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FINITE ELEMENT ANALYSIS OF PRIMAL AND DUAL 
VARIATIONAL FORMULATIONS OF SEMI-COERCIVE ELLIPTIC 

PROBLEMS WITH NONHOMOGENEOUS OBSTACLES 
ON THE BOUNDARY 

TRAN VAN BON 

(Received May 26, 1986) 

Summary. The Poisson equation with non-homogeneous unilateral condition on the boundary 
is solved by means of finite elements. The primal variational problem is approximated on the 
basis of linear triangular elements, and G(h)-convergence is proved provided the exact solution 
is regular enough. For the dual problem piecewise linear divergence-free approximations are 
employed and O(h3/2)-convergence proved for a regular solution. Some a posteriori error estimates 
are also presented. 
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INTRODUCTION 

Dual finite element analysis of unilateral elliptic problems has been presented 
in several papers [1], [2], [7], [8]. A relatively thorough analysis of the coercive 
case has been given in [7]. The semi-coercive case with homogeneous obstacles on 
the boundary has been studied by Hlavacek [1], [8]. It is the aim of the present 
paper to establish a dual finite element analysis for the latter case with non-homo­
geneous obstacles on the boundary. The dual problem is formulated in terms of the 
principle of minimum complementary energy. Making use of piecewise linear 
functions for the approximations of the primal problem, we establish an O(/z)-error 
estimate in the energy norm, provided the exact solution is regular enough. For the 
approximations of the dual problem, the so called equilibrium finite element model 
is used (see [3]) and an error estimate is derived under the assumption of sufficient 
regularity of the exact solution. The convergence of the primal approximations is 
proved for the non-regular solution as well. A posteriori error estimates and two-sided 
estimates of the energy are presented. 



1. DUAL VARIATIONAL FORMULATION 

We consider the problem 

(1.1) - A u =finQ, 

(1.2) u ^ gl9 dujdn — g2 ^ 0, (u — g^) (dujdn — #2) = 0 a.e. on T = dQ , 

where dujdn denotes the outward normal derivative of u, fel}(Q), gl9 g2e L2(F) 
are given functions, Q is a bounded domain with Lipschitz boundary. 

Henceforth we denote by Hk(Q) the Sobolev space Wk,2(Q), 

(/» g)o = /g dx , (ii, v)or = uv ds , 

||u||/c is the norm in Hk(Q), k = 0, 1, ..., |u|& the seminorm in Hk(Q), generated by all 
derivatives of the k-th order. 

Assume that there exists a function G e H1+e(Q), e > 0 such that yG = gx on F, 
where y stands for the trace operator. We define the potential energy functional 

se(v) = i |v |2 - (/, v)0 - (g2, yv)0,r 

and the convex set 

K = {ve HX(Q)\ yv - 9l ^ 0 on F} . 

The problem: find u e K such that 

(1.3) se(u) ^ se(v) v v e K 
will be called primal. 

Lemma 1.1. The problems (VI), (1.2) and (1.3) are equivalent. 

Proof. Assume that u is a solution of (1.3). Then it is readily seen that 

(1.4) (grad u, grad (v - u)) _(f,v - u)0 + (g2, y(v - u))0?r Vv e K . 

Inserting v = u ± <p, where <p e C0(Q) is an arbitrary infinitely differentiable function 
with a compact support in Q, we obtain 

(grad u, grad cp) = (/, <p)0 V<p e C ? ^ ) , 

i.e., u satisfies (1.1) in the sense of distributions. 
Defining 

(1.5) {dujdn, w> = (gradu, grad v) - (/, v)0 Vw e H1/2(F), 

where v e Hl(Q) is any function such that yv = w on F, the derivative dujdn represents 
a linear functional from H_1/2(F), i.e., a continuous functional on H1/2(F). Since G 



and 2u — G belong to K, inserting them into (1.4) and comparing the results we 
arrive at 

(1.6) (dujdn, yu - gt> = (g2, yu - gt)0fr . 

On the other hand, it follows from (1.4) and (1.6) that 

(1.7) (dujdn, yv - gt} ^ (g2, yv - gt)0fr . 

Assume that w e H1/2(F), w = 0. Then \j/ = gx + w e H1/2(F). By virtue of the 
Trace Theorem there exists a function v e H1(Q) such that yv = \j/ on F, i.e., v eK . 
From (1.7) we have 

0 = <3u/dw - a2, yv - a!> = <Ou/Ott - g2, w> Vw e H1/2(F) , w = 0 , 

i.e., dw/dn — g2 = 0 on F. 
Combining this with (1.6) we deduce that 

{dujdn - g2, yu - gt} = 0 . 

Thus u is also a solution of (1.1), (1.2), in the weak sense. 
Conversely, assume that u is a solution of (1.1), (V2). Multiplying (1.1) by an 

arbitrary function v eK and then integrating by parts we obtain 

(1.8) (grad u, grad v) — dujdn yv ds = (/, v)0 . 

Inserting v = u into (1.8) and using (1.2), we obtain (1.6). 

Let v be an arbitrary function from K. Making use of (1.8), (1.5) and then of (1.6) 
we can show that (1.4) holds, i.e., u is a solution of (1.3), too. 

Lemma 1.2. Assume that 

(1.9) (f, 1)0 + (9i, l)o.r < 0 • 

Then there exists a unique solution of the primal problem (1.3). The problem 
(1.3) has a solution only if 

(1.10) ( L l ) o + ( a 2 , l ) o > r 5 S 0 . 

Proof, (i) Existence. Let F0 c: F be an open set of positive measure. We define 

v = (mes F0)~ M yv ds , v e H\Q) . 
J To 

Then v = v — v satisfies 

yvds = 0 , \v\t = Civ ! ! 
JTo 



where C is a constant independent of v. For v e K we set w = v - G. Then w e K0, 
where 

K0 = {weHl(Q)\yv ^ 0 on F} 

and we have 

se(v) = se(w + G) = sex(w) + S?(G) , 
where 

^ i ( w ) = ijw|i + (grad w, grad G) - ( / w)0 - (g2, yw)0jr . 

