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FINITE ELEMENT ANALYSIS OF PRIMAL AND DUAL
VARIATIONAL FORMULATIONS OF SEMI-COERCIVE ELLIPTIC
PROBLEMS WITH NONHOMOGENEOUS OBSTACLES
ON THE BOUNDARY

TRAN VAN BoN

(Received May 26, 1986)

Summary. The Poisson equation with non-homogeneous unilateral condition on the boundary
is solved by means of finite elements. The primal variational problem is approximated on the
basis of linear triangular elements, and O(h)-convergence is proved provided the exact solution
is regular enough. For the dual problem piecewise linear divergence-free approximations are
employed and O(h3/ 2)-convergence proved for a regular solution. Some a posteriori error estimates
are also presented.
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INTRODUCTION

Dual finite element analysis of unilateral elliptic problems has been presented
in several papers [1], [2], [7], [8]. A relatively thorough analysis of the coercive
case has been given in [7]. The semi-coercive case with homogeneous obstacles on
the boundary has been studied by Hlavd&ek [1], [8]. It is the aim of the present
paper to establish a dual finite element analysis for the latter case with non-homo-
geneous obstacles on the boundary. The dual problem is formulated in terms of the
principle of minimum complementary energy. Making use of piecewise linear
functions for the approximations of the primal problem, we establish an O(h)-error
estimate in the energy norm, provided the exact solution is regular enough. For the
approximations of the dual problem, the so called equilibrium finite element model
is used (see [3]) and an error estimate is derived under the assumption of sufficient
regularity of the exact solution. The convergence of the primal approximations is
proved for the non-regular solution as well. A posteriori error estimates and two-sided
estimates of the energy are presented.



1. DUAL VARIATIONAL FORMULATION
We consider the problem
(1.1) —Au=f in Q,
(1.2) uz=gy, oulon — g, =20, (u — g,) (Ou/on — g,) =0 ae. on I =0Q,

where du/on denotes the outward normal derivative of u, fe I*(Q), g,, g, € (')
are given functions, Q is a bounded domain with Lipschitz boundary.
Henceforth we denote by H*(Q) the Sobolev space W**(Q),

(fa g)o

Il

Jfg dx, (u, V)o.r =J uv ds,
2 r

[ulx is the norm in HY(Q), k

derivatives of the k-th order.
Assume that there exists a function G e H'*%(Q), ¢ > 0 such that yG = g, on T,

where y stands for the trace operator. We define the potential energy functiornial

ZL(v) = 3o|t = (f, v)o = (92, 0)o.r

Il

0,1, ..., |u], the seminorm in H*(Q), generated by all

and the convex set
K={veH'(Q)|yo—g,=20o0nT}.

The problem: find u € K such that
(1.3) L) £ Z(v) YveK
will be called primal.
Lemma 1.1. The problems (1.1), (1.2) and (1.3) are equivalent.
Proof. Assume that u is a solution of (1.3). Then it is readily seen that
(1.4)  (gradu, grad (v — u)) = (f, v — u) + (92, y(v — u))or VweK.

Insertingv = u + ¢, where ¢ € C3(Q) is an arbitrary infinitely differentiable function
with a compact support in 2, we obtain

(grad u, grad @) = (f, ), Vo e C3(Q),

ie., u satisfies (1.1) in the sense of distributions.
Defining

(1.5) (oulon, wy = (gradu, grad v) — (f,v), Ywe H'I),

where v € H'(Q) is any function such that yv = w on I', the derivative du/0n represents
a linear functional from H~'/*(I'), i.e., a continuous functional on H'/*(T). Since G
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and 2u — G belong to K, inserting them into (1.4) and comparing the results we
arrive at

(1-6) <6u/6n, yu— gy = (gz, Yu — gl)o,r~
On the other hand, it follows from (1.4) and (1.6) that
(1-7) <6u/6n, W= g = (gz, Yo — 91)0,r-

Assume that we H'*(I'), w 2 0. Then = g, + we H'*I). By virtue of the
Trace Theorem there exists a function v € H'(Q) such that yv =  on I, i.e., ve K.
From (1.7) we have

0 < Cdufon — g5,y — g, = {0ulon — g,,w) Vwe H'*(I'), w=0,

i.e., dufon — g, 2 0 on TI.
Combining this with (1.6) we deduce that

<6u/5n — g, yu —g;» =0.

Thus u is also a solution of (1.1), (1.2), in the weak sense.
Conversely, assume that u is a solution of (1.1), (1.2). Multiplying (1.1) by an
arbitrary function v € K and then integrating by parts we obtain

(1.8) (grad u, grad v) — J. dufon yv ds = (f, v), .

Inserting v = u into (1.8) and using (1.2), we obtain (1.6).

Let v be an arbitrary function from K. Making use of (1.8), (1.5) and then of (1.6)
we can show that (1.4) holds, i.e., u is a solution of (1.3), too.

Lemma 1.2. Assume that
(1.9) (f, 1)0 + (gz, 1)o,r <0.

Then there exists a unique solution of the primal problem (1.3). The problem
(1.3) has a solution only if

(1.10) (f, 1)0 + (gz, 1)o,r 0.

