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BAYES UNBIASED ESTIMATORS OF PARAMETERS
OF LINEAR TREND WITH AUTOREGRESSIVE ERRORS

»

o
FRANTISEK STULAJTER

(Received May 20, 1986)

Summary. The method of least squares is usually used in a linear regression model Y = Xg + ¢
for estimating unknown parameters . The case when ¢ is an autoregressive process of the first
order and the matrix X corresponds to a linear trend is studied and the Bayes approach is used
for estimating the parameters f. Unbiased Bayes estimators are derived for the case of a small
number of observations. These estimators are compared with the locally best unbiased ones
and with the usual least squares estimators.
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1. INTRODUCTION

The method of least squares or the maximum likelihood method are usually used
for estimating unknown parameters of the mean value function of a time series.
Nonetheless in the case when we know the structure of the process, we can use
another principle. The Bayes approach is used in this paper under the assumption
that the mean value function of the process is a linear one. The errors are assumed
to be values of an autoregressive process of the first order. We are looking for unbiased
estimators of parameters of the linear trend, minimizing the average value of the
dispersion of the estimator. This average value is taken with respect to some a priori
probability distribution defined on the interval (—1, 1). This interval represents
the parameter space for the parameter ¢ of autoregression of the process. The case
of the uniform distribution on a subinterval (4, B) of (—1, 1) is studied for a small
number of observations. The estimators obtained by this principle are compared
with the locally best unbiased ones (LBUE) and with the usual least sqares estimator
(LSE).
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2. THE LOCALLY BEST UNBIASED ESTIMATORS

Let us consider the general linear model
(1) Y=XB+¢

where Y is an n x 1 random vector — an observation of a time series {Y,}; te Z =
=1{...,—1,0,+1,...}, Xisaknown n x kmatrix and B is a k x 1 vector of un-
known parameters. We shall assume that ¢ — a random n X 1 error vector is a finite
part of an autoregressive process {¢,}, t € Z, of the first order with zero mean value
and with an unknown parameter ¢ of autoregression such that IQI < 1. Then we have
€ = g¢,—y + m, for every t € Z, where {m,}; te Z, is a white noise process. It is
well known that the covariance function of the process { ¥;}; t € Z (see [1]), is R(t) =
= ((e?/(1 — 0%)) @"; t € Z, where 62 is the dispersion of the white noise.

The best linear unbiased estimator p* of the vector B in the model (1) generally
depends on the covariance matrix X of the random vector Y and is given by

@) B* = (X'E1X)"! X'EY

In our case the covariance matrix of the random vector Y depends on the unknown
parameter ¢ only: £ = X(p). Thus the (locally) best unbiased estimator p* depends
on the parameter ¢ as well, p* == p*(o); |o| < 1. We remark that X(o)~! exists
for every ¢ e(—1, 1), and for n = 3 we have

1 =9 0... 0 0 0
1 —01l+0* =0 ... O 0 0
(3) @) =S| - e :
0 0 0... —ol+9> -9
| o 0 0... 0 —¢o 1

It is well known that the covariance matrix of B*(¢) is given by
4 Zpry = (X'Z(e) ™" X) 7"

This again depends on the parameter .

For ¢ = 0 we get £(0) = 2. I and according to (2), p*(0) coincides with the usual
least squares estimator.

Now let X = (1, ..., 1)". Then the model (1) corresponds to the case when Y, =
=f +¢;5t=1,...,n,is a finite observation of the time series Y with an unknown
constant mean value § and with autocorrelated errors. According to (2), (3) and (4)
we get the LBUE (at the parameter value ) of the constant mean value 8 in the form

L

Y1+Y,,+(1,—g)"iY,
(5) B*e) = WO YRS for n = 3;8%(0) =

&

ﬁ_t._.}:g for n=2
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This estimator has the dispersion given by

(6) D,[B*(0)] = - i forevery nx2.

