (ychy — shy)?
Ae(—o0,0):

s 1= (=),

A, & 2 2
(2.6) u(x) = 5 * =7 o b — oh ) [x((ur)* + 2 sh? pm) +

+ pm? sh p(x — m) ch pu(x — ) — 4n sh prsh p(x — m) +
+ pm? sh pm ch pun — 4n sh? un],

e
wx) = —————|[nwshulx — ) — (x — n)sh ur|.
(x) ;mch;m—sh;m[ #(x — m) — (x — m) sh pr]
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Remark 2.2. The formulas (2.5) with 2 = n%, neN reduce to the formulas
(2.4) with ¢ = = (*/4 + n?/p).

The expressions for ¢, u(x), w(x) in (2.6) have finite limits as A tends to zero.
For A = 0 we have ¢ = ¢r/10 and

27)  u(x)= - Z(—)—‘* [9(x — n)* — 10n*(x — m)® + Sn*(x — n) + 4n°],

Cow(x) = — x(x — ) (x — 2m)
Remark 2.3. The problem (1.6) has the trivial solution only in the case ¢ = 0.
3. ENERGY OF SOLUTIONS

In Section 2 we gave a list of all solutions of (1.6). Now we shall calculate the
energies corresponding to these solutions and make a comparison of the results
obtained.

Remember that the functional of energy (1.1) in our case (after being divided
by & J) has the form

(3.0) E() = j TBW () + ()2 + ()] dx.

Lemma 3.1. Denote by E,(c), E,(c), E(c) the energies corresponding to the
solutions (2.1), (2.2) and (2.3), respectwely

Let E(%) be the energy of (2.6),(2.5) for A€ (—o0,0),2€(0, 1) N U (,u,,, (n + 1),
respectively. We have

(31) Ef©)

Il

n*(2c — n’n|B) for c¢=n’n/f, neN,

(3-2) E,(c) = p2(2c — @2nfp) for c¢=uln/B, neN,
(3.3) E'(c) = c*B/n for 0sc<m,
(3.4) E() = Am  efn? p(2pm — sin 2um)

B 4 (pmcos pm — sin pum)?
for 2€(0,1> AU (ur, (n + )%,
n=1

2 2,2 3 _
4 (umch pn — sh um)?
for 1e(-o,0).
Proof. From (3.0) and (1.6a) we obtain

(3.6) E(s) = f 0 [’g + (w”)z] dx — %fn + f :(w")z dx .
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The proof of formulas (3.1), (3:3) can be found in [1]. Let us prove (3.2). We have

A= u? and
()] = .4ﬂ" (C — ::" /ﬁ> sin? p,(n — x).

sin? p,m

Using the equation p,n cos g,m = sin y,n one can easily deduce (3.2) from (3.6).
In the case of the solutions (2.5), (2.6) we have respectively, 1 = p?,

22yt '
()] = _din? ufr — %),
(um cos um — sin pr)

and 1 = —pu?,

[w(x)]* = enipt sh? u(n — x) .

(um ch pm — sh pm)?

For A = 0 the formulas (3.4), (3.5) are obtained by integration in (3.6). In the case
A = 0 one can easily verify that the energy of the couple (2.7) given by (3.6) equals
E(0) = lim E(2). i

A0 :

Lemma 3.2. Define the function c(2) as

o(2) = —+—’Q(ﬂn) p=y(=2) ¥ A0,

An &2n s < 2
C(}.)=—E'+—4——P(HTC), ,LL=\/}. lf le(O,l}UU(ﬂ”,(n+1)2>
n=1

and let E(2) be the function defined by (3.4), (3.5).
Then the functions ¢ and E have the following properties:

1. They are continuously differentiable in the set
(_w’ 1> v U (/"7?9 (n + 1)2>
n=1

and their derivatives satisfy the equation
(.7) E(1) =21¢(4).

2. The function c is increasing in the interval (—oo, 1) and it is strictly convex
in each interval (u2, (n + 1)*).

3. There exist numbers 4, € (u2, (n + 1)) such that c is decreasmg in (42, A,>
and increasing in {,, (n + 1)*>, and we have .
(3.8) c(n?) < c(4,) forall neN.

4. The function E is decreasing in (—o0, 0> and in each interval (u,f, Agy. It is
increasing in the interval <0, 1) as well as in each {4,, (n + 1)*).
For the shape of the functions ¢, E see Figs. 2, 3.

109



Proof. As far as Assertion 2 of Lemma 3.2 and the inequalities (3.8) are con-
cerned, we have not succeeded in finding their analytic proof. So we conjecture them,
relying on the results of numerical computations.