Proof. (i) Existence. Let I'y = I be an open set of positive measure. We define

b= (mesFo)'lj ywds, ve H(Q).
To

Then & = v — o satisfies

f yods =0, o], = ],
I'o



where C is a constant independent of §. For v € K we set w = v — G. Then w € K,
where

= {we H(Q)|yv 2 0 on I'}
and we have
L) = 2w + G) = Z,(w) + 2(G),
where
2,(w) = 3|w|} + (grad w, grad G) — (f, w)o — (92, YW)o,r -

We can show that
Z1(w) = Cw]i = W], = #[(f Do + (92, Vo,r] -

If veK and [jv]|, > + o0, then w = v — Ge K, and |w|; > +00. Hence at least
one of the norms |||, and |||, = w(mes 2)"/? tends to infinity. In any case ()
and thus also #(v) tends to infinity for [[v]|, > + oo, i.e., £(v) is coercive on K.
The set K is convex and closed in H*(®). The functional Z(v) is also lower weakly
semi-continuous. Hence the existence of a minimizing element follows.

(ii) Uniqueness. Let u” and u” be two possible solutions of (1.3). Inserting them
into (1.4) and subtracting, we deduce
(grad (u' — u”), grad (u’ — u")) £ 0,
i.e., u' — u” = const. Denote u” = u' + ¢ and assume that ¢ = 0. We obtain
LW) =2 + c), ie.
c[(f; o + (92: 1)o,r] =0,
and we arrive at a contradiction with (1.9). Thus ¢ = 0 and the solution is unique.

(iii) Let aeR, a >0, a—> +oo. It is obvious that a + G € K. If there exists
a solution of (1.3), then

L(a + G) = Z,(a) + Z(G)
is bounded from below,

lim Z,(a) = —[(f, 1)o + (92, V)o.r] lim a > —co0.
a=+ o

a—++ oo

Hence (1.10) follows. QED

Lemma 1.3. Assume that the equality sign in (1. 10) holds and w € H'(Q) is a weak
solution of the Neumann’s problem

(1.11) —Aw=fin Q, ow/on=g, on T,

Jywds:O.
r



Then the primal problem (1.3) has a solution if and only if yw is lower bounded
on I'. In this case all solutions of (1.3) have theform u = w + c, where c is a con-
stant such that yw + ¢ 2 Oon I.

Proof. It is evident that the problem (1.11) has a solution because of the equality
(1.10). Let u be a solution of (1.3). Then using (1.10) and Gieen’s formula we obtain

(oufon — g5, 1)gr=0.

This together with (1.2) implies that du/dn = g, a.e. on I'. Setting w =u — ¢
with ¢ = (mes I')~* (yu, 1), , we conclude that w satisfies (1.11). However, we have

yWw=9yu—c=—c+g,=const on I', g, =9GeC().
Thus yw is lower bounded.

Conversely, let w be a solution of (1.11) and let yw be lower bounded on I'. We
choose a constant ¢ such that yw + ¢ = g;. Then w + c is a solution of (1.1), (1.2).
Furthermore, from the above argument it is readily seen that all solutions are of the
form w + ¢, provided yw + ¢ = g, on I'. Q.E.D.

Having a dual formulation in mind, we introduce the space

Q0 = {qe[IX(Q)]" | div qe I¥(Q)},
where the operator

divg =) 0q;/0x
i=1
is taken in the sense of distributions. For g € Q we define a functional q . n e H™"/(I)
by the relation
(1.12) {g.n,w) = J- (9.gradv + vdivq)dx Vwe H'*(I),
Q2
where v € H'(Q) is any function such that yo = w on I'. (H™'/*(I’) denotes the dual
space with respect to H/*(I').) We write q.. n|r = g, on I if
{q.n,wy = (g5, w)or YweHYXI), w=0.

The set of admissible functions is defined by

% ={qeQ|divq+f=0in Q, q.n| =g, on I}.

Let us consider the functional of complementary energy

(1.13) #(q) = %.;]]q;llé —~<q.n,g,>.
The problem to find 1° € % such that
(1.14) I = #(q) Vqeu

will be called dual with respect to the primal problem (1.3).



Lemma 1.4. The dual problem has a solution if and only if the condition (1.10)
is satisfied. Then the solution 1° is unique.

Proof. The condition (1.10) is necessary and sufficient for the set % to be non-
empty. In fact, assume that q € %, then

(gzs 1)0,1‘ § <q . n, 1> = (le q’ 1)0 = _(f’ 1)0 >

i.e., (1.10) is necessary.
Conversely, let (1.10) hold. If (1.9) holds, the problem (1.3) has a unique solution u.
Then q = grad u € %, i.e., % is nonempty. If

(f, D)o + (92, 1)o,r = 0,
then Neumann’s problem

—Aw =fin Q, dwlon =g, on I’

has at least one solution w. Then q = grad we %, i.e., % + 0.

The set % is convex and closed. The functional & is coercive, strictly convex and
continuously differentiable. Hence the existence and uniqueness of a minimizing
element follows. Q.E.D.

Theorem 1.1. Let (1.10) hold and let the primal problem (1.3) have a solution u.
Then the solution 1° of the dual problem satisfies the relations

(1.15) A =gradu,
(1.16) F2°) + ZL(u) + (91, 92)or = 0.

