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FREE VIBRATIONS FOR THE EQUATION
OF A RECTANGULAR THIN PLATE

EDUARD FEIREISL
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Summary. In the paper, we deal with the equation of a rectangular thin plate with a simply
supported boundary. The restoring force being an odd superlinear function of the vertical dis-
placement, the existence of infinitely many nonzero time-periodic solutions is proved.
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We shall investigate the existence of a nonzero periodic (in time) solution of the
equation

{P}
(P1) Uy + Au + f(u) =0

where the unknown function u = u(x, y,b),x,y€ (0, m), t € R! satisfies the boundary
conditions

(P2) u(0, y, 1) = u(m, y, 1) = u (0, y, 1) = u(m, y, 1) =0
forall ye[0,n], teR',
u(x,0,1) = u(x,m, 1) = uy(x,0,1) = uy(x,7,1) =0
forall xe[0,n], teR',
u is 2n-periodic in time, i.e.
(P3) u(x, y, t) = u(x, y, t + 2n) forall x,ye(0,w), teR".

The symbol A% denotes the biharmonic operator
2 2\2
A= (L + 3— .
ox?  oy?

81



The function f is supposed to satisfy the condition f(0) = 0 and some other additional
conditions.

There exists a vast literature concerning the problem of the existence of free
vibrations for various kinds of equations (see e.g. [2], [4], [5]). We shall treat the
problem involving two space variables. It is known that under such circumstances
all techniques used up to now are not applicable in the case of the wave equation.
However, if we work with the biharmonic operator the situation turns out to be
better. We shall assume that the function f is monotone and odd. This fact allows
us to use the Ljusternik-Schnirelmann theory in order to obtain an approximate
solution of the problem {P}. Then we can pass to the limit using standard arguments
of the monptone operator theory.

1. FUNCTIONAL SPACES AND NOTATION USED IN THE TEXT

For the sake of simplicity and convenience we introduce some notation:
Q = {(x,y,1)| x, ye(0,m), 1€ (0, 2r)}
D=NxNxZ

where Z denotes the set of all integers and N the set of all positive integers, while

q = (41,42, 93)

is the notation used for elements of the set D.
Further, we introduce the system of functions

1) eanp(X, v, 1) = [=sin (kx) sin (ly) for j=0, k1leN,

—sin (kx) sin (Iy) sin (jt) for jeN, k,leN,
Lsin(kx)sin(ly)cos(jt) for —jeN, k,leN.

Let ¢ denote the linear hull of the system (1)
¢ =lin{eq,, ;| (k, 1,j)e D} .

We shall use the space of periodic functions of the class L,. The space L, is defined
as the completion of the system ¢ with respect to the norm

® b = ([ )"

for 1<p<o and I[u[[w=ésssupzt for p=oo.
Q

For the function u belonging to L, we introduce the Fourier coefficients

aq(u)=f ue, for gqeD.
0
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Further, we denote the eigenvalues of the operator

0* 2
3 L=—+A
®) Py
with regard to the conditions (P2), (P3) as
(4) Ay = (kK + ) = j2

where (k, I, j) € D. We denote
K ={q|qeD; i, =0},
RL={q|qeD; A, +0}.

We shall use the letters c; for positive real numbers which are assumed to be constant
in the given context.

2. FORMULATION OF THE MAIN RESULTS IN THE SUPERLINEAR CASE

We 'start with the definition of a solution of the problem {P}.

Definition. A solution of the problem {P} is a function u, u € Ly, f(u) € L, satisfying

(%) dga(u) + a(f(u)) =0 forall qeD.
Recall that the following equivalence holds:
A function u is a solution of the problem {P} only if f(u) € L, and the equality

J:J.:Ji:[u(x, 2o ) (Blx, 3, 1) + A2B(x, y, 1)) + f(u(x, y, 1) B(x, y, )] dx dy dt = 0

holds for every fimction & which is sufficiently smooth and has a compact support
in [0, ] x [0,n] x R' and satisfies the boundary conditions (P2).
Our goal is to establish the following existence theorem:

Theorem 1. Let a function f satisfy the following assumptions:

(S1) feCY(RY), f(0)=0, fisincreasing and odd
(f(—u) = =f(w)

(82) fw)u < f'(u)u* for every ueR', u+0;

(s3) im L) _,

u—+ o |u|"‘2 u
for a positive constant a and p € (2, + ).
Then for an arbitrary real number d there exists a solution u of the problem {P},
u is of the class L, and Hu”p = d.
Note that the technique of the proof is applicable to the sublinear case as well
(see e.g. [2] for the case of a beam equation).