We can show that 

J2\(w) ^ C||w||? - d l ^ H i - w [ ( / 1)0 + (g2? l)0 ,r] -

If veK and \v\1 -> +00, then w = t ) - G e X 0 and \\w\\l -> +00 . Hence at least 
one of the norms llwfli and Ivvfli = w(mes .Q)1/2 tends to infinity. In any case S£^(w) 
and thus also S£(v) tends to infinity for \v\x -> +00, i.e., £g(v) is coercive on K. 

The set K is convex and closed in HX(Q). The functional S£(v) is also lower weakly 
semi-continuous. Hence the existence of a minimizing element follows. 

(ii) Uniqueness. Let u' and u" be two possible solutions of (1.3). Inserting them 
into (1.4) and subtracting, we deduce 

(grad (uf - u"), grad (u' - u")) S 0 , 

i.e., u' — u" = const. Denote u" = u' + c and assume that c + 0. We obtain 
S£(u') = S£(u' + c), i.e. 

c[( / , l )o + (g 2 5 l ) 0 , r ] = 0 , 

and we arrive at a contradiction with (1.9). Thus c = 0 and the solution is unique. 

(iii) Let a e R, a > 0, a -> +00 . It is obvious that a + G e K . If there exists 
a solution of (1.3), then 

S£(a + G) = i f i(a) + J^(G) 

is bounded from below, 

lim Se^a) = - [ ( / , l)o + (g2, l)o.E] hm a > - c o . 
a-* + 00 a-* + 00 

Hence (1.10) follows. Q.E.D 

Lemma 1.3. Assume that the equality sign in (1.10) holds and w e H*(Q) is a weak 
solution of the Neumann's problem 

(1.11) —Aw = / in Q , dw/dri = g2 on F , 

yW ds = 0 . 



Then the primal problem (1.3) has a solution if and only if yw is lower bounded 
on T. In this case all solutions of (1.3) have the form u = w + c, where c is a con-
stant such that yw + c — 0 on F. 

Proof. It is evident that the problem ( l . l l ) has a solution because of the equality 
(1.10). Let u be a solution of (1.3). Then using (1.10) and Gieen's formula we obtain 

(du\dn - g2, l ) 0 > r = 0 . 

This together with (1.2) implies that dujdn = g2 a.e. on F. Setting w = u — c 
with c = (mes F)"1 (yw, l)0,T> we conclude that w satisfies (1.11). However, we have 

yw = yu — c = — c + g1 ^ const on F, gt = yGe C(F) . 

Thus yw is lower bounded. 
Conversely, let w be a solution of (1.11) and let yw be lower bounded on F. We 

choose a constant c such that yw + c ^ gx. Then w + c is a solution of (1.1), (1.2). 
Furthermore, from the above argument it is readily seen that all solutions are of the 
form w + c, provided yw + c — gt on F. Q.E.D. 

Having a dual formulation in mind, we introduce the space 

e = { q e [ L 2 ( a ) ] " | d i v q e L 2 ( G ) } ; 

where the operator 
n 

divq = Y,d(li\dxi 
i = l 

is taken in the sense of distributions. For q e Q we define a functional q . n e H~ 1/2(F) 
by the relation 

(1.12) <q.n,w} = f (q . grad v + v div q) dx Vw e H1/2(F) , 

where v e HX(.Q) is any function such that yv = w on F. (H~1 / 2(F) denotes the dual 
space with respect to H1/2(F).) We write q . n | r ^ g2 on F if 

< q . n , w > ^ ( g 2 , w ) 0 , r V w e H 1 / 2 ( F ) , w ^ O . 

The set of admissible functions is defined by 

% = {q e Q | div q + / = 0 in Q , q . n\r ^ g2 on F} . 

Let us consider the functional of complementary energy 

(i-i3) ^(q) = i S N I 2 - < q . n , ť / 1 > 
i = l 

The problem to find A0 e °U such that 

(1.14) sr(x°) k Sf(q) Vqe^r 
will be called dual with respect to the primal problem (1.3). 



Lemma 1.4. The dual problem has a solution if and only if the condition (1.10) 
is satisfied. Then the solution 1° is unique. 

Proof. The condition (1.10) is necessary and sufficient for the set °U to be non­
empty. In fact, assume that q e °U9 then 

(g2> l)o ,r = <M • n, 1> = ( d i v <7> l)o = - ( / » l)o > 

i.e., (1.10) is necessary. 

Conversely, let (1.10) hold. If (1.9) holds, the problem (1.3) has a unique solution u. 
Then q = grad ue°U9 i.e., °U is nonempty. If 

(/, l)o + (g2, l)o.r = 0 , 
then Neumann's problem 

— Aw = / in Q , dwjdn = g2 on F 

has at least one solution w. Then q = grad w e%9 i.e., ^r + 0. 

The set % is convex and closed. The functional Sf is coercive, strictly convex and 
continuously differentiable. Hence the existence and uniqueness of a minimizing 
element follows. Q.E.D. 

Theorem 1.1. Let (1.10) hold and let the primal problem (1.3) have a solution u. 
Then the solution X° of the dual problem satisfies the relations 

(1.15) X° = g r a d u , 

(1.16) Sr(X°) + Se(u) + (gl9 g2)0,r = 0 . 

Proof. Since v eK if and only if w = v - G eK0 and Se(v) = Se±(w) + Se(G)9 

we have 

se(u) = infse(v) = inf set(w) + se(G) = se±(w°) + JS?(G) , 
veK weKo 

where w° = u — G. 