Proof. Since v e K if and only if w = v — Ge K, and Z(v) = Z,(w) + Z(G),
we have
Z(u) = Inf Z(v) = Inf Z,(w) + Z(G) = £,(»°) + Z(G),

veK weKo

where w° = u — G.
We introduce the parameters /4"; = dw/dx; and symbols M = [[X(Q)]", # =
= K, x M. Then we may write

(1.17) Inf Zy(w) = Inf  Sup #(w, &;p),

weKo [w,/eW  peM
where

H(w, N p) = %i |45 + (A, grad G) — (£, v) +

i=1

+ (u, grad w — A) = (g, YW)o.r -



In fact, we have

Sup(u,gradw——.A/‘):{O if 4 =gradw,

neM + o0 1f 31, -/Vi + Bw/ax,-.
Therefore
Inf  Sup #(w, N p) = Inf H(w, /5 p) = Inf Z(w) = Z,(w°).
[w, ¥ 1eW peM [W, A JeW , ¥ =gradw weKo )

Let us consider the problem dual to (1.17), ie.,

Sup Inf #(w, A5 p)
HeM  [w, N JeW
First of all, we may write
—%(w) = Inf H(w, &;p) < Inf H(w, N p) = ZL,(W°) YueM,

[w, A JeW [w, A/ JeW , & =gradw

and consequently,

(1.18) SSA;; [-2(W)] = Z2,(W°).

On the other hand, '

(1.19) —F(w) = Inf {A#(N, p)+ H#(w, )},

[w,/1leW

where
HA(N 1) = SN[ + (&, grad G) — (w, ¥),
Hy(w, 1) = —(f, w)o — (92, yW)o.r + (1, grad w) .

It is easy to show that

(1.20) }nﬂi.}f’l(ﬂ, p) = —|u — grad G|

Next, sz(w, ) is a linear continuous functional in H‘(Q). If there exists a function
wo € K, such that #,(w,, 1) < 0. then we deduce that

Inf #,5(w, p) = —o0,

weKo

because tw, € K, for all positive t and #,(tw,, p) tends to —oo for t — +oo.
Therefore, the infimum is finite only if

(1.21) Ho(w, 1) 20 VYwek,.
Choosing w = +¢, ¢ € CJ(Q) = K,, we obtain

0 =20, 1) = =(f, 0)o + (1, grad ¢) Vo eCF(Q),
ie, ue Q and divu + f = 0in Q. Then we may write

(1, grad w) = (f, w)o + {u.n,yw) Vwe HY(Q)




and therefore
(1.22) Ho(w, 1) = u.nyw) — (g2, 9W)or Ywe HY(Q).

Combining this with (1.21), we obtain x.n = g, on I'. Thus the infimum of
#5(w, p) on K, is infinite only if u € %. Conversely, if u € %, then (1.22) and (1.21)
hold and thus the infimum is finite. Consequently, we obtain

[0 if pew,
(123) o Z(W’“)“{—oo s

Finally, we arrive at

- _ =9 + (f.G)o — |G|}, npew,
y(#)_{“)o’ LEU,
which yields

(1.24) Sup [-(W)] = Sup [- 2] + (f. G)o — 3|G|7.

Setting “q = grad w°, we can show that *q + grad G = A°. In fact, it follows from
(1.6) that

—(f, w)o = —|w°|} — (grad G, grad w°) + (g2, W )o,r;
therefore we have
31(“’0) = %lwoﬁ + (grad G, grad WO) - (f, Wo)o - (92, VWO)O,I" =
= —1|"q|* = =#("q + grad G) — |G|} + (£, G), .
It is readily seen that “q + grad G = grad u € %; hence
Sup [~ (n)] 2 —F(gradu) = £,(v°) + 3|G|t = (£, G)o -
e
On the other hand, from (1.18) we have
Sup [~ ()] + (1, G)o = 3[Gfi = Sup [~ ()] = Z(v").
HE ue
Combining these results, we obtain
(1.25) Suq;: [—#()] = £,(w°) + 1|G|? = (f, G) = —F(grad u).
He
Thus we arrive at

—#(A°%) = - ‘Il?qf S(u) = Egy [-%(u)] = —F(grad u) .

Then (1.15) is a consequence of the uniqueness of the solution A°.
Finally, from (1.25) we have
A0 + L(u) + (91, 92)0.r = L(°) + £1(»°) + 3|G|T = (/. G)o = 0,
ie., (1.16) holds. Q.E.D.
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2. FINITE ELEMENT APPROXIMATION OF THE PRIMAL PROBLEM

We consider the case n = 2. Assume that Q = R? is a bounded polygonal domain
and that (1.9) holds.

We divide Q into triangles T, forming a triangulation J, according to the standard
finite element method. Let & denote the longest side of all triangles in 7 ,. Denote
by V, the space of all continuous functions on @, piecewise linear on ;. Assume that

g1, is the Lagrange linear interpolate of g, with the nodes determmed by 7,onT.
We introduce

K, = {v,eV,| v, = gy, on I'}.
In general, K, ¢ K.

We say that u, € K, is a finite element approximation of the solution u if
(2.1) L(uy) £ L(v,) Vv,ekK,.

In the same way as in the proof of Lemma 1.2 (instead of G we use the Lagrange
linear interpolate G, of G) it is possible to show that (2.1) has a unique solution.

To estimate the distance between u and u, it is useful to prove the following modi-
fication of a Falk’s result [4].

