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ON JOINT DISTRIBUTION IN QUANTUM LOGICS
II. NONCOMPATIBLE OBSERVABLES
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Summary. This paper is a continuation of the first part under the same title. The author studies
a joint distribution in o-finite measures for noncompatible observables of a quantum logic
defined on some system of o-independent Boolean sub-c-algebras of a Boolean og-algebra. We
present some necessary and sufficient conditions for the existence of a joint distribution. In
particular, it is shown that an arbitrary system of observables has a joint distribution in a measure
iff it may be embedded into a system of compatible observables of some quantum logic. The
methods used are different from those developed for finite measures. Finally, the author deals
with the connection between the existence of a joint distribution and the existence of a commu-
tator of observables, and the quanrum logic of a nonseparable Hilbert space is mentioned.
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This paper is a continuation of the first part under the same title, hereafter referred
to as [I]. Sections, theorems and formulae are numbered consecutively, starting
with Section 3. References [1—18] are listed at the end of [T].

3. JOINT DISTRIBUTION OF NONCOMPATIBLE OBSERVABLES

In the present section we concentrate ourselves on the main aim of this paper.
We shall study the problem of existence of noncompatible g-observables. We give
new results which are valid also for measures on % with infinite values, and which
generalize the known results for states. We note that the methods developed in
[6—11, 19, 20] are not applicable to our case.

The existence of a joint distribution closely depends on the concept of a commutator
Let % be an OML. For a finite subset F = {a,,-.., a,} of & let us put, following
L. Beran [21],

1 n
(3.1) comF:= V A alf
Jteeein=0 i=1
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where a° := a*, a' := a. The element com F is called the commutator of a finite
set F = &. For a two-clement set F = {a, b}, com F has been defined by Mars-
den [22]. We recall that independently of [21] the commutator of F has been used
in [7] to show that the so-called question observables q,,, ..., g, have a joint distribu-
tion in a state m iff m(com F) = 1 (here q, is a B(R")-g-observable with ¢,({0}) =
= a*({1}) = a). In [21], the elements com* F and com F are called the upper
and the lower commutator, respectively, of F. It is clear that a,,...,a,€ % are
mutually compatible iff com F = 1, where F = {ay, ..., a,}. :
Now, for any M, M < %, put

(3.2) com M = A{com F : F is a finite subset of M},

if the element on the right-hand side of (3.2) exists in #. By definition we put
com @ = 1. The commutator com M of M has been introduced for the first time
in [6] for the study of joint distributions.

The following notion has been defined in [9]. We say that a subset M of & is
partially compatible with respect to a, a € &, if (i) a « b for any b e M; (i) {b A a:
b e M} is a set of mutually compatible elements of &. It is known [11] that if a =
= com M exists, then M is partially compatible with respect to a.

Let {a,: s € S} be an indexed set of elements of #. The element a € & is said to be

countably obtainable over {a,: s € S} [10, 8] if a = Aa,, and if there is a countable
seS

subset Sy = S with a = A a,. From [10, Prop. 2.3] if follows that if there is an at

seSo
most countable subset N = M of a quantum logic & which generates the minimal

sublogic &£, of # containing M, then com M exists and is countably obtainable
over {com F: F is a finite subset of M}.

The following result, due to W. Puguntke [23], is of particular interest for the
present study: There is an OML % and M < % for which the commutator of M
does not exist in &Z.

Let x; be an &/ ;-observable of &£, i = 1, ..., n. Define

(3.3) a(Ey, .. E) =V /n\xi(E{'),

Jledn=0 i=1
where E;es/;, i =1,...,n. Then, due to [10], for M = ) #(x;), where x; is
i=1

a %(R')-c-observable, i = 1,...,n < oo, the commutator com M exists in the
quantum logic £ and it is countably obtainable over {com F: F finite subset of M},
and, moreover, com M is countably obtainable over {a(E,, ..., E,): E; € #(R"),
i =1,...,n}. If there is ao = com (U %(x,)), we call a, the commutator of the
o-observables {x,: t € T}. et

The following result has been proved in [12].

Theorem 3.1. Let x,, ..., x, be B(R')-c-observables of a quantum logic £ and
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let m be a measure on %. Let us denote a, = com (U R(xy). If
i=1

(3.4) m(ag) =0,

then there is a joint distribution in m. If at least one x; is o-finite with respect to m,
then the joint distribution is unique.