We introduce the parameters Jr
i = dw\dxt and symbols M = [L2(;Q)]n, 1V* = 

-= K0 x M. Then we may write 

(1.17) Inf Sex(w) = Inf Sup jf(w, -/f; /*) , 
weKo lwtJriz"W neM 

where 

Jf(w, ^ ; /1) = i X | | ^ , | | 2 + p T , grad G) - (/, v)0 + 
i = l 

+ (//, grad w - Jf) - (g2, yw)0,r • 



In fact, we have 

c ( A ir\ í ° ú JT = grád w, 
Sup (n, grád w - JT) = < . , 
^ M ; ( + 00 íf 3ř, ./V; * dwdxt Therefore 

Inf Sup tf(w, JT\ \x) = Inf Jf(w, JT\ \i) = Inf ̂ ^w) = ^ ( w 0 ) . 

[w,./TjeW ^eM [ w , . T ] e i r , ^ r = gradw weK0 

Let us consider the problem dual to (1.17), i.e., 

Sup Inf Je(w, JT\ \i) 
\ieM [w,^Y]e#" 

First of all, we may write 

-y(fi) = Inf je(w, JT\ fi) = Inf $e (w, ,/V; //) = J2\(w°) V / i e M , 
[ w , . ^ ] e ^ " [w,^r]e^",. 'T = gradw 

and consequently, 
(1.18) S u p [ - ^ ) ] = ^ ( w 0 ) . 

/teM 

On the other hand, 
(1.19) -$f(ii) = Inf {<?f xO/V, /i) + ^ 2 ( w , pi)} , 

[w, .T]e#" 

where 

^ i ( ^ \ li) = i | K | | 2 + ( ^ grad G) - (li, ^V) , 

^ 2 ( w , /i) = - ( / , w)0 - (g2, /w)0, r + (/*, grad w) . 

It is easy to show that 

(1.20) Inf #ex(JT, \x) = -\\i- grad Gf . 
JfeM. 

Next, #T2(w, \i) is a linear continuous functional in Hl(Q). If there exists a function 
w0 e K 0 such that ^f 2(w 0, pi) < 0. then we deduce that 

Inf 3>f2(w, fi) = — oo , 
weKo 

because tw0eK0 for all positive £ and ffl2(tw0,\i) tends to — oo for t -> -f-oo. 
Therefore, the infimum is finite only if 

(1.21) ^ ( w , / * ) = 0 V w e K 0 . 

Choosing w = ±<p, <p e 0^(0) c K0, we obtain 

0 = 3#>2(<p, p) = - ( / , cp)0 + (fi, grad <p) V<p e C$(Q), 

i.e., ix e Q and div fi + f = 0 in Q. Then we may write 

(fi, grad w) = (/, w)0 + </*. n, yw> Vw e H^O) 



and therefore 

(1.22) je2(w, ii)?*<ji. n, yw} - (g2, yw)0,r Vw s Hl(Q) . 

Combining this with (1.21), we obtain \i . n ^ g2 on F. Thus the infimum of 
34?2(w, fx) on K0 is infinite only if n e %. Conversely, if fi e °tt, then (1.22) and (1.21) 
hold and thus the infimum is finite. Consequently, we obtain 

(1.23) Inf^f2(w,^) = { ° 

ve at 

-*to = { 

if j u e ^ . 

oo if /* <£ ̂  

Finally, we arrive at 
-^) + (f,G)0-i\G\2

1, fie®, 
- 00 , jU $ % , 

which yields 

(1.24) Sup l-Sf(p)] = Sup [-Sedi)] + (f, G)0 - i\G\\ . 

Setting Aq = grad w°, we can show that Aq + grad G = A0. In fact, it follows from 
(1.6) that 

- ( / , w°)0 = - |w°|f - (grad G, grad w°) + (g2, yw0)0/j 

therefore we have 

-?i(w°) = i|w°|f + (grad G, grad w°) - (/, w°)0 - (g2, yw°)0,r = 

= ~i| |Aq||2 = - ^ ( A q + gradG) - \\G\\ + (f,G)0. 

It is readily seen that Aq + grad G = grad u e °U; hence 

Sup l-SfQx)] ^ -^ (grad u) = <?_(w°) + i\G\\ - (/, G)0 . 

On the other hand, from (1.18) we have 

Sup [-Sr(ji)] + (f, G)0 - i|G|J = Sup [-^(j . )] = J2\(w0). 

Combining these results, we obtain 

(1.25) Sup l-S?(iij\ = ^ ( w 0 ) + i\G\\ - (/, G)0 = - ^ ( g r a d » . 

Thus we arrive at 

-y(2,°) = - Inf 9>(\x) = Sup [ - ^ ( M ) ] = -^ (grad u) . 

Then (1.15) is a consequence of the uniqueness of the solution A0. 
Finally, from (1.25) we have 

Sr(X°) + S£(u) + (gu g2)0ir = Sf(X°) + ^ ( w 0 ) + \\G\\ - (/, G)0 = 0 , 

i.e., (1.16) holds. Q.E.D. 



2. FINITE ELEMENT APPROXIMATION OF THE PRIMAL PROBLEM 

We consider the case n = 2. Assume that Q a R2 is a bounded polygonal domain 
and that (1.9) holds. 

We divide Q into triangles T, forming a triangulation ^ according to the standard 
finite element method. Let h denote the longest side of all triangles in 3Th. Denote 
by Vh the space of all continuous functions on Q, piecewise linear on 2Th. Assume that 
glh is the Lagrange linear interpolate of g± with the nodes determined by &~h on F. 
We introduce 

Kh = {vheVh\ vh ^ glh on F} . 
In general, Kh 4- K. 

We say that uh e Kh is a finite element approximation of the solution u if 

(2.1) JSf(uh) S X(vh) VvheKh. 

In the same way as in the proof of Lemma 1.2 (instead of G we use the Lagrange 
linear interpolate Gh of G) it is possible to show that (2.1) has a unique solution. 

To estimate the distance between u and uh it is useful to prove the following modi­
fication of a Falk's result [4]. 