Lemma 2.1. We have

(2.2) lu —u i = (fiu =)o + (fsup — 0)o + (92,74 — Y04)o,r +
+ (92, yup — ) + (grad u, grad (v — u,)) +
+ (grad u, grad (v, — u)) + (grad (u, — u), grad (v, — u))
for each ve K and v, € K.
Proof. From (1.4) we obtain
[u]f £ (f,u = v)o + (92, yu — y0)o,r + (grad u, gradv) VvekK.
Moreover, using (2.1) we can show that
lusl3 < (f, wn = v)o + (920 yus — 04)o,r + (grad u,, grad v,) Vo, eK,.
Thus for any v € K, v, € K;, we obtain
|u — w,|i = |u|f + |us|i — 2(grad u,, grad u) <
= (fiu = 0)o + (£ un = v4)o + (92,74 — M)o,r + (92, vy = y)o,r +
+ (grad u, grad v) + (grad u,, grad v,) — 2(grad u, grad u,) =
= (fiu = oo + (f, un = v)o + (92,74 — y0i)o,r + (92, s = V0)o,r +
+ (grad u, grad (v, — u)) + (grad u, grad (v — u,)) +
+ (grad (u, — u), grad (v, — u)). Q.E.D.



Theorem 2.1. Let u eHZ(Q) and yue H¥T,,) for each side I',, m =1,...,N,
of the polygonal boundary I', 91 e H(I,), m = 1,...,N. Then

N
@3) |u =l = Chlful} + (gzlor + [u]2) X ([ulor, + g1]2r)i'
where C is independent of h.

Proof. Integrating by parts, we obtain

(grad u, grad (Dh — u)) = j 6u/6n(yvh - yu) ds — (f, U — Vo,
r

(erad u, grad (v — uy)) = Lau/an(yu ) dS = (f, uy — 0 -
Then (2.2) implies that
(24)  |u—wl} = tu — wall + o — uli + [0ufon]|or |jon — ufo,r +
 Joslor Ion = wlor + | @ufen —g2) G — ) ds.
We take v, = u,, i.e. the linear Lagrange interpolate of u with the nodes of 7.
Then u, € K, and

(23) u = ul = chlulo Ju = udor, = CH[uls.r,

loujon]o,r < Clul. .
To estimate the integral

I =j (0ufon — g,) (yo — Oyu,) dS,

we choose a function w defined on I" by
w = sup {g, u} .

Since we H'/*(I'), there exists a function v° € H'(Q) such that yv»° = w on T.
Moreover, v° € K by definition. Thus we have

J- (Qufon — g,) (yo° — yu,) dS =j (Gufon — g,) (w — yu,) dS =

ZJ (0ufon — g2) (g1 — yus) dS,
where —
I ={xer I u(x) < g4(x)} .
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The inequalities yu,, = g,, and du/dn — g, = 0 on I" imply
(2.6) J (Oufon — g,) (g, — yuy) dS gj (Gufon — g5) (9 — g1n) dS <
r- r-

= ”5“/‘7" = g2]o.r l91 - gmllo,r < C(||uf. + ”gzuo,r) hzil\lglllz,r“-

Combining (2.4), (2.5) with (2.6) we come to the assertion of the theorem. Q.E.D.

In Theorem 2.1 we have assumed very strong regularity of the solution u. In general,
such regularity is unrealistic. In the sequel we shall show the convergence of u, to u
without any assumption on regularity. First of all we prove a general abstract result.

Theorem 2.2. Let V be a Hilbert space with a norm ||u| and a seminorm |u|.
Let he(0,1] be a real parameter. Assume that K and K, = V are closed and
convex subsets of V for each h. Let F be a functional onV, differentiable and coercive
on K and K,. Moreover, assume that the second differential of F (in the sense
of Gdteau) exists and satisfies the relation

(2.7) % |z|* £ D*F(u; z, z) < C”z]]2 Yu,zeV,

where a,, C are positive constants. Assume that from v,eK, and |v,] - + o0,
F(v,) > + oo follows. Denote by u and u, the minimizing elements of F on K

and K,, respectively, and let them be unique. Assume that there exist elements
v, € K;, such that

(2.8) lu —v] >0 for h->0;
(2.9) if v,ekK,, v,—v (weakly) in V, then vekK.
Then

[u — | >0,

u, —~ u (weakly) in V
holds for h — 0.

Proof. From (2.7) and the coercivity of F, the existence of minimizing elements u
and u,, follows. Let v, € K, satisfy (2.8). Using Taylor's Theorem (see e.g. [9], chapt.

2) we obtain
F(v,) = F(u) + DF(u,v, — u) + 1D*F(u + 9,(v, — u); v, — u, v, — u),
where 9, € (0,1) for each h. Making use of (2.7), we arrive at
(2.10) lim F(v,) = F(u).
B0
From the definition of u, we obtain

Fluy) = F (CAR

11



and therefore
F(u,) £ Cy = const. < +o0 Vh.

Then the coerciveness of F implies the boundedness of the norms |u,| for all h.
Consequently, there exist a subsequence {uh} and an element u* e V such that
u,, — u* in ¥, and then u € K follows from (2.9). Since F is convex and differentiable,

it is lower weakly semicontinuous. We have

(2.11) F(u*) < lim inf F(u,) < lim sup F(u,) < lim F(v,) = F(u).
W0 B0 B0

Since u* € K, by definition of u we obtain F(u) < F(u*). The uniqueness of u implies
u* = u and
(2.12) u, — u (weakly) in V.
From the identity v

F(u,) = F(u) + DF(u, u, — u) + ¥D*F(u + y,(u, — u), u, — u, u, — u),
where y, € (0, 1), we have .