If x4, ..., X, have a joint distribution in m and at least one x; is o-finite with
respect to m, then (3.4) holds.

Moreover, maps x;,: E — x,(E) A a,, E€%®(R"), are mutually compatible
o-observables of a quantum logic #(0, a,) := {beZ:b < a,} (here an ortho-
complementation “’” is defined as b’ = b* A a,, b < ay).

It is known [7, 8] that #(R')-c-observables x4, ..., x, have a joint distribution
in a state m (finite measure, too) iff

(3.5 m(a*(Ey, ..., E,)) =0
for any E,, ..., E, € #(R"). This is equivalent to the condition [7, 19, 20]

n 2 n
(3:6) m(Ax(EjUEp) = % m(Ax(Ey)) \
j=1 ki.kp=1 j=1
for any E;y NEj; =0, Ej, Ejpe BRY),j=1,...,n.

For measures with infinite values this equivalence has been proved only in particular
cases [12]: (3.5) for measures with carriers, and (3.6) only on a o-continuous logic.
Below we will prove the equivalence of (3.5) with (3.6) and with the existence of
a joint distribution in measures attaining even infinite values.

In the following we shall suppose that .y, ..., o/, are independent Boolean
sub-g-algebras of a Boolean algebra o/ and x; is an &7 ;-o-observable of a logic %,
i=1,...,n A decomposition of 1 in a logic & is a system {a;} = & such that
a; L a; whenever i * j, Va; = L.

Lemma 3.2, Let h;: #; > & ; be a 6-homomorphism of a Boolean sub-g-algebra
B of A;,i=1,...,n. Then x4, ..., x, have a joint distribution in a measure m

iff Xy 0 hy, ..., X, o h, have a joint distribution for any o-homomorphism h; and any
Boolean sub-o-algebra B; of ;i =1,...,n.

Proof. It is evident. Q.E.D.
Lemma 3.3. Let x4, ..., x, have a joint distribution in a measure m. Then
6 m(ARE) A AaE, D)= m( A(E)
foranyE, Eteof,i=1,..,nk=1,...,K, where K may be an integer or + .

. Proof. Itis the same as that of Lemma 2.2in [12]. Q.E.D.
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Theorem 3.4. Let at least one of xy, ..., x, be o-finite with respect to m. Let the
commutator aq of Xy, ..., X, exist and let it be countably obtainable. If x,, ..., x,
have a joint distribution in m, then

(3-8) m(ag) = 0.
The converse is true, e.g., if &/ are a-isomorphic to B(R").

Proof. From [6, 10] it follows that if a, is countably obtainable over {com F: F
is a finite subset of 'Lnjl.%(xi)} then a, is countably obtained over {a(Ej, ..., E,):

E;e o, i=1,..., n},and vice versa.

Let x,, ..., x, have a joint distribution in m, and let x, be o-finite with respect
to m. Using (3.7) we can establish that if m(x,(E)) < oo for some E e &/,, then
m(x,(E) A ag) = 0. Therefore, if {E;};%, = &, is a countable decomposition of 1
with m(x,(E,)) < o, k = 1, then

) <]
m(a$) = mlag » (V) = 5 m(ab n x(5) = 0,
k= k=1
where we use the property of the partial compatibility of a,.
Let (3.8) hold. Then putting m := m | £(0, a,), we have

m{ AX(E) = m{ A siE) A ao) = 7 A xofE)).

where x;(E) := x,(E) A a, are o/ -g-observables of £(0, a,), i = 1, ..., n, which
are mutually compatible. Refering to Theorem 2.2 of [I] we see that x,, ..., x,
have a joint distribution in m. Q.E.D.

We note that if x, is an &/,-c-observable of the quantum logic %, te T, where
{of,:te T} is a system of o-independent Boolean sub-c-algebras of a Boolean o-
algebra o, and if {x,: te T} have a countably obtainable commutator a,, then
Theorem 3.4 is valid for {x,: t € T}, too.