83



3. FINITE DIMENSIONAL APPROXIMATION

For further consideration we deduce some estimates for the function f. First, let
us denote

(©) Fw) = | 79 ds

Now we can find ¢ > 0such that

) a—-e_ate

2 p
since p € (2, + ). From (S3) we easily check that

(3) (@a—e)|ulr?u—cy flu)Sc, +(a+e) |u|"_2 u
for allu = 0, further
©) (@ = yfr — e u] < Fu

< eyl + @y

for all u € R and this implies

(10) <a ; ‘- m) |u|? — cslu| < duf(u) — F(u) for al ueR'.
p

Let us denote by R(L) the closed subspace of L,

(11) R(L) = {u|a,u) =0, K},
and by P .
(12) P:L, > R(L)

the orthogonal projection (in the sense of the L,-norm) to the space R(L). To obtain
further estimates we use the following lemma:

Lemma 1. For an arbitrary real constant o, & > 1, the sum

1
13 e
( ) geRL l/lqla
is convergent.
Proof. )
1 1 ' 1

- = _ 4+ 2 _—
(k,l,%eRL ](k2 + 1?)? — jzl"‘ kien (K% + 12) (kL eRL [(k2 + 1P)? -
Jje
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The first term on the right hand side is summable for « > 1. We are going to estimate
the series

1 1

=

(k,l%eRL lkz + I? -—j|°‘ |k2 + 2 +j|“ (k,l%sRL ]kz + l2|“ |k2 + 12 —jl" ~
JeN JeN

1 Y 1 1 1
- L <2y —~ Yy -,
k,IeN (lkz + 12|“ kliljz*j |k2 + 2 ——jl“) k,%N |k2 + lzl“ meN m*

Now a sufficient condition for the convergence of the sum on the right hand side
of the inequality is o > 1.
We can choose o, such that

(14) L% =2)
p
holds and oy > 1. -
For u € R(L) we now have
(15) lu]o < e ZRlaq(u)l < c5(§_}{|/{q|“° al(u))'/?  (Holder) .
ge qe

We use the results of the complex interpolation theory in order to obtain
(16 Jull < e 3 |l )2
qe

where the numbers r, p are taken from (14), (S3), respectively.
In order to approximate our problem, we use the Galerkin method. We define
the sequence of spaces

(17) H,=lin{e,|qeD, |qg]| <n for i=1,23}

for n € N. From the topological point of view, the spaces H, are considered as finite
dimensional subspaces of the space L,. Recall that

(18) dUH,=L,.

neN

We consider the approximate problem {P,,}:

{P,} Find the function u,eH, satisfying

(19) qg} )“q aq(u,,) aq(w) + sz(”n) w=0

foreverywe H,.

Obviously (19) is the Euler necessary condition for the existence of a critical
point of the functional h,,
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(20 ) = 45 240200 + [ PO

defined on H,,.

We transform the variational problem of finding the critical points of the functional
h, on the whole space H, to the problem of the existence of critical points of an
appropriate functional on the sphere S, in H,,,

(21) S, ={w|weH, |w|,=1}.

Due to the symmetry of our problem (the assumption of oddness of the function
f), we can use the Ljusternik - Schnirelmann theory.
We define a new functional J, by

(22) 7,(w) = inf )

As a consequence of the condition (S3), J, is well defined on the whole H,. One
easily checks that J, is even and continuous on the set H,\ {0}. Let us consider
the set

(23) M, = {w|weH,; J(w) <0}, .
then M, is open (due to the continuity of J,) and the following assertion holds:

Lemma 2. J, is of the class C'(M,).

Proof. According to the estimates (9), there exists a number f, > 0 such that

Jn(w) = hn(ﬂow) .