¢

0.5+

04 +

0.3+

0.2 +

0.1 4

¥

1

e
4 é 9

S

Z)
0

>\

Fig. 2 — Function ¢

82 n2
c(n2)=1c(:+ ;); &= 0-2,ﬁ=100,n=1,2,3,....
1. Let us first prove (3.7).
Let A < 0. Denoting a = I/Bﬂ3, b = &[4n, we have ¢(1) = n*(—ay® + b Q(¥)),
wherey = n\/(—1), " :
3

4, ¥(sh2y —2y)
= +b———.

EQ2) = ay (ychy — shy)?
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Easy calculation yields
d d y3(sh2y —2
dy dy(ychy —shy)
which means that
dE de
w2 —(y) = =2y* —(y),
3 ») i »)

the last equation being (3.7) for A < 0.

The case A > 0 can be treated in a similar way.

To complete the proof of Assertion 1 we compute the limits and derivatives
of the functions ¢ and E at the point A = 0 using the definition of the derivative
of a function and some standard analytic methods.

E

b o e e e —_——————

>'V

! t }
4 & 9

B i estesdestelestostuefoslosbestetettes

o
-

Fig. 3 — Function E
e=02, B=100.
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3. One can easily compute that ¢’(n?) > 0 for all n and, since obviously
¢(2) > +oo0 as A — py, the existence of the points A, follows from the convexity
of the function ¢ (Assertion 2).

4. Follows directly from Assertion 1, 2, 3.

Theorem 3.1. For any integer n the following estimates hold:

I) Ve > (n + 1)* n/B:

(39) E(c) < E,(c) < E,4(c) < EY(c);

M) Vie(uZ, (n + 1)%):
(3.10) E(c(2) < E(X);

2 2 2 (n+1)?

) Vie (us, (n + 1)%), c(2) > n(—4— + (—T-)—) :
(3.11) E(X) < E,+4(c(2));

IV) Y, 2" e (p2, (n + 1)2), 4 < A", ¢() = c(A"):
(3.12) E(X) < E(").

%

Proof. I) For a fixed ¢ denote G(y) = y*(2c — y*n/B). It can be easily checked
that G is an increasing function in the interval <0, \/(cB/)>. Since n < p, < n +
+ 1 < \/(cB/n) and according to Lemma 3.1 we have

E(c) =G(n),
Eu,.(c) = G(#n) ’
Ec) = G(J/(cB/m)),
the inequalities (3.9) hold.
II) By calculation we obtain

(3.13) E(c(n%) = E(n?) Vn.
Denoting ¢ = ¢((n + 1)) we have for Ae (i, (n + 1)%):

E() - E(e(2) = E((n + 1)) - E0) - f[z ¢(0) = 20 ¢(0)] do =

(n+ 1)26(6) do — 2[(0_ _ nz) c(a)]g'” nH2 _

= £~ B + 2

A

]

O B R L RCE
) ‘
(n+ 1)2
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=;—;[n4-—2n21+12]=g(n2—/1)2>0-

To complete the proof of (3.10), let us now prove the inequality

T
(D) >=-1,
p
which has been used in the above estimates. Obviously, it is sufficient to prove
P(ur) > 0.
We have

y2 + ysinycosy —2sin2y>y? —y—=2>0
for y = un > 2, and therefore also for u > pu; > 1. To estimate the difference
E(%) — E,(c(%)) we also needed A — n® > 0. This is true since we have Ae(u7,
(n + 1)*.
1V) Let
Xre (Ut (n+ 12, X < 2 e(X) = c(X) = c.
Assertion 2 of Lemma 3.2 implies ¢(1) < ¢ VA€ (4, 1”). Consequently,

E(V) — E(¥) = j A'".u C(A)di= — j l:'z o(2) dA + [24 ()L, =

A A .

ar a
- _J' 2e(A)dh + 201" — ¥)e = zj [c — (] d2 > 0,
i’ i’
and (3.12) is proved.
III) The behaviour of the function ¢ in the interval (i, (n + 1)?) indicates that
there exists a point 7 of this interval with the following properties:

a) (%) = c((n + 1)),
b) ¢(0) = c((n + 1)?) Yo e (1, (n + 1)*),
c) c is decreasing in (12, 1).

Using IV) we now obtain
Eyis(e(D) = E(2) = Eyuale((n + 1)) — E(T) = E((n + 1) — E(D) > 0.
If we denote by F(2) the difference on the right-hand side, we have
F(A) =2+ 1)2c(2) —24c(A) =2[(n + 1)> = 2] '(2) .