Lemma 3.5. Let x4, ..., X, have a joint distribution in m and let x,, say, be o-finite
with respect to m. Then

(39 (i) m(a*(Ey,....,E,)) =0
foranyE;e s, i=1,...,n;
(3.10) (ii) m(com* F) =0

for any finite subset F < ) A(x,).
i=1

Proof. Any finite § + F < |J #(x;) generates a finite decomposition #"; of 1
i=1

in each &; in the following manner. If there is no element of «; in F, then we put
H;={0,1}.If ;N F = {E,, ..., E;},then weput ', = {E{* A ... A Ef;j,€{0,1},
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s=1,...,k}.Let {F;} %, be a countable decomposition of 1in 7 with m(x,(F)) <
< 0, j = 1. Denote by %, the minimal sub-o-algebra of &, containing {F; n 4:
AeX, j= 1‘}, and, for 2 < i < n, denote by %#; the minimal sub-g-algebra
of «/; generated by ;. Then X; := x; ] AB; are a B ;-g-observables of & and, due
to Lemma 3.2, they have a joint distributionin m. Since the subset .# = {com G:G

is a finite subset of (J %(f,)} of &% has at most countably many elements, there is
i=1

a commutator a, of X, ..., X, and, moreover, a, is countably obtainable. Because
X, is o-finite with respect to m, by Theorem 3.4 we have m(af;) = 0. Since com F € /A
and a, < com F, we obtain (3.10).

To prove (3.9) it is sufficient to put F = {x,(E,), ..., x,(E,)}.

The next three technical lemmas will be useful in the following. If F = {c 15 oves Ci} c
c &, & is an OML, then we put com (cy, .... ¢;) := com F.

Lemma 3.6. Let & be an OML. If a,, ..., a, are mutually orthogonal elements
of &. then for any by, ..., b,,

k k
(3.11}y (Va) A com*(ay,..., a4 by, ..., b,) =V (a; A com* (a;, by, ..., b,)).
i=1 i=1

Proof. Lemma 2.1 of [8] implies that

com(ay,...,ap, by, ...b)=V(ag Ablv...va Abv(a v..va)ab)
deD"
where D = {0,1}, b*:=b{' A ... A b, d =(d,,...,d,) € D". Calculate
k
a:=(Va;) Acom*(ay,...,aby,....b,) =
i=1

= (\k/a,-) AAN({ar v ) A oA (af v B A(ay v ..oV v bM).
i=1 deD?

For all i,j=1,...,n, and each de D", ;> aj v b*™, we have a;«> (a,; v ...
. v a, v b%). Hence, according to [1, Lemma 6.10], we may apply the distributive
law. Consequently, '

k k
=V(arnAlas v ™) A . A(ag v b)) =V (a; A Aar v b)) =
i=1 i=1 deD™

deDn

k
=V (a; A com* (a;, by, ..., b)) - Q.E.D.
i=1

Lemma 3.7. Let £ be an OML.If for F = {a, b,, ..., b,} we have m(com* F) = 0,
then
(3.12) m(a) =Y m(a A b*) = m(a A comF).
deD™
Proof. m(a) = m(a A com F) + m(a A com* F) = m(a A com F) =
=m(V a A b,

deD"
where we use the notation from Lemma 3.6. Q.E.D.
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Lemma 3.8. Let & be an OML. Let F = {ay,...,a,, by,...,b,} = %, where
ay, ..., a, are mutually orthogonal elements. If m(com* F) = 0, then

k n k n
(3.13) m((-\:lai) A -C\lbj) =_Zlm(a,- A /=\lbj).

Proof. Using [8, Lemma 2.1] and the distributive law we obtain
k n k n
m((Va;) A Abj)=m((Va)A Ab; AcomF) =
i=1 i=1 i=1 j=1

= m((\i’a,) A /n\bj AV ((ag AbY) v .ov(aAb)y

= Jji=1 deDn
k n
viag v ...va) ab))=m(V(a A Ab)). Q.E.D.
i=1 i=1

The following notions are needed for the main result of this section. Let & be
an OML. A non-empty subset .# < & is said to be a p-ideal [22, 3] if (i) if a, b e #,
then a v be #; (i) if be #, a < b, then ae #; (iii) be # implies (b v a*) A

A ae ¢ forallae &. If instead of (i) wesuppose (i) if {a,};2, = #, thenV a,€ ¢,
n=1

is called a o-p-ideal of #. If I is a o-homomorphism of a quantum logic % into
a quantum logic %, then Ker h is a o-p-ideal of &. We write a ~ b iff (a v b) A
A (a A b)l € ¢, a, be £. Then the relation “~” is an equivalence relation on .2,
and (i) if a ~ b, then a* ~ b*; (ii)a; ~ by, ay ~ b, imply a, v b, ~ a, v b,.
Denote by &/ ¢ the factor OML defined via £/ ¢ = {[a],, ae £}, where [a], :=
i={beZ:b~a} and [a]j:=[a'],, [aly v [b]ly:=[a v b],. The map
hy: & — £| ¢ which assigns [a], to any a €% is a homomorphism of % onto
ZF.