Let us differentiate
(i) = 13 2, a2(0) + j Fow)w,
ot qeD ~Je
further
0* 2 ’ 2
Z (how) = T a2w) + | 1w w2
ot geD 0
Suppose that
d
5; (hn(tow)) =.0
holds for some t, > 0, then

70t = ([ 7o v — [ 100w 0v).
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Now the right hand side is positive by the assumption (S2). Consequently, the function
t— h,,(tw) has for ¢ > 0 only one critical point — the minimum. Thus g, is deter-
mined as a solution of the equation

Bo ZD'{q a;(w) + J-Qf(ﬁow) w=0, f,>0.

The classical implicit function theorem gives the differentiability of the mapping
w = Bo(w). -

We are going to show the relation between the functional J, and the solutions
of the problem {P,}.

Lemma 3. Let us denote the duality on L, by the symbol { , ». Suppose that
<grad J,(v,), w) = A<, w)

for some v, € S,, . e R! and every we H,. Then there exists a positive number B,
such that u, = Pov, is a solution of the problem {P,} and

(24) hu(un) =J "(vn)
holds.

Proof. Choose §, > 0 such that

Jn(vn) = hn(ﬂovn)

(see the proof of Lemma 3). According to the definition of J,, we now have

'}(hn(ﬁovn + tw) - h,,(ﬁov,,)) g ‘E(J,,(ﬂov,, + tw) - Jn(ﬁovn)) =

- %(J"(v,, +ﬂio w) = J,(0,))

for arbitrary t > 0. Setting u, = f,v, and passing to the limit for t - 0+ we get

(25) Cgrad hy(uy), w = - Aty W)
Bo
for all we H,. We can take w = +uv,, obtaining
A
0 = {grad h,(u,); + v,> = — ||v,]
Bo
Consequently, A = 0 and from the validity of (25) for every w e H, we deduce
grad h,(u,) = 0. -

In order to find the critical points of the functional J, on the sphere S,, we use
the following abstract theorem:
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Theorem 2. Let H be a Hilbert space of a finite dimension, let S denote the unit
sphere in H (see (21)). Let us assume that M < H is an open and symmetric set
(xe M implies —x e M). Further, let J be an even functional (J(—x) = J(x))
which is continuously differentiable on the set M. Let the following conditions
be satisfied:

(a) There exists a number z e R" such that the set {x|xe SN M, J(x) < z}
is closed in H.

(b) There exist numbers zy, z, € (— o0, z) and linear subspaces L', I of the
space H satisfying

(b;) dim (L') + dim (L*) > dim (H)

(dim is the symbol for algebraical dimension of a vector space)

(b)) {x|xeSNM;J(x) Sz} NEF =0,

(biy) {x|xeSNM;J(x) £z} 2(L'NS).

Then there exist zog € S (Y M and a real number Ay such that

(26) (grad J(z,), x) = Ao{zq, x) forall xeH.
Moreover, z, < z, and
(27) J(z0) €[z,, 4] '
holds.
Proof. The proof is based on the concept of the Ljusternik - Schnirelmann
category for topological spaces and is contained in [3]. -
We introduce the notation
(28) X(z)={w|weH,a(w)=0 for 2, =z},
Y(z) = {w|weH, a(w)=0 for 2, <z

for z e R'. In order to apply Theorem 2 to the functional J,, we show some helpful
lemmas. '

Lemma 4. For arbitrary z < 0 there exists a number Q(z) < Osuch that

(29) [S.NX,00z)] s{w|weS, N M, J(w) < z}.

Proof. Choose a number z; < 0 arbitrarily, let we X,(z,) N S, (in particular,
w e R(L)). For t > 0 we have

h(tw) = 32 % A, aZ(w) + J.QF(IW) .

Jq<zy
According to (9), we obtain

h,(tw) < -%-22)1221/1,1 ai(w) + cxt|w|y + cat®|wf5.
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Denote 4 = ¢ Y, |4, aZ(w))"/>. Using the estimate (16) and the Holder inequality,
we get Aq<z1
h(tw) < — 32|z, 7" A + cgtA + cy1PA”.
Now observe that
inf h,(tw) = inf h,(tAw) .
teR! teR!