Lemma 2.1. We have 

(2.2) \u - uh\l = (/, u - vh)0 + (/, uh - v)0 + (g2, yu - yvh)0,r + 

+ (g2, yuh - yv)0 + (grad u, grad (v - uh)) + 

+ (grad u, grad (vh - u)) + (grad (uh - u), grad (vh - u)) 

for each v e K and vh e Kh. 

Proof. From (1.4) we obtain 

|u | i S (/, u - v)0 + (g2, yu - yv)0>r + (grad u, grad v) Vv eK . 

Moreover, using (2.1) we can show that 

K | i ^ (/, uh - vh)0 + (g2, yuh - yvh)0)r + (grad uh, grad vh) Vvh e Kh. 

Thus for any v eK, vheKh we obtain 

\u - uh\\ = | " | i + \uh[\ - 2(graduA, grad u) = 

= (f, u - v)0 + (/, uh - vh)0 + (g2, yu - yv)0>r + (g2, yuh - yv)0iF + 

+ (grad u, grad v) + (grad uh, grad vh) - 2(grad u, grad uh) = 

= (/, w - v„)0 + (/, u/, - t?)a + (g2, ?w - yvh)0f]r + (g2, yuA - yv)0,r + 

+ (grad u, grad (vh - u)) + (grad u, grad (v - uh)) + 

+ (grad (uh - u), grad (vA - u)) . Q.E.D. 



Theorem 2.1. Let u e H2(&) and iu e H2(PJ / o r each side Fm, m = 1,....N, 
o / the polygonal boundary A gi e H2(Fm), m = 1, ..., N. Then 

(2.3) |u - uh\x S ChdluU2 + (||g2||o,T + |M|2) I ( H k T „ , + l k i | k T J } 1 / 2 , 
m = 1 

where C is independent of ft. 

Proof. Integrating by parts, we obtain 

(grad u, grad (vh - u)) = \ dujdn(yvh - yu) dS - (/, u - vh)0 , 

(grad u, grad (v - u*)) = dujdn(yv - yuh) dS - (/, uh - v)0 . 

Then (2.2) implies that 

(2.4) |u - u,|2 ^ i\u - uh\\ + i\vh - u\\ + |3tt/aw||0fr \\vh - «||o,r + 

+ ||g2||o,T K - w||o,T + (3n/5n - g2) (rv - yuh) dS . 

We take vh = u/? i.e. the linear Lagrange interpolate of u with the nodes of 3^h. 
Then u1 e Kh and 

(2-5) |w - W/|i = eft||ti||2 , ||« - W/||o,rm = c f t 2lMlkTm , 

\du\dn\0ir^ C\\u\\2. 

To estimate the integral 

I = (dujdn - g2) (yv - dyuh) dS , 
JT 

we choose a function w defined on F by 

w = sup {a1? tiA} . 

Since weH 1 / 2 (F ) , there exists a function D ° e f f l ( n ) such that yv° = w on F. 
Moreover, v° e K by definition. Thus we have 

(dujdn - g2) (yv° - yuh) dS = (Ou/dn - g2) (w - yu,,) dS = 

= (dw/Sn - g2) (g! - yt*fc) dS , 

where 

F- = { x G F | u , ( x ) < g 1 ( x ) } . 

10 



The inequalities yuh ^ glh and dujdn — g2 ^ 0 on E imply 

(2.6) f (dujdn - g2) (9l - yuh) AS ^ f (dujdn - g2) (9l - glh) AS ^ 

N 

S \\dujdn - g2|0,r ||gi - gift||o,T ^ C(||M||2 + igilo.T) h2 £ ||gi||2,T„. • 
m = l 

Combining (2.4), (2.5) with (2.6) we come to the assertion of the theorem. Q.E.D. 
In Theorem 2.1 we have assumed very strong regularity of the solution u. In general, 

such regularity is unrealistic. In the sequel we shall show the convergence of uh to u 
without any assumption on regularity. First of all we prove a general abstract result. 

Theorem 2.2. Let V be a Hilbert space with a norm \\u\\ and a seminorm \u\. 
Let he(0, 1] be a real parameter. Assume that K and Kh c V are closed and 
convex subsets of V for each h. Let F be afunctional on V, different iable and coercive 
on K and Kh. Moreover, assume that the second differential of F (in the sense 
of Gateau) exists and satisfies the relation 

(2.7) a0 |z |2 ^ D2F(u; z, z) S C\\z\\2 Vu, z e V, 

where a0, C are positive constants. Assume that from vheKh and \\vh\\ ~> +oo, 
F(vh) -> + oo follows. Denote by u and uh the minimizing elements of F on K 
and Kh, respectively, and let them be unique. Assume that there exist elements 
vh eKh such that 

(2.8) J]M - vh\ -> 0 for h -> 0 ; 

(2.9) if vheKh, vh-*v (weakly) in V, then veK. 

Then 
\u — u,,| -> 0 , 

uh -- u (weakly) in V 
holds for h -> 0. 

Proof. From (2.7) and the coercivity of F, the existence of minimizing elements u 
and uh follows. Let vheKh satisfy (2.8). Using Taylor's Theorem (see e.g. [9], chapt. 
2) we obtain 

F(vh) -= F(u) + DF(u, vh - u) + %D2F(u + Sh(vh - u); vh - u, vh - u) , 

where $h e (0,1) for each h. Making use of (2.7), we arrive at 

(2.10) HmF(v^) = F(u). 

H-+0 

From the definition of uh we obtain 

F(uh) ^ F(vh), 

11 



and therefore 

F(uh) S. Ci = const. < + oo Vh . 

Then the coerciveness of F implies the boundedness of the norms \uh\ for all h. 
Consequently, there exist a subsequence {uh>} and an element u* e V such that 
uw - - u* in V, and then u e K follows from (2.9). Since F is convex and differentiable, 
it is lower weakly semicontinuous. We have 

(2.11) F(u*) g lim inf F(uh) = lim sup F(uh) ^ 11m F(vh) = F(u). 
h'-*Q h'^0 h'-+Q 

Since u* eK , by definition of u we obtain F(u) = F(u*). The uniqueness of u implies 
u* = u and 

(2.12) uh-^ u (weakly) in V. 