Finally, we present a theorem which generalizes all the known conditions con-
cerning the existence of a joint distribution in a measure in two main aspects; (i)
measures may attain also the infinite values, (ii) the conditions do not depend on the
existence of the commutator of a given system {x,: t € T} of g-observables.

Theorem 3.9. Let x,: o/, > & be a o-observable of a quantum logic %, teT,
where {o/,:te T} is a system of o-independent free Boolean sub-c-algebras with
countable generators of a Boolen g-algebra /. Let at least one 6-observable, say
X,,, be o-finite with respect to a measure m. Then the following conditions are
equivalent:

(i) {x.:te T} have a joint distribution in m;
(3.14) (i) m(com* ({x,(4,):tea})) =0
for any A, € ,, t€a, and any finite ) + a« = T;
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(3.15) (iii) m(com* F) =0
for any finite subset F of ) {%(x,): te T};

(3.16) (iv) m(tg x(Aye vV As,)) —-.Z m(/\x,(A,t,))

ir=1
tea

forany Ay, A A5, =0, Ay, Ay, e.szf,, tea, and any finite ) £ « <= T;

(3-17) (V) m( /\ x,( V Akr)) = m( /\ xt(Akgt))

(Ea
Jor any {Ay}i-, = A, Ay A Ay =0, i £ j,tea, and any finite O + o = T,

(vi) there exists a Boolean c-algebra B, # + {0}, and a o-homomorphism h
of the minimal sublogic &%, of & containing all %(x,) onto & such that m(a) = 0
for all a € Ker h;

(vii) there is a quantum logic £, + {0} and a 6-homomorphism h of &, onto
&, such that {hox, teT} are mutually compatible c-observables of L, and
m(a) = 0 for all a € Ker h;

(viii) there is a (unique) measure p on || &, such that

teT

(3.18) B(A Ap) = m( A x,(4))

tea tea

for any A, e L, tea, and any finite ) £ a = T.

Proof. We shall prove the following implications: (i) = (ii) = (iii) = (iv) =
= (v) = (i), and (i) = (vi) = (vii) = (viii) = (i).

(i) = (ii). Let a non-empty finite subset & = T be given. If #, € o, then we apply
Lemma 3.5 and (3.9). If t, ¢ o, we change « to a () {#,} and use the monotonicity of m.

(ii) = (iii). Let a finite F = (J{<%(x,): t € T} be given. Then there is a finite subset
o < T with diverse indices t,, ..., t,. Analogously as in the proof of Lemma 3.5,
for each i = 1, ..., n, F generates a finite decomposition A= {A},.., 4} < o,

of 1. Theorem 2.2 of [8] yields com F = com ( U A;) and a repeated application
of (3.11) gives

0 < m(com* F) = m(1 A com* (}:Jlfi)) =

ky

"y x, (A1) A com? ( U 2)) = T, (A1) A com({x, (A1) u;gzxi)) <

ii=1 i =

< 3 mcom ({2, (4] WU X S o S X

Z m(com* (x,l(A D e X0 (A1) = 0.

ln—
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(iii) = (iv). Let a non-emptyset « = {t,, ..., t,} = T begiven.Let A;,, A A,,, = 0,
Ay Ao, € H 4 i = 1,..., n. Define g, = x,,(Au,), k = 1,2,b; = x,(4y,, vV Asy)),
j =2,...,n. Repeatedly applying Lemma 3.8 we see that (3.16) is true.