(I-o2+ (-2 -]

If X = (i ; T ’11) and B = (B, B;)’, then the mode] (1) corresponds to the case

when Y, = i, + By .t +¢&; t =1,...,n, is a finite observation of the time series
{Y,}; t € Z, having some “linear trend” mean value function. The vector B is the vec-
tor of unknown parameters of this linear trend. We can use (2) and (3) again to cal-
culate the estimator p*(¢). For example, we get p*(o) = (2Y, — Y5, Y, — Y;)
for n = 2 and every ge(—1,1). Thus B* is the unique uniformly best unbiased
estimator of § with the covariance matrix

g.- O C_@3@_%'

=2 e - 1) 201 - o
For n = 3, according to (2) and (3) we get

(51) ;‘(9) = 3—1_9 [(4 - Q)~ Y, + (1 - Q) LY, - (2 - Q) Ys] BT(Q) = l(Ys - Y1)

and

) —
~p*) —

o? <2[2(1—Q)(3—Q)+1] —2.(1—@)(3——g)>.

A-9B-9\ -21-9G-0 (1-0B-0

We can see that the estimator f7(¢) of the parameter f8; does not depend on ¢, and
it is the uniformly best unbiased estimator with the dispersion ¢2/2.

The disadvantage of the locally best unbiased estimators is that they depend on
the unknown parameter ¢ of autoregression and in the practical cases we do not
know which estimator (if any) from the set {B*(¢); |o| < 1} should be used. These
difficulties can be overcome by using, for example, the Bayes approach.

3. THE BAYES UNBIASED ESTIMATORS

Let us consider a linear statistic ¢'Y where ¢ = (cy, ..., ¢,)’ is any real vector and

Y is the random vector from the model (1). Then it is clear that E¢ g[c'Y] = ¢'XB

and the dispersion D g)[c'Y] = ¢'Ec, which is a quadratic form in c. In our special

case of autoregression the dispersion D[c'Y] = D,[c'Y] depends only on ¢. The
n

linear statistic ¢'Y is an unbiased estimator of a constant mean value g iff } ¢; = 1.
=1
By analogy, the statistic ¢’X is an unbiased estimator for the parameter f; iff

X'c = b;; j = 0,1, where b, = (1,0)' and b, = (0, 1)'.

453



According to the Bayes approach the linear unbiased Bayes estimator (LUBE)
B; of B; is the estimator minimizing the function D(c) given by

g SR CR NICICE

on the set C; = {c¢: X'c = b;}; j =0,1. Here f(+) is some probability density
function defined on (—1, 1). In our case D [¢'Y] = ¢'E(g) ¢ and, according to (7),
we get D(c) = ¢'Zc where

1
(® Z, =f Z(e);; fl@)de; i,j=1,....,n.
-1
The following lemma gives ¢ — the value minimizing D(c) on C; for j = 0, 1.

Lemma. Let T be a positive definite n x n matrix, ¢ — any n x 1 vector, X — an
n X k matrix, and let u be a k x 1 vector. Let us denote by S~ any pseudoinversion
of the matrix X'T™1X. Then inf ¢’ Zc = u'Su. This infimum is achieved at the
vector ¢® = T71XS"u. X'c=u

Proof. See [2].

Corollary. The LUBE’s f of the components of p are given by
9) B=(XZTX)"t XY,
where I is given by (8).
Proof. The assertion follows from Lemma by setting u = b;;j = 0, 1.

Remark. It can be seen from (9) and (2) that the LUBE f is equal to the best
linear unbiased estimator under the assumption that the true covariance matrix
is Z.