From the identity 

F(uh) = F(u) + DF(u, uh — u) + iD2F(u + yA(u^ — u),uh — u, uh — u), 

where % e (0, 1), we have 

ia0|u^ - u|2 <; F(uA) - F(u) - DF(u, uh - u). 

Then |u,, - u| -> 0 for h -> 0 follows from (2.12) and (2.11). Q.E.D. 

Next, we have to recall some results from [6]. 

Lemma 2.2. Let us denote 

K0 = { v e H 1 ^ ) ) yv ^ 0 on F} . 

Then K0 is the closure of the set 

<*>+(Q) = {ve C°°(.G)| yv ^ 0 On F} 
in the space H1(Q). 

Lemma 2.3. Let <p be a continuous function defined in the interval [a, b] (— oo < 
< a < b < +oo). Let Dn: a = xn

0 < x" < .. . < xn = b be a partition of [a, b], 
v(Dn) = max \xn - x".^ -> OfOr n -> oo. Let {\j/n}, n = 1,2,... be a sequence of 

i=l,...,n 

continuous linear functions with the nodes xn such that ijjn(x
n) ^ <p(xn) Vi = 

= 0, 1, ... , n; n = 1, 2, ... . Assume that \j/n —> ^ a.e. in [a, b]. Then x// ^ <p a.e. in 
[a, 6], 

Now we are able to prove convergence without any regularity assumption. 

Theorem 2.3. Let (1.9) hold and let there exist a function G e H1+E(Q) such that 
yG = g! On F, e > 0. Then 

||u — uh\\t -> 0 for h -> 0 . 

12 



Proof. It is possible to apply Theorem 2.2 with F = jSf, 7 = H\Q), K and Kh 

defined as in Section 1. It is readily seen that (2.7) holds with a0 = C = 1. Let 
vheKh, H^lli -> oo. Since H1+e(Q) cz C(Q), G is continuous in Q and 0 t e C(F). 
Denote the linear Lagrange interpolate of G on STh by Gh. Then ||G — G f̂lx -> 0 
for h -> 0 and ||GA||I = C2 = const for all he(0, 1]. Setting w„ = vh - G£, we 

deduce lwhl± -> +oo for h -> 0. 
Let F0 cz F be an arbitrary open set of positive measure. We define wh = 

= (mesFo) - 1 (ywh9 l)0,r0- Then wh = wh - w* satisfies (ywfc, l)0,r0 = °- Applying 
the generalized Friedrichs Theorem, we obtain C-*3H^A]IX = \wh\i- Taking into account 
the boundedness of ||GJ[||, we may write 

(2.13) X(vh) = JS?1(wA) + <?{Gl) ^ 

ž C4w„\\l - C5|l«41 - w„[(/, 1)0 + (a., l)0>r] + C, 6 

Since ||wAf| t -> oo, at least one of the norms ||WJ,||I anc* ll^*l|i = wh(mes £-")1/2 must 
tend to infinity. Therefore, (2.13) and (1.9) imply S£(vh) -> +co for h -> 0. 

Next, we have to verify the conditions (2.8) and (2.9). We start with (2.8). We know 
that u - GeH\Q) and y(u - G) = yu - g± = 0 on F, so that u - GeK0. 
There exist ^ e <f+(0) such that <pfc -> u — G in H1^) for k -> oo. Let us denote 
by (plh the Lagrange linear interpolate of <pk on ?Th. We have 

\\<Pt - <Pkh\\i " + ° f o r h->o. 

Setting v,, = G\ + c/? ,̂ we obtain vheKh and ||vA — M||L -> 0 for h -> 0, i.e., (2.8) 
holds. 

Let vh e Kft and vh -> v (weakly) in ^(Q). Then vft -> v (strongly) in L2(F), since 
the mapping y: H^-Q) -> L2(F) is completely continuous. Here it is possible to 
choose a subsequence {v^} such that vh -> v a.e. on F. Then v e K by virtue of 
Lemma 2.3. 

All assumptions of Theorem 2.2 are satisfied. Consequently, 

(2.14) \uh - u\t -> 0 , uh — u (weakly) in HX(.Q) for ft -> 0 , 

Making use of Rellich's Theorem we deduce that uh -> u (strongly) in L2(Q). Com­
bining this with (2A4), we arrive at the assertion of Theorem 2.3. Q.E.D. 

Up to now, the primal problem has been approximated only on polygonal domains 
and 0(h) convergence has been proved provided the solution u is regular enough. 
The same rate of convergence, however, can be obtained with somewhat weaker 
regularity for another class of domains. To this end, we consider a convex domain 
Q cz R2 whose boundary has Lipschitz continuous derivatives with respect to the 
arc parameter (the domain Q may be a polygonal domain as well). For any h e (0, 1> 
we denote by Qh the polygonal domain inscribed in Q, whose sides are either less 
than h or fully contained in F. We triangulate Qh according to the standard finite 
element method. We denote this triangulation by &~(Qh). For each 3~(Qh) we consider 
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the space Vh of all continuous piecewise linear functions on Qh with the nodes of 
3T(Qh). If v* e Vh, we construct function vh defined on Q as follows: 

vh = vh on Qh, 

vh(Q) = v*(P), 

where P is the projection of Q onto dQh in the direction normal to dQh if Q e Sh = 
= Q — .Qft; i.e., vh is defined on Sh as the constant extension in the direction normal 
to dQh. 

We define V'h as the set of all such functions vh and K'h = {vh e Vh\ vh(a-) ^ gi(ai) 
for each node at on F}. We say that u'h e K'h is an approximation of the primal problem 
(1.3) if 
(2.15) <?(u'h) ^ <?(vh) \/vheK'h. 

The proof of existence of a solution of (2.15) is quite analogous to that of Lemma 1.2. 
Next, we follow the procedure suggested in [5] to show the rate of convergence 

of u'h to u. 