Jotou, — u|® < F(uy) — F(u) — DF(u, u, — u).

Then |u, — u| — 0 for h — 0 follows from (2.12) and (2.11). Q.E.D.

Next, we have to recall some results from [6].

Lemma 2.2. Let us denote
Ky ={veH'(Q)|] yp=0on I'}.
Then K, is the closure of the set

64(Q) = {veC?(Q)| yv 20 on I'}
in the space H'(Q). ;

Lemma 2.3. Let ¢ be a continuous function defined in the interval [a, b] (— o0 <
<a<b< +w). Let D,ja=xp <x{ <..<x,=>b bea partition of [a, b],
v(D,) = max |x} — x}_,| = 0 for n > co. Let {y,}, n = 1,2,... be a sequence of

i=1,.., n
continuous linear functions with the nodes X} such that z//,,(x';) > o(x}) Vi=
=0,1,...,n;n=1,2,.... Assume that Y, >  a.e. in [a, b]. Then y = ¢ a.e. in
[a, b].

Now we are able to prove convergence without any regularity assumption.

Theorem 2.3. Let (1.9) hold and let there exist a function G € H**%(Q) such that
yG = g, on I', ¢ > 0. Then

|u = wi|s >0 for h—0.

12



Proof. It is possible to apply Theorem 2.2 with F = £, V = H(Q), K and K,
defined as in Section 1. It is readily seen that (2.7) holds with «y = C = 1. Let
vy €Ky, |lvi]]; = o0. Since H'*%(Q) = C(Q), G is continuous in Q and g, € C(I').
Denote the linear Lagrange interpolate of G on 7, by Gj. Then |G — Gj|; —» 0
for h > 0 and |Gj|; £ C, = const for all he(0,1]. Setting w, = v, — Gj, we
deduce |w,|; = + oo for h — 0.

Let I'y = I' be an arbitrary open set of positive measure. We define w, =
= (mes I'p)~* (ywy, 1)o.r, Then W, = w, — W, satisfies (yW, 1)o.r, = 0. Applying
the generalized Friedrichs Theorem, we obtain C, [lvT),,” = ]w,,| 1- Taking into account
the boundedness of |Gy, we may write

(2.13) L(v) = L1(wy) + L(Gr) =
2 Cyllwi|1 = Cs|Wills = WL(f, 1o + (91> Do,r] + Cs -

Since |w,]; — oo, at least one of the norms |W,], and |W,]; = W,(mes Q)*/* must
tend to infinity. Therefore, (2.13) and (1.9) imply #(v,) > +co for h — 0.

Next, we have to verify the conditions (2.8) and (2.9). We start with (2.8). We know
that u — Ge H'(Q) and y(u — G) =yu — g, 20 on I, so that u — GeK,.
There exist ¢, € &,(2) such that ¢, > u — G in H'(Q) for k — oo. Let us dcnote
by @i, the Lagrange linear interpolate of ¢, on ,. We have

”‘Pk—@ih”1—>0 for h—>0.

Setting v, = Gj + ¢y, We obtain v, €K, and |jv, — ul, > 0 for h - 0, i.e., (2.8)
holds.

Let v, € K, and v, — v (weakly) in H'(2). Then v, — v (strongly) in LX), since
the mapping y: H'(Q) —» I*(I') is completely continuous. Here it is possible to
choose a subsequence {v;} such that v; —» v a.e. on I'. Then ve K by virtue of
Lemma 2.3.

All assumptions of Theorem 2.2 are satisfied. Consequently,

(2.14) |up — uly >0, u,— u (weakly) in H'(Q) for h > 0.

Making use of Rellich's Theorem we deduce that u, — u (strongly) in L,(®). Com-
bining this with (2.14), we arrive at the assertion of Theorem 2.3. Q.E.D.

Up to now, the primal problem has been approximated only on polygonal domains
and O(h) convergence has been proved provided the solution u is regular enough.
The same rate of convergence, however, can be obtained with somewhat weaker
regularity for another class of domains. To this end, we consider a convex domain
Q < R? whose boundary has Lipschitz continuous derivatives with respect to the
arc parameter (the domain Q may be a polygonal domain as well). For any h € (0, 1)
we denote by Q" the polygonal domain inscribed in Q, whose sides are either less
than h or fully contained in I. We triangulate Q" according to the standard finite
element method. We denote this triangulation by 7 (2"). For each 7(2") we consider
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the space ¥, of all continuous piecewise linear functions on Q" with the nodes of
T (Q"). If vy € V,, we construct function v, defined on Q as follows:

v,=v; on Q"
vh(Q) = v;:‘(P) )

where P is the projection of Q onto 6Q" in the direction normal to 0Q" if Q e S" =
= Q = Q" ie., v, is defined on S" as the constant extension in the direction normal
to 0Q".

We define V;, as the set of all such functions v, and K;, = {v, € V| v(a;) = g,(a;)
for each node a; on I'}. We say that u, € K}, is an approximation of the primal problem
(1.3) if
(2.15) Luy) < £(v,) Yv,eKy.