(iv) = (v). To prove (3.17) we limit ourselves to the following case. Let a non-
empty subset & = {t;,...,1,} = T be given. Let {4}, = o, Ay A A; =0
whenever k = j, be given for any i = 1, ..., n. There are two possible cases: (i) t, € a,
then we put t; = to; (ii) o ¢ &, then without loss of generality we can change o
to & U {t,} and we also put t; = t,. There is a countable decomposition {E,} &, <
< o, of 1 with m(x,(E,)) < o, v = 1. Define 4, as the minimal Boolean sub-o-

o]
algebra of o, containing {E, A Ay, E, A Aj:v, k 2 1}, where 4; =V A,
k=1
i=1,...,nandlet B, i = 2,..., n, be the Boolean sub-c-algebras of «7,, generated
by {47, 4,: k = 1}.
A mapping X; := x; l AB;is a B~o-observable of £, i = 1,...,n, and X, is o-finite

with respect to m. It is clear that X, .. J_C have a countably obtainable commutator

ao over {com F: F is a finite subset of U A(%;)}, because the last set has at most
countably many elements. i=

We will show m(ag) = 0. Let ao = /\ com F,. It is evident that if F and G are two

finite subsets of ¥ with F < G, then com G < com F. Therefore, we can choose F,
to be nondecreasing and containing %,(E,) for any fixed v = 1. Indeed, put G, =

= U F U (5,(E)}, then

o0 a0
a, = Acom F, > Acom G, > a,.
k=1 k=1
Using the continuity from above of m and the properties of the commutators we
obtain

m(X,(E,) A ap) = li:n m(x,(E,) A com F,) = liin m(x,(E,)) =

= m(%,(E,)) -
In the previous step we used Lemma 3.7 and (3. 12) This implies m(x,(E,) A ag) = 0
for any » = 1, and, consequently, m(ag) = Z m(%,(E,) A aj) = 0. Theorem 3.4
v=1

entails that X,, ..., X, have a joint distribution in m, so, in particular, (3.17) holds.

(v) = (). Let 0 + « = T, o finite, be given. Without loss of generality we may
assume that #, € a. The property (v) and the Carathéodory method of measure exten-
sion applied to Boolean algebras, [ 17, 18], guarantees that there is a (umque) measure
4, on [] &, such that ,

tea

(A A4) = m( Ax(4,) forany A,e o, tea.
tea - tea
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i) = (vi). Let &, be the minimal sublogic of a logic % containing M = Xy)-
2, be th 1 subl f a logic & M R(%:)
teT
Define

(319) 7 ={aePy:a <V com'F, F,is a finite subset of M, i > 1}.
i=1
It follows from [11] that ¢ is a g-p-ideal of #,,. Theorem 5 of [22] says that the
factor logic £,/ # is a Boolean o¢-algebra. Letusput # = %,/ ¢. A map h: L, - #
defined by h(a) = [a], is % a o-homomorphism of £, onto 4.
Now we show that m(a) = 0 whenever h(a) = 0. In other words, m(a) = 0

whenever a € #. From the definition of ¢ it follows that there is a sequence {F;} 2,

of finite subsets of M such that a <V com* F,. Let us put G; = F; U {x,(E,)},

i=1
> 1, where {E;} {2, is a decomposition of 1 in &7, with m(x,(E;)) < co. For any

G,, there is a finite subset a; of T'such that for any b e G, thereis t € « with x,(4) = b

®©

for some A € &/,. Put G = U G;and a = |J «;. We order the elements of « as follows:
o= {ty, 15, ...} =1 =1

Let 4, be the minimal Boolean sub-g-algebra of «7,, generated by «7,, n G. Then
X=X, | B, is a Bro-observable of &£, and {X;}i2; have a countably ob-
tainable commutator a,. {#;:i = 1} is a system of ¢-independent Boolean sub-o-
algebras of a Boolean g-algebra /. Since at least one of {X;}2, is o-finite with
respect to m, Lemma 3.2 and Theorem 3.4 yield m(ag) = 0.

An easy calculation yields

a <V com* F; <V com' G, < ag
i=1 i=1
so that m(a) = 0.

It remains to show that 4 is not a degenerate Boolean o-algebra. In the opposite
case 0 = 1 in # and, therefore, h(0) = h(1) so that m(1) = 0 which is a contra-
diction.

(vi) = (vii). Let (vi) hold. Defining &, := % and taking the o-homomorphism h
from (vi), the condition (vii) is proved.

(vii) = (viii). Let (vii) hold. Define a measure  on £, as follows: m(h(a)) = m(a).
We show that i is well defined. Let h(a) = h(b). Then h(a v b) = h(a A b) and
h((a v b) A (a A b)*) = 0. Therefore m((a v b) A (a A b)) =0. Using the
orthomodular law we have m(a v b) = m(a A b) + m((a v b) A (a A b)*) =
= (m(a A b). Consequently, m(a) = m(b).

