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ON THE EXISTENCE OF FREE VIBRATIONS
FOR A BEAM EQUATION WHEN THE PERIOD
IS AN IRRATIONAL MULTIPLE OF THE LENGTH

EDUARD FEIREISL
(Received September 2, 1985)

Summary. The author examined non-zero T-periodic (in time) solutions for a semilinear
beam equation under the condition that the period T is an irrational multiple of the length.
It is shown that for a.e. T€ R! (in the sense of the Lebesgue measure on R!) the solutions do
exist provided the right-hand side of the equation is sublinear. \
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I. INTRODUCTION

We shall investigate the problem
(?)
©) (%, 1) + tyaue(, 1) + (3, u(x, 1) = O
xe(0,m), teR’
where the unknown function u satisfies the boundary conditions
(B) u(0,1) = u(n, t) = 0
u(0,1) = u,(n, ) =0 forall reR'.

Further u is to be periodic in the t-variable with the period T > 0, i.e.

(PE) u(x,t + T) = u(x,1) forall xe(0,m), teR'.
The function f is supposed to satisfy the follow_ing conditions:

(F1) f is continuous on [0, 7] x R*,

(F2) f(x,0)=0 forall xe[0,n],
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the function f(x, u) + u is increasing in the variable u for all x € [0, ],

(F3) lim f(xu) _ 0,
u—+t o0 u
(F4) lim inf M = a,,
u—0 u

where a, is a fixed positive real number.

All limits are assumed to hold uniformly with respect to x.

We say that the solution u of the problem {P} is trivial if u is independent of the
variable t. The solution u, is a translation of u, if there exists te R! such that
uy(x, t) = uy(x, t + 7) holds for all x, 1.

Our main goal is the proof of the following theorem.

Theorem 1. Let the function f satisfy the assumptions (Fl)—(F4). Then for an
arbitrary positive integer n there exists a real constantT, > 0 such that for almost
every Te(Ty, +) (in the sense of the Lebesgue measure on R') there exist n
different nontrivial solutions of the problem {P} which are not translation of one
another.

Note that we have the existence of nontrivial solutions for almost all sufficiently
large periods instead of rational multiples of the number © only. Moreover, we
do not require monotonicity of the function f. Eventually we do not use any symmetry
of f regarding the x-variable (as in [1]). Unfortunately, the approach presented
depends essentially upon the spectrum of the ‘‘beam” operator and is not applicable
for example in the case of the wave equation.

II. VARIATIONAL FORMULATION OF THE PROBLEM {P}

Let us consider the problem {P'} given by
1
(1) = Up(X, 1) + Upern(X, 1) + f(x, u(x, 1)) = 0

with the boundary conditions (B). Clearly it suffices to find 2n-periodic solutions
of the equation (1).

If v is such a solution, then the function u(x, r) = v(x, T~*¢) is a solution of the
problem {P} with the period 2nT.

Let us introduce the system of functions

J(2) n~*sin (kx)sin (jt) for  keN,

jenN,

() ey (x, 1) = —n~ ' sin (kx) for keN
j= 0,

J(2) n ' sin (kx) cos (jt) for  keN

—j€enN,

xel[0,n], teR', keN, jeZ,
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where the symbols N, Z denote the set of positive integers and the set of integers,
respectively. The basic space we shall use in the following is the space H which
arises as a complete real linear hull of the system {e,;} with regard to the inner
product

(3) lu, vy = J‘zn'ru(x, 1) v(x, 1) dx dt,
0 (0]

H is a Hilbert space with the norm
(4) Jul| = <u, ud*’>.

Further we consider the linear operator

(5) L’Tv = % vtt + Uxxxx

defined for sufficiently smooth functions which are 2n-periodic and satisfy the bound-
ary conditions (B). L} has a self-adjoint extension Ly on H with the spectral resolution

1,
(6) Ly = k;\! <k4 - FJZ) a(v) e »
JjezZ
where a, ,(v) are the Fourier coefficients with regard to the basis {e,;}.
Definition. The function u is called the solution of the problem {P'} if ue H and

(7) Cu, Ligy + {f(+,u), 0> =0
for all functions ¢ which are smooth, 2n-periodic in t and satisfy the conditions
(B).

Remark. f(+, u) denotes the function — an element of the space H having the
value f(x, u(x, t)) at the point (x, t).

We are going to prove an easy modification of the well known Chingin theorem
(see also [4]).

Lemma 1. There exists a set D < (0, + ) of irrational numbers,
u((0, + 0)\ D) =0 (u is the Lebesgue measure on RY), such that for an arbitrary
element d € D there exists a positive constant c(d) satisfying

(8) = ()

foralljeZ,ke N,k = 2.