Theorem 2.4. Let Q be a convex domain whose boundary has Lipschitz continuous 
derivatives with respect to the arc parameter. Assume that gt can be extended 
onto a neighbourhood of F, u e H2(Q), gl9u eW1,co in a neighbourhood of F, 
g2, du\dnelf(r), and the number of points where the changes from u = gt to 
u ^ gt occur is finite. Then 

\u-u'h\ = 0(h). 

Proof. Setting a(u, v) = (grad u, grad v), we may write 

a(u — u'h, u — uh) = a(u — u'h, u — vh) + a(u — u'h, vh — u'h) ^ 

^ a(u — u'h, u — vh) + a(u, vh — u'h) — a(u'h, vh — u'h) + 

+ (/, vh - u'h)0 + (g2, vh - u'h)0j - (/, vh - u'h)0 - (g2, vh - u'h)0>r ^ 

^ a(u, vh - u'h) + a(u - u'h, u - vh) - (/, vh - u'h)0 - (g2, vh - u'h)0>r , 

since u'h is a solution of (2.15), i.e., 

a(u;, vh - u'h) ^ (/, vh - u'h)0 + (g2, vh - u'h)0J 

holds for each vh e K'h. From this and the fact that 

a(u, vh - u;) = (/, vh - uh)0 + dujdn(vh - u'h) dS 

we find out that 

(2.16) a(u — u'h, u — u'h) ^ a(u — uh, u — vft) + 

holds for all vh e K'h. 
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By Uj e K'h we denote the function such that u'j = u{ on Qh, where ut is the linear 
Lagrange interpolate of u on 3~(Qh), and such that uj is defined as a constant extension 
of Uj in the direction normal to dQh. In (2A6) we choose vh = u'j. We consider two 
sets, namely 

F0 = ( x e F | u(x) = gx(x)} , 

F! = { x e F | u(x) > gx(x)} . 

By F0 and F* we denote the sets of all sides S^ c= dQh for which the corresponding 
arcs S* c F are parts of F0 and Fl5 respectively. If Sh a F0, then because of dujdn — 
— g2 = 0 on Sh we have 

(dujdn - g2,Uj- uh)0f§H = 0 . 

If Sh cz Fi, then dujdn — g2 ^ 0 and uf
T = g[h on S\ where g[h is the linear Lagrange 

interpolate of gx on dQh extended by a constant in the direction normal to dQh. Thus 
g[h :g uh implies that 

(dujdn - g2, u\ - uh)0iBh = (dujdn - tf2,tf{,, - u'h)0,§h <: 0 . 

Since the number of transition points is finite, it is possible to consider h so small that 
on each Sh there is only one such point. Assume that there exists Sh such that 
mes (rt n Sh) > 0, i = 0, 1. Then we can find one point Q on S* such that u(Q) = 
= gi(Q), and Q divides the arc S^ into two parts S0 and Si such that u = g1 on S0 

and u > #i on Si. Hence dujdn — g2 — 0 on S0 and dujdn — g2 = 0 on §\. 
Because of u(Q) = gi(Q), and u, gx e W1,co in a neighbourhood of F, we have 
u'i ~ gift = 0(h) on S^. Thus we obtain 

(dujdn - #2 , u'j - uh)0>sH = (dujdn - g2, u\ - uh)0>§Qh = 

= (dujdn - g2, u'j - g[h)0,so
h + (dujdn - g2, gr[fc - uh)0t§0H ^ 

^ (Ou/ar* - g2, g[h - u;)0,s0H = 0(h2) . 

From the above obtained results we deduce that 

(2.17) (dujdn - g2, u'j - u'h) = £ (dw/dn ~ #2> "i - uh)o,sh = 0(h2) . 

By the properties of the interpolation we have 

1" - U'I\\UQH = 0(h). 

Since mes (S*) = 0(h), Vu e L 0 0 ^ ) , Vux is bounded on Sh independently of h, we 
obtain (see [5], Lemma 6.1) 

\\u - U'^SH = 0(h) . 

Finally, we arrive at 

(218) l « - « ; | i , 0 = o(fc). 
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Then the assertion of the theorem follows from (2.16), (2.17), (2.18) and the fact 
that 

a(u — u'h, u — u'j) = \u — u'h\1 \u — u'j\t = %\u — u'h\\ + | |u — u'j\\ 

and 

a(u - u'h,u - uh) = \u - u;|i , 

Remark 2.1. In the same way as in the proof of Theorem 2.3, an analogous result 
can be proved. 

3. APPROXIMATION OF THE DUAL PROBLEM 

We introduce an equivalent formulation of the dual problem (1.14). To this end, 
we construct a function Xf e Q such that 

div Xf + / = 0 in Q , 

Xs . n = g2 - F on F , 

where 

F = (mesr ) - 1 [ (L l ) 0 + («2,l)0,r] 

(F is a non-positive constant). Such a function can be defined as follows: Xf = grad w, 
where w is a solution of the problem 

— Aw = / in Q, dwjdn = g2 — F on F . 

(The solution exists by virtue of the equation 

( / l)o + (02 - F, l)0,r = 0.) 

It is clear that the problem: to find 

q° e ^ 0 = {q e Q\ div q = 0 in Q , (q + A') . n| r = g2 on F} 

such that 

(3.1) J(q°) = J(A) VAe^o, 

where 

J(q) = iNI 2 + (A /,q)-<q.n,^>, 

is equivalent to the dual problem (1.14). 
The solutions satisfy the relation X° = q° + Xf: Let us introduce the convex set 

«o = { f l k e ^ , q . n | r = F0} = ^ 0 n ^ , 

where V̂A c Q is a subspace of the space of piecewise linear divergence-free vector-
functions (see [3]). 
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We say that Xs + q \ q'1 e <%h
0 is an approximation of (1.14) if 

(3.2) J(«*)_W(q) V q e # 0 . 