Clearly, m(0) = 0. Let {h(a;)} 2, be orthogonal elements in ;. In £, we define

by =ay, b, =a, A (V a)l n = 2. Then {b,}2, are orthogonal elements and

h(b,) = h(a,). An easy check shows

(V. M) = (Y H(5) = m(Y b)) = m(V b)) =



= 3 m(by) = 3 m(h(b,) = ¥ m(h(a).

=1 =
Since at least one g-observable of £, from {h o x,: t € T} is o-finite with respect
to /i, Theorem 2.2 of [I] entails that there is a unique measure p on [| &, such that

WA A) = (A hox(4) E

tea
for any A, € o/, and any finite @ & « = T. Using the definition of m we prove (3.18).

(viii) = (i). This implication is evident.

Theorems 3.9 is completely proved. Q.E.D.

Remark 1. As an example of particular interest for the present study we give
a proof of the implication (vii) = (i) in which we do not apply Theorem 2.2.

So, let (vii) hold. First of all we show that %, is a Boolean o-algebra. For b € Z,,
denote by K(b) the set of all a € £, such that h(a) < h(b). If b = x,(A4), where te T
and A € o, are arbitrary, then K(b) is a sublogic of 2/, containing {J{%(x,): t € T}.
So, x,(4) <> a for each a e #,. Now let be ¥, then the same argument shows
that K(b) = £,. Hence h(a) < h(b) for any a, b € Z,. In other words, £, is a Boo-
lean o-algebra.

It is known that Ker h is a o-p-ideal of &,. The factor logic #o/Ker h is g-iso-
morphic to £, [24, p. 41], hence Zo/Ker h is a Boolean o-algebra. A result of
Marsden [22] shows that in this case Ker h contains the ¢-p-ideal # from (3.19)
as a subset. Hence m(a) = 0 for any a € #, in particular, m(com* F) = 0 for any
finite subset F of (J{#(x,): t &€ T}. In virtue of the condition (ii) of the last theorem,
this is equivalent to (i).

Remark 2. (a) The implication (v) = (i) has been proved by Gudder [5] for
A(R')-o-observables and states.

(b) The implication (iv) = (v) was proved by Pulmannovd [1] for states and
o-observables defined on Borel o-algebras of topological spaces equipped with
a tight topology, by using the results of compact approximations on these spaces
[25].

(c) The implication (ii) = (iv) has been proved in [ 7] for states and s-observables,
where the main tool of the proof has been the following simple observation: if
1 <s;ief{l,2,...}and —o0 < Y t; =Y s5; < o0, then t; = s; for any i. However,

when at least one of #,(s;) is + co, then this is not true in general.
(d) A very elementary proof of (ii)=> (i) for #(R')-c-observables and states
is presented in [19]. It is based on the properties of the distribution function

F(ty, ..oty :=m(Ax((—o0,1)), t;eR', i=1,...,n This approach is not
i=1

applicable to the general cases.
(¢) The equivalence between (i) and (vi) has been established in [11] for a system
of Z(R")-c-observables and states.
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(f) The implications (i) > (ii) — (iii) - (iv), (v) = (i), (vii) = (i), (vii) > (i) are
true under the more general conditions, too.
In the rest of this section we deal with some corollaries of Theorem 3.9.

Proposition 3.10. Let the assumptions of Theorem 3.9 hold. If (i) of Theorem
3.9 is valid then, for any ae L,, m,(b) :=m(a A b), be %, is a o-additive o-
finite measure on £,

Proof. If m(a) = 0, the proposition is evident. Let m(a) >0, and let b = V b,
i=1

{b;} € Ly, b; L b; if i + j. Due to (vi) of Theorem 3.9 there is a Boolean o-algebra
% and a a-homomorphlsm h from 2’0 onto 4. Therefore m(h(a)) := m(a) is a o-

finite measure on %. Then m (V b)) = m(a A V b) = m(h(a A V b)) =

= m(i\z/l(h(a A b)) =i=1m(h(a A b)) =i§1m,,(bi). Q.E.D.