Taking into account our assumption we can write

c>n(§+(—n—-———;——1)—2>=c((n+1)z),
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and therefore
re(pl, 7).
Hence
F(2) > F(Z) > 0,
and (3.11) is proved.

CONCLUSIONS

1) The case ¢ = 0.

Table 1 shows that for ¢ < n/B the problem (1.6) has but the trivial solution.
This means that unless the right end of the rod is displaced by more than =/ from
its original position, no buckling occurs. When ¢ exceeds /B, we obtain the first
“‘buckled” solution, namely the couple

c _c—‘n:/ﬁ
2n

u(x) = —;x

w(x)=2(\/c—_7£—ciﬁ->sinx. ,.‘

The value ¢ = =/p is then the first bifurcation point of our problem.

sin 2x ,
(3.14)

With ¢ increasing we pass through other bifurcation points, as more solutions
emerge (see Fig. 2). However, as a result of the estimates (3.9), all these new solutions
have energies higher than (3.14).

In short, the equilibrium state in the case ¢ = 0 is described by the trivial solution
(“no buckling”) for ¢ < =/B, and by the couple (3.14) for values of the parameter
greater than /8. As a matter of fact, the lowest energy solution is the same as in the
case of the bilateral problem studied in [1].

2) The casee > 0.

Here the bifurcation diagram is somewhat more complicated. Assertion 2 of
Lemma 3.2 implies that for values of ¢ < ¢(4,) we have a unique branch of solutions
given by (2.6) for ¢ < ¢(0), by (2.5) for ¢(0) < ¢ £ ¢(1), and by (3.14) for ¢ = ¢(1)
(see Fig. 2). According to Assertion 4 of the same lemma the energy of this solution
decreases for ¢ smaller than ¢(0) and increases with ¢ on the interval {c(0), c(1)).
Since the function E; is increasing (see formula (3.1)). the energy E is increasing
in <c(1), ¢(2,)) as well.

As the value of ¢ passes through the first bifurcation point ¢(4,), more solutions
of the problem begin to emerge. Namely, the couple (3.14) is at this point joined
by two new solutions of the form (2.5) (see Fig. 2). At the point c(4) one of these
branches is replaced by a solution of the form (2.4) (with n = 2).

Once again, two new branches given by formulas (2.5) bifurcate from the point
¢(2,), and so on. Inequalities (3.9)—(3.12) enable us to compare the energies of all
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solutions. As in the previous case, the equilibrium state is given by (3.14) for ¢
greater than c¢(1) = n(e?/4 + 1/B).

In both cases ¢ = 0, ¢ > 0 the lowest-energy solutions, except for the trivial
one, have no zeros in the open interval (0, n). (The buckled rod has no points in
common with the x-axis, except for its ends.)
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Souhrn
JEDNOSTRANNA OKRAJOVA ULOHA PRO PRUT
MIROSLAV BOSAK

Autor se zabyva problémem vé&tveni feSeni jedné Glohy o prosté podepfeném prutu s jedno-
strannou okrajovou podminkou na levém konci. Variaéni formulace ulohy je pfevedena na ekvi-
valentni tlohu klasickou, kterd je explicitné vyfeSena. Explicitni tvar feSeni, vypodet vzorcu,
vyjadfujicich energii jednotlivych fefeni a srovndni t&€chto energii tvori hlavni pfinos &ldnku.
Vypodet feSeni, energii i jejich srovndni jsou provedeny v pfipadé tilohy s poruSenou i homogenni
okrajovou podminkou.

Pesrome
OJHOCTOPOHHSISI KPAEBASL 3AJAYA O CTEPXHE
MIROSLAV BOSAK

ABTOp paccmaTpuBaeT npobiieMy BETBIEHMS PEILEHMH JIs 3a1aUM O CTEPIKHE C OJMHOCTOPOHHUM
TPaHUYHBIM YCJIIOBMEM Ha JIEBOM KOHILE. BaprallmOoHHasl MOCTAHOBKA NPUBEJECHA K SKBHBaJICHTHOMH
KpaeBoO# 3a/1aue B KiiacCuueckoi popMyupoBKe, KOTOpasi PEINAETCs B SBHOM BHIIE.

Haubl GopMysl 1J1s PEINEHMM M BHIPAXKEHUs U1l SHEPTHL, COOTBETCTBYIOIIAX 3THM PEILCHUSAM.
Borunciienwe penienyii ¥ SHEPIHil ¥ UX CPAaBHEHHE OCYLIECTBIICHHI B Clly4ae OAHOPOIHOrO ¥ B CIIY-
CABHHYTOTO KPaeBOTO YCIIOBHSI.
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