Consequently, for a sufficiently large |z,| the value of J,(w) is sufficiently small.
We can choose z; in such a way that (29) is satisfied for Q(z) = z,. -

Lemma 5. Let z < 0 be an arbitrary real number. Then there exists a number
R(z) < 0 such that

(30) (w|weS, N M, J,(w) < RE)INY(z)=0.
Proof. Choose we Y,(z), w # 0. Then according to (9),
() 2 30322 + el = ol 2
= 3%z||w|3 + cyot?| w5 — ciit|w], for ¢>0.

Analogously as in the proof of Lemma 4, we obtain the validity of (30) for R(z) < 0
sufficiently small. ™
Now let us choose z; < 0 arbitrary. According to Lemma 4, there exists Q(z,)
satisfying (29). Let L' = X,(Q(z,)). I n is sufficiently large, we can find y < 0
such that
dim (Y,(y)) > dim (Y,(0(z,)) .

According to Lemma 5 we find a number z, = R(y) satisfying (30). We can set
I’ = Y,(y) and apply Theorem 2 for H = H,, M = M,. Then

dim (I?) + dim (L') > dim (X,(0(z,))) + dim (Y,(Q(z,))) = dim (H,)
holds. We have obtained the following result:

Lemma 6. For an arbitrary number z;, z; < 0 there exists a number z,,z, < z,
such that the following assertion holds:
For every ne N, n sufficiently large, there exists a solution u, of the problem

{P,} satisfying

(31) %qgniq a2(u,) + fQF(u,,) €[za, 24] .

4. PASSING TO THE LIMIT

Y oo

In § 3 we have obtained the sequence {u,',% of solutions of the problems {P,}

nj

satisfying (19) and (31). Setting w = u, in (19), multiplying by —% and adding
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to (31), we have

&) sy = [ P el-2 -1,
Q Q

Now we can use the estimate (10) and get

(33) CJOJ || — Cuj' [u,)| £ —z,.
0 0

Consequently (p > 2),

(34) ”un“p é C12 -
Further, from (S1), (S3) we deduce
(35) 1@l = e1s
where l/p + I/p’ = 1. All our estimates are independent of n. Moreover,
(36) %J-f(u,,) U, = —z; +.[ F(u,) =z —z,>0.
o) Q
We can choose a subsequence (denoted for convenience u, again) such that
(37) u, »u weaklyin L,,
(38) f(u,) > g weaklyin L, . “

We can pass to the limit in (29) for n — oo and fixed w € H,. Thus we get

(39) q;)/lq a,(u) a,(w) +fggw =0.

Observe that for proving Theorem 1 we only need to show

(40) lim Lf(un) U, = Lgu :

n—w

In fact, due to (37), (38) and the monotonicity of f, we obtain g = f(u) as a result
of standard arguments of the monotone operator theory. Moreover, (36) yields

f fWuz —z.
0
The number z; was chosen quite arbitrary. Combining these facts with the estimate

(8) we see that it is possible to choose z; in such a way that

Il 2.
Now we shall prove (40).

Lemma 7. (i) For arbitrary ¢ > 0 there exists q, = 0 such that
Y |4 ai(u,) < ¢ for every neN.
D

qe
124l Z 90
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(i) The following equality holds:
lim Z q a;(u,,) = Z 4q a:(u) .
n— o geD qeD

(iii) P(u,) converges to P(u) strongly in the L,-norm (P is the projection from (12)).
Proof. 1. Set

W= ZD sgn (;‘q) aq(un) € -
MqTZ‘IO

Note that w e R(L) N} H, so that we can insert w in (19):

3 lalai) = - [ f)v.
IquZqo
Using the Holder inequality and the estimates (16), (35), we obtain
Y el () < a0 X Al ag(wy)) 2
qeD geD
1241 2 90 1441240
Consequently,
Z |’1q| a:(un))llz = ClZlqol(r_l)/z'
|}~:|e—>_-qo
For g, sufficiently large, (i) is satisfied independently of n.
2. Let