From now on we shall study the cases when f(+) is the density of the uniform
distribution on some subinterval (4, B) of (—1, 1). In this case the value

(10) j jue[m de s

Jj = 0,1 will be minimal. If we compute Bj;j =0,1for A= —1,B =1, then we
can regard these estimators as the best ones minimizing (10), the value of the global
criterion. Knowing that ¢ > 0 (or ¢ < 0) we can calculate f for 4 = 0, B = 1 (or
A = —1, B =0). For f(-) being the density of the uniform distribution on (A, B)
we get the following expression for X:

- 1 % q a2 (B ol 4
Zi.= i = — .
d L Q)i fle) de B-—4 1—929
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Usually we put A = —1and B = 1if we have no information on g. It is easy to show
that

2

(1 - A) (1 + B) AI~@k+1) _ pi=(2k+1)

3

(1/2) In

2

(1+4)@1-B) ¥o i—(2k+1)
JB 0 do = if i is even,
- 3
al= 0? 1 — A2 Ai-@l+1) _ pi=(2k+1)

-~

1 - B? =0 i—(2k + 1)

(1/2)In

2

| if iis odd,
where we set the sums equal to zero for i = 0, 1. Thus we can get T easily, but for
the matrix £~! we now have no explicit formula like (3) for £(¢) ™. In some special
cases we are able to compute f for small n and compare these estimators with the
estimators B*(g); 0 € (—1, 1).

Let us begin with n = 3. Let us denote

—_ 42
a=3n=AU+B) g 1-A . —4-B.

T+ 4@0-8 1 - B
Then
a ba+c
T = b a b
a+cb a
and
a? — b? be b> — a®> —ac\
S =|be —2ac — ¢* be <= -
b? — a?® — ac be a? — b? det 2

The LUBE f of f- the unknown constant mean value, is then, by virtue of Corollary,
given by

4

n+@— >n+n

b—a

(11) B-

4

4 —
b—a

Comparing this estimator with the estimators given by (5) we see that f = B*(g)
for ¢ = ¢[(b — a) — 1. Next, g converges to —1 if A tends to —1 and the estimator
B = (Y, + 2Y, + Yj) is the LUBE if we admit 4 = —1.
Some other cases: 1. For 4 = 0, B = 1 (the case when we know that ¢ > 0)
we get
j Yt 0SS, + ¥y
2:5573

= B*(o) for @ = 0-4427.
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2. For4A = —},B = } wehave
B = Y, + 1-0897Y, + Y,

3-0897
Remark. For n = 3, f§ differs from f*(0) — the LSE which is commonly used
in practise, because f = p*(0) iff ¢ = b — a, that is 4 — B =1In(1 + 4/1 + B),
which is possible only in the case when A = B.
Bo
By

= B*(¢) for ¢ = 0-0897.

) of parameters of a linear trend we

For the components of the vector g = (

get, using (9), estimators given by
(11') Bow 5 —— ). ¥ 4+ (2 ).
c b—a b—a
4 — —°
b—a

»Yz_(3— < )-Ys]sﬁlz%(Ys—Yl}-

b—a

Comparing these estimators with the estimators given by (5’) we see that the LUBE
of B, differs from fg(e) for every g, but f, = p{ — the uniformly best estimator.
In the limit case, when A tends to —1 and b — a tends to —oo, we get from (5')
and (11') that f, = Bg(o) for ¢ = —1. The LUBE J, of B, differs from the LSE
Bs(0), because B, = B5(0) iff ¢ = b — a, which is possible only in the case when
A = B.

For A = 0, B =1 we have using (11)

Bo = 1:3910Y, + 0-2179Y, — 0-6089Y; ,
and for A = —05, B = 0-5 the LUBE of f, is
Bo = 1:3236Y; + 0-3527Y, — 0-6763Y5 .

Let us consider the case n = 4. If we define (a, b and ¢ in the same way as for
n =3 and if we set d = }(42 — B?), then it can be checked that ' = I** =
= c[2(b? — a?) — ac]; £ = T3 = —[d(b* — a®) + c(bc — ad)]; £'* = £** =
= c[2(a® — b%) + ¢ + 3ac — bd]; T'* = — [c*b + d(a* — b?)]; T =32 =
= ¢(2b* — 2a* + 2bd — ac) — ad? and £** = —{b(c* — d?) + d[(a + ¢)* — b*]},
where 7! = {ZY}}._,. Using these results we get from (9) the LUBE J of the
constant mean value f:
45y

2+2<1—A“2LB)

Y1+Y4+<1—

E:—
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.