Remark 3. If ae %, and 0 < m(a) < oo, then m,(b)/m(a), be £,, may be
treated as a conditional probability on %,

Proposition 3.11. Let the assumptions of Theorem 3.9 hold. Then {x,:te T} have
a joint distribution in a measure m iff, for any a € J{%(x,): t € T}, the function
m,(b) := m(a A b,), be Z,, is additive on &L, that is, my(b, Vv b,) = my(b,) +
+ my(b,) whenever by, b, € £, and by L b,. Moreover, m, is always a o-additive
o-finite measure on %o, and m, (b v ¢) = m((a A b) v (a A ¢)), b,ce Z,.

Proof. One part of the proposition follows from Proposition 3.10.
To prove the second part we show that (iv) of Theorem 3.9 holds. First of all
let « = {t,,t,} = Tand Ay;, Ay;€ o, Ay; A Ay; =0, i = 1,2, be given. Then

2
m (.é\lxt;(Ali v AZi)) = mb(xn(All A4 A21)) =

= mk(x,‘(A“)) + mb(x,z(A“)) = ma‘(xtz(Alz Vv 4,)) + maz(xtz(All Vv Ay)) =

2

= Z m( A xt«(Alu))
J1,j2=1 i=1
where we use b = x,,(412 V A4z4), a; = x,,(4;1), ="1,2.
The general case of (iv) is obtained from the just established fact by using mathe-
matical induction, which proves that {x,: t e T} have a joint distribution in m.
The last assertion of Proposition 3.11 follows from Proposition 3.10. Q.E.D.

Corollary 3.11.1. Under the hypotheses of Theorem 3.9 we have: (i) let a € Z,,
m(a) > 0; if {x,:te T} have a joint distribution in m, then {x,: te T}, as o-0b-
servables of &, have a joint distribution in my; (ii) {x,: t € T} have a joint dis-
tribution in m iff (3.10) holds for any finite F < %,
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Proof. (i) If a € U{#(x,): t€ T}, then the assertion follows from Proposition
3.11. In the general case, according to (vi) of Theorem 3.9, there is a Boolean o-
algebra # and a s-homomorphism h from %, onto 4 such that m(a) = 0 whenever
h(a) = 0. Hence, if F < U{Z(x,): te T} is a finite subset, then h(a,), ..., h(a,)
are compatible in %, where F = {a, ..., a,}. Therefore

m,(com* F) = in(h(a) A h(com* F)) =0,

where m(h(a)) := m(a), a e Z,, is a measure on %.

(if) Let {x,: t € T} have a joint distribution in m. Analogously as in the first part
we can prove that h(com' F) = 0 whenever F is a finite subset of %,. Hence
m(com* F) = 0. Q.E.D.

We say that a measure m on a logic & has a Jauch-Piron property if m(a) =
= m(b) = 0 implies m(a v b) = 0.

Corollary 3.11.2. Let the assumptions of Theorem 3.9 hold. If {x,:te T} have

@
a joint distribution in a measure m, then m(V ai) = 0 whenever m(ai) =0, a;e
€Ly, i = 1. i=1

Proof. This is a consequence of Corollary 3.11. 1 and the observation that for
a measure i1 on % we have m(h(a) v h(b)) + m(h(a) A h(b)) = m(h(a)) + m(h(b)),
a, b e &, (this is a valuation property of m and m, respectively). Q.E.D.

4. JOINT DISTRIBUTIONS AND COMMUTATORS

We have seen that the cornerstone of the theory of a joint distribution of g-ob-
servables in a measure is the commutator of observables. Although it need not
exist in general, see for instance [23], and in Theorem 3.9 it does not appear, it is
implicitly involved in partial steps of Theorem 3.9. In the present section we shall
study some relationships between the existence of a joint distribution of observables
and the existence of a commutator of observables.

First of all we notice that the following is true. Let x, be an &/,g-observable
of a quantum logic %, t € T. Then

(4.1) A{com F: F is a finite subset of J{%(x,): te T}} =
= A{com ({x,(4,): te a}): (VA, € «,), (Vt € a), (Vo a finite subset of T)} .
This is understood as follows: if one of the elements in (4.1) exists in .2, the the other

one exists, too, and both are equal. This assertion may be proved similarly-as Pro-
positions 2.1 and 2.2 from [10].

Let 0 + M <= £. By (M) we denote the minimal sublogic of % containing M.