The proof of existence of a solution of (2.15) is quite analogous to that of Lemma 1.2.

Next, we follow the procedure suggested in [5] to show the rate of convergence
of uy to u.

Theorem 2.4. Let Q be a convex domain whose boundary has Lipschitz continuous
derivatives with respect to the arc parameter. Assume that g, can be extended
onto a neighbourhood of T', ue H(Q), g,,ue W"* in a neighbourhood of T,
g2, 0ulon e L*(I'), and the number of points where the changes from u = g, to
u = g, occur is finite. Then

lu — ;| = O(h).

Proof. Setting a(u, v) = (grad u, grad v), we may write
a(u — upu — up) = alu — up, u — v,) + alu — up, v, — up) <
< alu — up, u — v,) + alu, v, — up) — aluy, v, — up) +

+ (foon = up)o + (92, v — wi)o,r — (fs 04 = ui)o = (92,04 — upo,r <

< a(u, v, — up) + alu — up, u — v,) = (f, 0, — ws)o — (92, 0 — Uh)or »
since u, is a solution of (2.15), i.e., '

a(up, v, — up) = (f, v, — up)o + (925 04 — up)o.r
holds for each v, € K;. From this and the fact that
a(u, v, — up) = (f, v, — up)o +j 6q/6n(vh — uy) dS

r
we find out that

(2.16)  a(u —upu —uy) < alu — uj, u — v,) + J oufon(v, — uy) dS

r
holds for all v, € K.
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By u; € K;, we denote the function such that u; = u, on Q", where u; is the linear
Lagrange interpolate of u on 7 (Q"), and such that uy is defined as a constant extension
of u; in the direction normal to 0Q". In (2.16) we choose v, = u;. We consider two

sets, namely
{xer'|ux) = g.(x)},

Iy ={xel |u(x) > g,(x)} .

Il

Iy

By I'' and I'" we denote the sets of all sides S* = Q" for which the corresponding
arcs §* < I are parts of I'y and I'y, respectively. If S* = I'y,, then because of ou/on —
— g, = 0 on $" we have

(oulon — ga, up — u,)o n = 0.
If S* < I'}, then dufon — g, = Oand u; = g}, on S", where g}, is the linear Lagrange
interpolate of g, on Q" extended by a constant in the direction normal to Q". Thus
gt £ u;, implies that

(ﬁu/an — g2, “} - ”;’l)o,sh = (a”/a" - gz’g{h - U;.)o,Sh <0.

Since the number of transition points is finite, it is possible to consider A so small that
on each S$" there is only one such point. Assume that there exists S” such that
mes (I'; n $") > 0, i = 0, 1. Then we can find one point Q on $" such that u(Q) =
= ¢,(Q), and Q divides the arc §" into two parts Sy and S} such that u = g, on S
and u > g, on Si. Hence du/on — g, =0 on Sy and du/dn — g, = 0 on S}.
Because of u(Q) = g,(Q), and u, g, € W in a neighbourhood of I', we have
u; — g1, = O(h) on S". Thus we obtain
(Qufon — ga, ur — up)o.sn = (Oufon — gy, up — up)o s =
= (6u/8n — g, Uy — g{h)OSg" + (au/an — 92 g{h - ulll)O,So" =
= (0u/(?n — 92, 91n — “;.)Oso'- = O(hz) .

From the above obtained results we deduce that

(2.17)  (oufon — gy, up — up) = Y. (Oulon — gy, up — up)o.en = O(h?).

Shconh

By the properties of the interpolation we have

[u = uils.on = O(h).

Since mes (S") = O(h), Vu € L*(S"), Vuy is bounded on S" independently of h, we
obtain (see [5], Lemma 6.1)

Ju = uy||s,sn = O(h).
Finally, we arrive at

(2.18) u — ui]i,0 = O(h).
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Then the assertion of the theorem follows from (2.16), (2.17), (2.18) and the fact
that

a(u — up, u — up) < |u = up|y Ju = up]y S tu - u,:]f + %Iu — u}|f
and

a(u — up, u — up) = Ju — |} .

Remark 2.1. In the same way as in the proof of Theorem 2.3, an analogous result
can be proved.

3. APPROXIMATION OF THE DUAL PROBLEM

We introduce an equivalent formulation of the dual problem (1.14). To this end,
we construct a function A/ € Q such that

divAy +f=0 in Q,
M.n=g,—F on I,
where
F = (mesI)"*[(f, 1)o + (92, )o.r]

(F is a non-positive constant). Such a function can be defined as follows: A/ = grad w,
where w is a solution of the problem

—Aw=fin Q, ow/on =g, — F on I'.
(The solution exists by virtue of the equation
(f: 1)0 + (gz — F, 1)0,r = 0-)
It is clear that the problem: to find
9°eUy ={qeQ|divg=0in Q, (9+ 4).n|; =g, on I'}
such that
(3.1) - JQ°) = J(A) Vieu,,
where
J(q) = 3q]* + (#,q9) = <q.n, 9>,

is equivalent to the dual problem (1.14).
The solutions satisfy the relation A° = q° + A/: Let us introduce the convex set

%g:{qlqe-/‘/h’ q-"|r§Fo} =Uy N},

where A, = Q is a subspace of the space of piecewise linear divergence-free vector-
functions (see [3]). '
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We say that A7 + ¢", q" € %}, is an approximation of (1.14) if
(3.2) J(q") < J(q) Vqeuy.