W= ZD sgn (4,) a,(u) e, .
ge.
lgil sn

We can now insert w in (39) obtaining

£ falaife) = - [ o

lgil=n

Using (16) we get
Y 2] ag(u) < cps
qeD
lgil sn

Consider now the difference

| ¥4, ak(u) — /1 aw) =1 Y A(a*(u) — al(u,

qeD gqeD

1241240
+ Z |2, a5 (u,) + Z |44 ag(u) -

quZqO Mq|>40

The first term on the right hand side converges to zero because it contains a finite
number of members only, the second term is small according to part (i), the third
is the rest of a convergent series.
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3. Analogously we can estimate the difference
1PG) = Pl < ers( 5 Vil a3, = )"
using (16). As in 2, observe that
|P(u) = P(w,)], = 0
since
a;(u, — u) £ c14(ag(u,) + az(w)) . -

According to (19), we have
(@) = hyadn) = = [ sl = = [ ) ).
geD Q Q
Using Lemma 7 and passing to the limit for n — co in (41), we get
@) S () = = [ o700,
qeD Q
Further, we can set w = u, — P(u,) in (39) and thus we obtain
f g(u, — P(u,)) = 0.
0
Passing to the limit for n — oo we have

) j - j 97,

Combining (41), (42), (43) we obtain the desired result (40). Thus Theorem 1 has
been proved.

5. POSSIBLE EXTENSIONS AND OTHER COMMENTS

1. In the same way as has been presented, we can treat a more general problem

{P}
(P1) u(x, y, 1) + > Au(x, y, 1) + f(x, y, t,u(x, y, 1)) = 0;
u defined on (0, a) x (0, b) x R! satisfying
(P2)y u(0, y, 1) = u(a, y, 1) = u (0, y, 1) = uy(a, y, 1) = 0,

u(x,0,t) = u(x, b, 1) = u,(x, 0, 1) = uy(x, b, 1) = 0;
(P3)y u(x, y, ) = u(x, y,t + T)
where the period T satisfies

T=r. I%Tiﬂt N
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7 is an arbitrary positive rational number. If the function f satisfies the conditions
(S1)—(S3) uniformly with respect to x, y, t and a/b is rational, then Theorem 1 is
valid for the problem {P'} as well.

2. If we drop the assumption that f is odd, we can use the dual action method as
in [2]. In such a way we are again able to show the existence of a weak periodic
solution of the problem {P’}.

3. In the nonautonomous case, i.e. when the right hand side of the equation
(P1)' is a nonzero function, we can apply the technique presented in [1]. Let us note
that we would be able to treat the sublinear case only.
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Souhrn
VOLNE VIBRACE PRO ROVNICI TENKE OBDELNIKOVE DESKY
EDUARD FEIREISL
V préci jsou vySetfovana nenulovd ¢asové periodickd ¥eSeni rovnice tenké obdélnikové desky
s volné podepfenymi okraji. Je ukdzana existence nekoneéné posloupnosti takovych feSeni
za predpokladu, Ze piisobici sila zavisi nelinedrné na vertikalni vychylce.
Pesrome

CBOBOJIHBIE KOJIEBAHUA JJISI YPABHEHUS TOHKOMN
IPAMOYTOJIbHOM TTJIACTHUHEL

EDUARD FEIREISL

B craTtbhe M3y4aroTCs IEPHMOJUYEKHE BO BPEMEHM PELICHHS YPABHEHHS TOHKOM MPAMOYIOJBHOMR
IIACTHHBI CO CBOGOIHO ONMEpToil rpanuieil. Joka3aHo CymecTBOBaHWME GECKOHEYHOU IOCIIEnoBa~
TEJILHOCTH HEHYJIEBBIX PEIIECHHUH NPU NPEANOIOKEHHH, YTO NEHCTBYIOMIAs] CHJIA 3aBHCUAT HEJIMHEHHO
OT MONEPEYHOro CIBHTA.

Author’s address: RNDr. Eduard Feireisl, CSc., katedra matematiky a konstruktivni geometrie,
fakulta strojni CVUT. Karlovo nam. 13, 112 00 Praha 2.

93



		webmaster@dml.cz
	2020-07-02T06:32:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