The problem (3.2) has a unique solution, because %h
0 is convex and nonempty, 

J(q) is continuously different!able and strictly convex on [L2(Q)]2 . 
To estimate the distance between Xh = Xf + qh and X°, it is suitable to recall some 

results of [1], namely: 

Lemma 3.1. Let there exist Wh e %h
0 such that 2q° - Whe°U0. Then 

(3.3) ||q° - W*|| = |jq° - q"|| . 

Proof. Making use of Lemma 2.1 in [7], where B = {q e Q| div q = 0 in Q}, 
j ^ = J? M = ^T0, Mh = ^ 0 , a0 = c = 1, the assertion (3.3) follows. 

Lemma 3.2. Let q° e [H2(.Q)]2, q ° . n G H2(FW) /o r ead? side Fw O/ the polynomial 
boundary F, m = 1, ...,N. Then for h sufficiently small there exists a piecewise 
linear function i///, on F with the nodes defined by 2Th, such that 

(3.4) J y\j/hdS = I q ° . ndS = 0, 
JT JT 

(3.5) E0 5S # » ^ 2q° . n - E0 on T , 

(3-6) | | #» - (rhq°) . n||0>r rg Cft2 £ |q° . r.|a,rm , 

where rhq° is the projection of q° onto jVh (see [6, 7]), and |*|2,rm denotes the semi-
norm generated by the second derivatives. 

P r o o f is analogous to that of Lemma 4.2 in [1]. 

Definition. We say that a system {^~h}> h -+ 0 of triangulations of the domain Q 
is a — ^-regular, if there exist positive a and /? independent of h and such that (i) 
the minimal angle of all triangles in ZTh is not less than a for any h and (ii) the ratio 
between the lengths of any two sides of &"h is less than /?. 

Theorem 3.1. Assume that Q is a polygonal bounded domain, and (1.9) and the 
assumptions of Lemma 3.2 hold. Denote X° = q° + Xf, Xh = qh + Xf, where Xf is 
constructed as above, qh and q° are solutions of (3.2) and (3A), respectively, X° is 
the solution 0/(1.14). Then for any a — ^-regular system of triangulations 

(3.7) ||A" - A°|| = \\q" - q°\\ £ Ch^{\q°\2,n + £ |q° . n|2,rj , 
m= 1 

holds, where \*\2,Q is the semi-norm generated by the second derivatives. 

Proof. Let y\ih be the function from Lemma 3.2. We set 

<P = M) • « - !f>* • 
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The identity f 
cp as = 0 

implies that there exists a function wh e Jfh such that 

(3.8) wh . n = cp on F , 

(3-9) H I __ C/i"1/2||<p||o,T 

(see [7], Lemma 5.3). Here we have used the relation 

[q° . n - (rhq°) . n] dS = 0 I ! T 

(see [3]). The function Wh = rhq° — wh satisfies the assumptions of Lemma 3.L 
In fact, Wh e Nh and 

Wh.n = (rhq°).n-cp = ^h^F0 on F, 

i.e., Wh e %h
0. Moreover, the inequality 

Wh . n ^ 2q° . n - F0 

implies 2q° - Wh e %0. 

Making use of the estimate (see [3], Theorem 3.1) 

||q - rhq\\ _ Ch2\q\lt(i Vq e [tf2(<2)]2 

and of (3.8), (3.6), we arrive at 
| , o _ w g g | , o _ rft<?0|| + |rftqo _ w / . | ̂  Cn2|q°|2._ + |K|| _ 

- C n V k o + C i n ^ E l ^ . n l . , ^ . 
m = l 

The assertion of the theorem follows from Lemma 3A and the fact that X° — Xh = 
= q - q . 

R e m a r k 3.1. Using the results of [8], we can show the convergence of the dual 
approximations without any assumptions about the regularity. Namely, let Q be 
a convex polygonal domain such that the sum of any two neighbouring internal 
angles is not less than n. Assume that Xf e [ H 1 ^ ) ] 2 and (1.9) holds. Then for an 
arbitrary a — /^-regular system of triangulations, \\Xh — X°\\ -> 0 holds for h -> 0. 
The proof is parallel to that in [8]. 

4. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED ESTIMATES 
OF ENERGY 

It is readily seen from (1.4) that for all v e K we may write 

(4.1) 2[£>(v) - j_?(ti)] = \v\l - \u\\ - 2(f, v-u)0- 2(g2, v - u)0?r £ 

^ \v\l — |w|2 — 2(grad u, grad (v — u)) = \v — u\\ . 
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Making use of (1.16), for all X e °U we obtain 

(4.2) -S£(u) = (gu g2)0J + S"(X°) ^ S*(X) + (gu a 2 ) 0 , r ., 

Theorem 4.1. Let uh be an arbitrary approximation of the primal problem such 
that uheK and let Xh = Xf + ~qh, where ~qh e °U\ is an arbitrary approximation 
of the dual problem. Then 

(4.3) \uh - u\\ S \\Xh - grad uh\\
2 + 2 f (Xh . n - g2) (uh - g±) dS = E(uh, Xh), 

(4.4) \\Xh - g r a d u f g E(uh, Xh) . 

Proof. From (4.1) and (4.2) we deduce that 

\uh - i*|? = 2[<?(uh) + <7(Xh) + (gl9 a2)0,r] = 

= |fl*|i - 2(f, uh)0 - 2(g2, yuh)0>r + \\Xh\\2 - 2<P . n, ax> + 2(gu g2)0,r = 

= \\Xh - grad uh\\
2 + 2(Xh, grad uh) - 2{Xh . n, gty -

- 2(f, uh)0 - 2(yuh - gl9 g2)0,r . 

On the other hand, we may write 

(Xh, grad uh) - (f, uh)0 = (Xh. n, uh)0fr . 
Thus we arrive at 

\uh - u\\ S | |1" - grad wA||2 + 2 f (lh . n - g2) (yu„ - gt) dS , 

i.e., (4.3) holds. 