The problem (3.2) has a unique solution, because %¢ is convex and nonempty,
J(q) is continuously differentiable and strictly convex on [L,(Q)]%.

To estimate the distance between A* = 47 + ¢" and A%, it is suitable to recall some
results of [ 1], namely:

Lemma 3.1. Let there exist W" € Ul such that 2¢° — W"e%,. Then

(33) la° - W z]q - d.

Proof. Making use of Lemma 2.1 in [7], where B = {qe Q| divq = 0 in Q},
F =J,M= Uy, M, = Uy, 0y = ¢ = 1, the assertion (3.3) follows.

Lemma 3.2. Let q°e[H*(2)]?, q° .ne HX(T,)) for each side I',, of the polynomial

boundary T'y m = 1,...,N. Then for h sufficiently small there exists a piecewise
linear function \y, on I with the nodes defined by 7, such that
(3.9) J)’whdS=Jq°-ndS=0,
r r
(3:5) Fo<w,<2¢°. n—F, on I,
N
(3.6) ”)"//h - ("hqo) . "“o,r < Cn? Z,llqo . niz,r,,, )

where 1,q° is the projection of q° onto A, (see [6, 7)), and |+|, r., denotes the semi-
norm generated by the second derivatives.

Proof is analogous to that of Lemma 4.2 in [1].

Definition. We say that a system {7}, h — 0 of triangulations of the domain Q
is o — PB-regular, if there exist positive o and B independent of h and such that (i)
the minimal angle of all triangles in 7, is not less than « for any h and (ii) the ratio
between the lengths of any two sides of 77, is less than S.

Theorem 3.1. Assume that Q is a polygonal bounded domain, and (1.9) and the
assumptions of Lemma 3.2 hold. Denote J° = q° + AJ, * = q" + A/, where A/ is
constructed as above, q" and q° are solutions of (3.2) and (3.1), respectively, A° is
the solution of (1.14). Then for any « — B-regular system of triangulations

61 == e - S O+ X el

holds, where HZ,Q is the semi-norm generated by the second derivatives.

Proof. Let ¥, be the function from Lemma 3.2. We set
@ =(rg°.n—y,.
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The identity J‘ o ds = 0
r

implies that there exists a function w, ¢ A", such that
(3.8) w,.n=¢ on T,
(3.9 Iwal = ch="2]oo,r

(see [7], Lemma 5.3). Here we have used the relation
J[qo‘n—(rhq").n]dS:O
r

(see [3]). The function W" = r,q° — w, satisfies the assumptions of Lemma 3.1.
In fact, W"e N, and

Won=(q). n—¢p=y,2F, on T,
i.e., W"e 2. Moreover, the inequality

W' n<2q°.n—-F, \
implies 2q° — W' e %,,.
Making use of the estimate (see [3], Theorem 3.1)

la — nal = ch’lal,0 vee[HY Q)]
and of (3.8), (3.6), we arrive at
la® = W' = [l9° = ng®| + [rg” — W'| < Ch?[q%2.0 + |[wi

lIA

N
< Ch*|q° 0+ C*2 Y |9 .,y .
1

The assertion of the theorem follows from Lemma 3.1 and the fact that 1° — A" =
- qo . qh'

Remark 3.1. Using the results of [8], we can show the convergence of the dual
approximations without any assumptions about the regularity. Namely, let Q be
a convex polygonal domain such that the sum of any two neighbouring internal
angles is not less than n. Assume that A/ e [H'(Q)]* and (1.9) holds. Then for an
arbitrary o — B-regular system of triangulations, ||" — A°| > 0 holds for h — 0.
The proof is parallel to that in [8].

4. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED ESTIMATES
OF ENERGY

It is readily seen from (1.4) that for all v € K we may write
(41)  2[2@) — LW)] = |7 = Jui = 2(f,v = u)o — 2(g2, v — u)or =
= |o|f — |u]f — 2(grad u, grad (v — u)) = |v — u|}.
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Making use of (1.16), for all 1 € % we obtain
(4~2) _g(“) = (91’ gz)o,r + «9’(/‘[0) = y(}») + (“71, gz)o,r .

Theorem 4.1. Let i, be an arbitrary approximation of the primal problem such
that fi,e K and let " = ) + ~q", where ~q" e U} is an arbitrary approximation
of the dual problem. Then

@3) @ — ul} < | — grad &) + 2J (. n = g3) (@, — g1) dS = E(&, ),
r

(49 ¥ — arad 5 B(a 7.
Proof. From (4.1) and (4.2) we deduce that
|y — ull = 2[2(@) + L) + (91, 92)o.r] =
= |a|t = 2(f, #)o — 2(92, vi)o.r + [|[A]> — 2<2" . 0, 9> + 2(g4, 92)o.r =
= | 1" — grad @,|* + 2(7", grad @,) — 2¢2" . n, g,)> —
= 2(f, @o — 2(vily — 91, 92)or -
On the other hand, we may write

(A", grad @) — (f, #)o = (A" . n, @Yo r -
Thus we arrive at

| — uf? < |7 - grad &, + zJ (. n - g3) (31, — g,) dS,
r

i.e., (4.3) holds.
We know that the solution (1.14) satisfies the condition

(194 — 29 — (A — 1 .n,g,> 20 Vied,
therefore for any A € % we have
2oA#(2) = 2O = 2] = |2°]* = (2 = &) . ;90> =
=4 = 2% + 2(4, %) — 2|A°* — 2<(2 = 2%) . n, g,> = |4 - 2°)2.
Inserting A = A" and making use of (1.15), (1.16), we obtain
|7 — grad u||* < 2[F(2) + £(u) + (91 92)o.r] =
< 2[2(" + L(i,) + (91, 92)o.r) = E(i, 7).