4 -2
"7

Proof. Let us consider the interval (0, a). Denote by S, the set of all numbers
b € (0, a) satisfying

1.
(9) k* — ;};12

k

g2k
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for an appropriately chosen j € Z. For such b we have

.bz__f_ < a? .
k* k3 1g%k’
hence we obtain
10 . Sy) < ¢yla
(10) , W) € ) oz

c¢y(a) > 0.

Now let S be the set of all be (0, a) such that (9) holds for infinitely many k € N,
je€Z, k =z 2. Obviously

S =

k

S, .

k

=y
?.Cs

As a consequence of the summability of Z l/(k 1g? k) we obtain u(S) = 0. g
As an easy consequence we have

Lemma 2. For every Te D the spectrum o(Ly) of the operator Ly consists of
isolated eigenvalues with no accumulation point on R', Moreover, 0 ¢ o(Ly) and
all eigenspaces are of finite dimensions.

In what follows we shall suppose that Te D. Let us consider the linear operator

(11) Kp=Lw—1v

and let us denote by A" the null space of K. Set V=41 in the sense of H. We define
the operator

(12) Mp =K'

on the space V. Observe that Lemma 2 implies that the operator My is well defined

on the whole space ¥ and is a compact linear operator.
Further, let us set

(13) F(x, u) = J:f(x, s)ds + Ju?.

Recall that F is strictly. convex in u via (F2) and F(x, 0) = 0. Further, there exists
a continuous partial derivative

(14) -2 F(x,u) = f(x, u) + u
; ~ Ou R
Moreover, for arbitrary ¢ > 0 we have the estimates
‘ u? u?
(15) (1- 8)? —cy(e) S F(x,u) < (1 + s)—2— + ¢5(e) ,
c,(e) > 0

due to the assumption (F3).
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Now we consider the conjugate function in the sense of convex analysis (see [3])
(16) F*(x,v) = sup {uv — F(x,u)} .
Since (15) holds, we have a possibility of defining the dual action functional
(17) Or(v) = KM, v) + J‘"J\ZNF*(x, v(x, 1)) dt dx
0J0
on the space V. The functional @ is of the class C*(¥;, R') with the Fréchet differential

(18) (DD, wy = {Mmv, w) + <ai F*(+,v), w> forall v,weV.
v

Lemma 3. Let v e V be a critical point of the functional ®;. Then the function u
defined by

(19) u(x, f) = 2 FH(x, o(x, 1))
ov
is a solution of the problem {P'}.
Proof. The equality ' x
(Mo, w) + 9 F*(-,0),w> =0
ov
holds for all w € V. Thus we get the existence of h € A" satisfying
0
Mz + — F*(-,v) = h.
v
Now we can apply K to the both sides of our equality and we have

v=—Lwu+u,

by virtue of the duality

o(x, 1) = a%F(x, u(x, 1)) = f(x, u(x, 1)) + u(x,t) m

III. EXISTENCE OF CRITICAL POINTS OF &,

Our technique is almost identical with that used by Costa and Willem in [2].
We refer to [2] for details.

Let us consider the unitary representation U of the group S* = [0, 2r]/{0, 2x}
on V,i.e.

(20) Ue) [v] (x, 1) = v(x,t + &) for aeS'.
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Let us denote the set of fixed points of U by
(21 F(S') = {ueV|u doesnotdepend on t}.
We define the orbit of an element v as the set

o) ={ueV|u=U(p)v, peS"}.

Now we easily check that the functional @ is S'-invariant, i.e. & is constant on all
orbits. We shall use the following abstract theorem.

Theorem 2. Let J € C'(V, R") be an S*-invariant functional satisfying the follow-
ing condition (Palais-Smale):

(PS) If J(v,) is bounded and J'(v,,) — O for a sequence {v,} =y < V, then {v,} o,
contains a convergent subsequence in V.
Further, let Y, Z be closed S'-invariant subspaces of V satisfying

(22) dim (Z) < + o0, codim (Y) < +o0,

(23) dim (Z) > codim (Y),

(24) F(SYecyY, ZNnF(SY) = {0},

(25) J is bounded from below on Y,

(26) there exists r > 0 such that J(v) <0 for all ue Z, |u| =r,
(27) if ve #(S*) and J'(v) = 0, then J(v) 2 0.

Then there exist at least }(dim (Z) — codim (Y)) orbits of critical points of J
outside F(S*). ‘

Proof. The proofis based on the concept of cohomological index and is contained
in [2] ]
We are going to verify the assumptions of Theorem 2 in the case J = &y.

1. Validity of the condition (PS)

Assume ®/(v,) — 0. Let us denote by P the orthogonal projection on the space
A . Recall that P is compact due to the finite dimension of A”. Thus we have

(28) Myon + 2 F*(, 0,) = hy + PLF¥(-, 0,)
. ov ov

where h,, = 0in V. Now we set
(29) 4y = P§ F¥(-, 0,) — Myo, .
v

By duality we obtain
(30) On = ("t + h) + thy + By
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On the other hand, we can apply the operator K to both sides of (29) obtaining

(31) , : Ly, — 4, = —v,.
Combing (30), (31), we get
(32) Lyt + f(*s thy + hy) = —hy, .