Comparing f§ with the estimators given by (5) we see that f = f*(¢) forg = (4 + B)
for any —1 < A < B < 1. Consequently, if A = —B, 0 < B < 1, then § coincides
4
with theusual LSEY = 1) Y; of B.
i=1
The estimator f§ for the parameters of linear trend will be studied only in the case
A= —B;0< B <1, when

a 0 a+c¢0
0 a 0 a+c

L= a+c¢0 a 0
0 a+c0 a
and
a 0 —a-—c¢ 0
-1 =__1__ 0 a 0 —a—c
a*—(a+c¢}?|l—-a—-c 0 a 0
\0 —a—-c¢ 0 a

This yields the estimators

1 N
Bo = [(14+@>Y1+<14+9—C~)Y2—<6+6—C—>Y3—<6+3)Y4].
16+§_c a a a a

By = - i @[(4 + %)(n —-Y) + (4 + %)(n - Yz)].

a

Some special cases: for 4 = —1, B = 1 the globally LUBE’s are
Bo = H7(Yy + Vo) — 3(Ys + Y4)],

Elz%.[Yg,—Yl_‘_Y‘t—Yz‘J.

2 2

In this case fy + B5(—1) = 0-79Y; + 0-96Y, — 0-29Y; — 0-46Y,, but §, = BH(—1).
Next, B; & B7(0); i = 0, 1, where

Bs(0) = Y; + 0-5Y, — 0-5Y,
and

B(0) = 03(Y, — Yy) + 0-1(Y; — 1)
are the LSE’s of f.
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Sihrn

BAYESOVE NEVYCHYLENE ODHADY PARAMETROV LINEARNEHO TRENDU
S AUTOREGRESNYMI CHYBAMI

FRANTISEK STULAJTER

Pre odhad vektora parametrov B v linedrnom regresnom modeli Y = XB 4 ¢ oby&ajne po-
uzivame met6du najmensieho stétu $tvorcov. V &lanku je Studovany pripad, kedy ¢ je pozorova-
nim autoregresného procesu prvého radu. V tomto pripade mdéZeme ku odhadu parametrov g
pouzit Bayesov princip. Na ziklade tohto principu si odvodené nevychylené odhady para-
metrov linedrneho trendu. Tieto odhady s vypod&itané pre malé rozsahy pozorovani vektora Y
a st porovnané s odhadmi ziskanymi metédou najmensieho stiétu §tvorcov.

Pesiome

HECMEIMEHHBIE BAVMECOBBI OLIEHKU ITAPAMETPOB JIMHEITHOI'O TPEHJA
TP ABTOPEI'PECCHMOHHBIX OIIMBKAX

FRANTISEK STULAJTER
%

B ymmHBeiHOi perpeccHOHHOM Moaemd Y = Xp -+ & 0ObIYHO HCHONI3YyeM METOJ HaWMEHBIIAX
KBaJpaToOB Il OLIEHOK IapameTpoB f. Mi3y4aercs Cilyyaif KOrza &-aBTOPErPECCHOHHBIM Iponecc,
MaTtpuna X COOTBETCTBYET JITHEHHOMY TPEHIY M IUIS OLCHOK IapaMeTPOB f ACHONIB3YeTCs IPAHIMAIT
Baiieca. ITonyyeHHbIC HeCMEIEHEbIE OLleHKH bajieca CpaBHEHBI C JIOKaJIbHO HAMTYyYIIMME ONCHKaMHA
M C OLECHKAMH 110 METOAYy HAMMEHBINAX KBaJpaTOB.
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