Theorem 4.2. Let &, and 2" be as in Theorem 4.1. Then for w® = u — G the
following estimates hold:

(45)  2[2G) - 2@@)] £ W) £ | + “q" — grad G| = F("q"),
(4.6) 2[2(G) — Z(@)] < (f, w°)o — (grad G, grad w°) + (g2, yw°)o.r < F("q"),

where ~q" = " — 7.
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Proof. It is readily seen that the problem (1.3) is equivalent to the problem:
find w° € K, such that

(4.7) L,(w°) £ Z,(w) YwekK,.
Then w° satisfies the relation
(4.8)  (grad w°, grad (w — w°)) + (grad G, grad (w — w°)) - (fiw = w%o —
— (927w — w°)or =20 VweK,.
Inserting w = 0 and w = 2w into (4.8), we arrive at
(4.9) [w°|i + (grad G, grad w°) = (1, w°)o + (92, YW)o.r -
Therefore we have
(4.10) L(u) = £2,(w°) + £(G) = —1|w°|} + £2(G),
Wi = 2[£(6) — 2(w)] z 2[£(G) — £(a,)].
On the other hand, we also have 3
(4.11) WOl = 2[£(G) — L(u)] = 2[Z(G) + #(2°) + (91, 92)or] <
< 2[2(6) + Z() + (91, 92)o.r] =
= |G|} = 2(f, G)o — 2(92, 91)o,r + |X]* = 2<2" .0, 9,> + 2(92.91)or =
= |1* — grad G||* + 2(grad G, 1) — 2(f, G)y — 2{A". n,g,) =
= |1 - grad G||> = |2/ + ~q" — grad G|* = F("¢").
Combining this with (4.10), we arrive at (4.5). Then (4.6) follows from (4.5) and (4.9).

Acknowledgement. The author is grateful to ing. I. Hlavdgek, DrSc. for valuable
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Souhrn

ANALYZA PRIMARNI A DUALNi VARIACNi FORMULACE
SEMI-KOERCIVNICH ELIPTICKYCH ULOH S NEHOMOGENNI{MI PREKAZKAMI
NA HRANICI METODOU KONECNYCH PRVKU

TrAN VAN BoN

Préce se zabyva aproximaci eliptického problému druhého fadu s nehomogennimi jednostran-
nymi okrajovymi podminkami na hranici metodou kone¢nych prvki. Primérni variani problém
je aproximovan po ¢astech linedrnimi funkcemi na trojuhelnicich. Je dokdzéna O(h)-konvergence
za piedpokladu dostate¢né regularity feSeni na polygonalni nebo na konvexni oblasti s hranici
dostate¢né hladkou. Studuje se i konvergence aproximaci bez predpokladu regularity. Pomoci
principu minima dopliikové energie je definovdna dudlni varia¢ni formulace. Pripustna konvexni
mnozina napéti se aproximuje po ¢astech linearnimi vektorovymi funkcemi s nulovou divergenci
na celé oblasti a je dokdzana 0(h3/2)-konvergence aproximaci. Na zdkladé primarni a dudlni
varia¢ni formulace jsou odvozeny aposteriorni odhady chyb a oboustranné odhady energie feseni.

Pe3iome

AHAJIV3 TIPUMAPHOM U JBOVMICTBEHHOM BAPUALIIOHHOM
®OPMVYJIMPOBKU CEMU-KOSPLIUTUBHBIX DIIJIMIITUYECKUX 3AAY
C HEOZIHOPOJHBIMU ITPEILSITCTBUSIMU HA T'PAHULIE
METOJOM KOHEYHBIX DJIEMEHTOB

TrAN VAN BoN

Vpasrenue ITyacoHa ¢ HEOZHOPOJHBIM OJHOCTOPOHHMM KpPaeBBIM YCIIOBHEM DPEMIEHO IOCPEn-
CTBOM KOHEYHBIX 3JIeMeHTOB. ITpsiMast 3a/1aua NpuOIuKaeTcsl Npy NOMCILM JIMHEHHBIX TPEYTONbHBIX
3J7IEMEHTOB U Hoka3biBaeTcs O(h)-CXOOMMOCTD IPH IPEANOIOKEHNH, YTO TOYHOE peIleHHe J0CTa-
TOYHO PeryJsipHO. J{Jist u3y4eHust {BOMCTBEHHOM 3a/Ja41 HCIIONB3YFOTCSI KYCOYHO JIMHEHHbIC IPHOH-
JKEHMs C HYJIEBOIL AMBEepreHuyed ¥ 10Ka3bIBaeTCs 0(113/ 2)-cx0}mM0<;'rb ZJISL PeryJisipHOTO pelle-
Hust. ITpuBeneHbl TOXe HEKOTOpBle allOCTEPHOPHBIC OLIEHKH.
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