We know that the solution (1.14) satisfies the condition 

(A0, X- X0)- <(A - A0) . n, gty ^ 0 VA e % , 

therefore for any A e <% we have 

2[<?(X) - <^(A0)] = ||A||2 - ||A°||2 - 2<(A - A0). n, 01> = 

= ||A - A°||2 + 2(A, A0) - 2||A°||2 - 2<(A - A0) . n, 9l} = \\X - A°||2 . 

Inserting A = XH and making use of (1.15), (1.16), we obtain 

|]A" - grad uf = 2 [y( l" ) + Sf(u) + (gu g2)0>r] ^ 
^ 2[S"(Xh) + Sf(uh) + (gu a2)0>r] = E(uh, A") . 

Theorem 4.2. Let uh and A" be as in Theorem 4.1. Then for w° — u — G the 
following estimates hold: 

(4.5) 2[S»(G) - Se(uh)-\ S \w°\l g ||A' + ~q" - grad G\\ = E(~q"), 

(4.6) 2[Sf(G) - Se(uh)\ ^ (f, w°)0 - (grad G, grad w°) + (g2,yw°)0,r ^ F(~<f), 

where ~q" = Xk - Ar. 
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Proof. It is readily seen that the problem (1.3) is equivalent to the problem: 
find w° e K0 such that 

(4.7) -S?i(w°) = 5£x(w) Vn! e K0 . 

Then w° satisfies the relation 

(4.8) (grad w°, grad (w - w0)) + (grad G, grad (w - w0)) - (f w - w°)0 -

- (g2> yw ~ 7w°)0)r ^ 0 Vw e K 0 . 

Inserting w = 0 and w = 2w° into (4.8), we arrive at 

(4.9) |w°|2 + (grad G, grad w°) = (f, w°)0 + (g2, yw°)0,r . 

Therefore we have 

(4.10) se(u) = ^x(w°) + jSf(G) = —i|w°|? + JSP(G) , 

|w°|? - 2[JS?(G) - JS?(ti)] = 2[J2?(G) - J2?(fiA)] . 

On the other hand, we also have 

(4.11) |w°|f = 2[J?(G) ~ JSf(ii)] = 2[J2?(G) + ^(1°) + (gl9 g2)0,r] = 

^ 2 [ ^ ( G ) + ^ ( P ) + (g1,g2)0, /-] = 

= \G\\ - 2(f G)0 - 2(^2, gi)0>r + | | ? | | 2 - 2<1 / I. n, gt> + 2(g2, g,)^ = 

= I ? - grad G||2 + 2(grad G, lh) - 2(/, G)0 - 2<l / l . n, ax> = 

= \lh - grad G||2 = \\Xf + ~qft - grad G||2 = F(~qfc) . 

Combining this with (4A0), we arrive at (4.5). Then (4.6) follows from (4.5) and (4.9). 

Acknowledgement. The author is grateful to Ing. I. Hlavacek, DrSc. for valuable 
discussions. 
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S o u h r n 

ANALÝZA PRIMÁRNÍ A DUÁLNÍ VARIAČNÍ FORMULACE 
SEMI-KOERCIVNÍCH ELIPTICKÝCH ÚLOH S NEHOMOGENNÍMI PŘEKÁŽKAMI 

NA HRANICI METODOU KONEČNÝCH PRVKŮ 

TRAN VAN BON 

Práce se zabývá aproximací eliptického problému druhého řádu s nehomogenními jednostran­
nými okrajovými podmínkami na hranici metodou konečných prvků. Primární variační problém 
je aproximován po částech lineárními funkcemi na trojúhelnících. Je dokázána 0(h)-konvergence 
za předpokladu dostatečné regularity řešení na polygonální nebo na konvexní oblasti s hranicí 
dostatečně hladkou. Studuje se i konvergence aproximací bez předpokladu regularity. Pomocí 
principu minima doplňkové energie je definována duální variační formulace. Přípustná konvexní 
množina napětí se aproximuje po částech lineárními vektorovými funkcemi s nulovou divergencí 
na celé oblasti a je dokázána 0(h ' )-konvergence aproximací. Na základě primární a duální 
variační formulace jsou odvozeny aposteriorní odhady chyb a oboustranné odhady energie řešení. 

Pe3K>Me 

AHAJIH3 nPHMAPHOH H ABOÍÍCTBEHHOH BAPHA^HOHHOM 
<DOPMyJIHPOBKH CEMH-KO^P^HTHBHI>IX ^JIJIH^THHECKHX 3A.TTAM 

C HEOflHOPOflHBIMH HPEHiiTCTBMMH HA T P A H H ^ 
METOflOM KOHEHHBIX 3JIEMEHTOB 

TRAN VAN BON 

ypaBHeHHe nyacona c HeoflHopoAHbíM O;THOCTOPOHHHM KpaeBbíM ycnoBHeM penieHO nocpeA-
CTBOM KOHe*iHbix 3JieMeHTOB. npííMaii 3a/j(aHa npHÓJHDKaeTOi npn noMCHTH JIHHCHHBIX TpeyrojibHbix 
3JieMeHTOB H AOKa3biBaeTCH 0(h)-cxoAHMOCTL npH npeAnoJio^KeHHH, HTO TOHHOC penieHHe AOCTa-
TOHHO peryjiHpHO. JXJIR H3yqeHHH ABOHCTBCHHOH 3a,naHH Hcnonb3yioTCíi KVCOTOO jiHHeiÍHbie npHÓJin-
»ceHHH c HyjieBoií flHBepreHHHeií H £OKa3biBaeTCfl 0(h3^ )-cxoflHMOCTb AJIH peryjnipHoro penie­
HHe. npHBe/reHbi Toace HeKOTOpbie anocTepHopHbie oueHKH. 

Authoťs address: Dr. Tran Van Bon, CSc, Khoa Có bán-Ngoai ngú 2C-453 Nha trang-Phú 
Khánh, Vietnam. 
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