As a consequence of 0 ¢ a(Ly) (see Lemma 2) and the growth condition (F3) we get
in a standard way that i

(33) . . {un}-, is bounded on H.

From (30) and (F3) we get the existence of a subsequence {v,, .1 which is weakly
convergent in ¥ and P(0/dv) F*(-, v,) converges strorigly due to the compactness
of P. Since My is compact and (28) holds, we have the strong convergence of the
corresponding subsequence {u,} »-, in H. Combining it With (30) we obtain the desired
result. -

2. Verification of the condition (27)
According to (18) we have

%
0

T (21
y ﬁ ago(v) + J‘ J g) F*(x, v(x, t)) v(x, ) dt dx = 0.

k=2

Now (9/dv) F* is increasing in v due to the convexity of F, and (9/dv) F*(x, 0) = 0.
Hence we have v = 0 since a,o(v) = 0 (V = 4™):

3. Choice of the space Y
According to (15) we have an estimate
1 2
G4 F*(x, 0) 2 m”; + () .

Now we can set

(35) Y1=1in{ekj'|(k4_iz._ >e(_oo,—1]u[o,+oo)},'

T2
| Y=Y,NV.
Using (34) we easily check the validity of (25), (24) and (22) (by Lemma 2).
4. Choice of the space Z
It follows from (15) that

2
(36) F*(x,v) < 1—_1_—8% + cs(e) .
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Now, by (F4) and by duality we have

1+¢ v?

(37 ‘ F*(x,0) < ~— forall veR?!,

ag +

[o] £ r, r sufficiently small, ¢ > 0 arbitrary. We can set

2 .
G8) Zl=1in{ekj|<k"‘———]7—5—1)6(—1—410,—-1)},

Z=Z, ®Y".

Clearly (22), (24) hold. Using (37) and the equivalence of the L, and L, norms
on Z (dim (Z) < + ), we get (26).

Now we are able to apply Theorem 2. Let Te D and let us denote by n, n = 0
the number of eigenvalues of the operator Ly contained in the interval (—aj, 0).
With regard to the fact that the corresponding eigenspaces have a dimension 2m,
m = 1 we conclude that

!

(39) there exist at least n distinct nontrivial solutions of the problem {P} with
the period 2nT.

In order to complete our proof of Theorem 1, we have only to show the following
assertion:

Lemma 4. Let ¢ be an arbitrary real number, ¢ > 0. Then for arbitrary ne N
there exists T, > O such that the estimate

2
(40) %:2 — k*e(0,¢) forall T> T,

holds for at least 2n distinct pairs (k, j), keN, je Z.
Proof. Let us set
(41) j=[T]+1,
I=1,...,n,

where [ T] denotes the greatest integer which is less than or equal to T. Let further
k = 1. Then

22

f}; —k*>0
and
([r]+0* | _[TP+2[T]n+n*
T? = [T]z :
Now it is easy to see that for T being sufficiently large (40) holds. Using the symmetry
Jj ~ —j in (40) we get the desired result. -
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Souhrn

EXISTENCE VOLNYCH VIBRACf PRO ROVNICI TYCE ZA PREDPOKLADU,
ZE PERIODA JE IRACIONALNIM NASOBKEM DELKY

EDUARD FEIREISL

Autor vySetfuje nenulova T-periodicka FeSeni semilinedrni rovnice tyée v pripadé, Ze Casova
perioda T je iracionalnim ndsobkem délky ty&e. Pro sublinedrni pravou stranu rovnice je doka-

zéna existence FeSeni pro s. v. Te R! (ve smyslu Lebesgueovy miry).
)

Pesome

CYHIECTBOBAHUE CBOBOIHBIX KOJIEBAHUM U1 VPABHEHUSI CTEPXXHS
B CJIVYAE, KOI'JA IEPUO/ SIBJIAETCSA NPPALIMOHAJIBHBIM
KPATHBIM JJIMHBI

EDUARD FEIREISL

B craTbe H3y4aroTCs HeHyeBble T-NePHOAMIECKIE PEIEHHUS MOy THHEHHOTO yPaBHEHANA CTEPXKHS
NpH NPEIIOJIOKEHUNM, YTO IEPHON BpeMeHE T  SBISCTCA HPPALMOHAJIEHBIM KPATHBIM JJIMHBL
crepxHs. 11 cyOmHeHOM NpaBoii YaCTH ypaBHEHUS JOKA36IBACTCS CYIIECTBOBAHUE TAKMX PEIIEHHMR
I HOYTH Beex (B cMbicie mepsl JIebera) T € RL.
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