Proposition 4.1. Let 9 + M < & and let # = #(M) be the a-p-ideal of % o(M)
defined by (3.19). Then (i)

(4.2) ‘ a5 = V{x:xe #(M)} (in 2).
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This means that if one the elements in (4.2) exists in &, then the other one also
exists, and both are equal; here a, is the commutator of M.
(ii) The commutator a, of M is countably obtainable if and on if ag € F(M).

Proof. (i) and (ii) follow immediately from the definitions of #(M)and a,. Q.E.D.

Proposition 4.2. Let there be a, = com M and let ay # 0. Let #,, be the minimal
sublogic of a logic #(0, a,) containing {a A ag:ae M}. Then h,: a > a A a,,
ae LyM), is a a-homomorphism of £ (M) onto &, , and

(4.3) Ker h,, = #(M).

Proof. Since the set K = {a € £o(M): a < a,} is a sublogic of £o(M), the map
h,, is well defined and is a o-homomorphism. Now we show that it transforms
Lo(M) onto &, . Denote # = {ae L, there is ce Lo(M) with ¢ A ay = a}.
Then 4 is a sublogic of £, containing {a A a,:a e M}.

Using the result of Marsden [22] we can establish (4.3), because %, is a Boolean
o-algebra. (4.3) is also a consequence of the following simple observation: Ker h,, =
={be Ly(M): b L ae}. Q.E.D.

We say that an element a, a € &, is the carrier of a measure m if m(b\ = 0 whene-
ver b L a. It is clear that if a carrier exists, then it is unique.

Propositien 4.3. Let the assumptions of Theorem 3.9 be fulfilled, and the com- .
mutator a, of {x,:te T} exist in L. If a is the carrier of m, then the following
conditions are equivalent:

(i) {x.;:teT} have a joint distribution in m;

(i) m(a) = 0:

(ii) a < a,.

Proof. Using the properties of the carrier and the commutator and applying (ii)
or (iii) of Theorem 3.9, the equivalence can be proved.

This result may be applied to an important case of quantum logics — to the logic
Z(H) of all closed subspaces of a Hilbert space H whose dimension is a non-measur-
able cardinal. We recall that a set X has a non-measurable cardinal if there is no
nontrivial finite measure v on the power set 2¥ such that v({x}) = 0 for all x € X.

Theorem 4.4. Let & = % (H) be a quantum logic of a real or complex Hilbert
space whose dimension is a non-measurable cardinal £ 2. Let the assumptions
of Theorem 3.9 be fulfilled. Then the following conditions are equivalent:

(i) {x,:teT} have a joint distribution in m;
(ii) m(ag) = 0; .
(iii) x;, (Ei) ... x,, (Ei)f = x,(Ey) ... %, (En) f

for any permutation (iy, ...,1,) of (1,...,n), n = 1, any E,e o,, any finite 0 +

# a = {ty,....1,} = Tandany vector f € a, where a is the carrier of the measure m.
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Moreover, the Boolean c-algebra in (vi) of Theorem 3.9 may be chosen as a
Boolean sub-cg-algebra of a quantum logic of some Hilbert space.

Proof. Since Z(H) is a complete lattice, the commutator a, of {x,: t € T} always
exists in Z(H). According to [25], any o-finite measure m on £(H) possesses a car-
rier which is a separable subspace of H. Proposition 4.3 yields the equivalence of (i)
and (ii). The equivalence of (i} and (iii} is a simple modification of the results in
[12,25].

The last assertion follows from Proposition 4.2 and (4.3). Moreover, we note that
X0t E> x(E) A aq is an & -c-observable of £(a,) and {x,,: t € T} are mutually
compatible. Q.E.D.

We conclude this section with the following remark. If the commutator a, of
{x,:te T} exists and (3.8) holds, then {x,: te T} have a joint distribution in m.
The converse implication is known only in special cases, for example, if a, is countably
obtainable or m has a carrier or a, = 1. Therefore it would be of interest to establish
conditions when (i) and (ii) of Proposition 4.3 are equivalent.
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Sthrn

O ZDRUZENOM ROZDELEN{ V KVANTOVYCH LOGIKACH
II. NEKOMPATIBILNE POZOROVATELNE

ANATOLI) DVURECENSK1)
PredloZena praca je pokrafovanie prvej Casti s rovnakym nazvom. Studuje sa zdruZené roz-
delenie v ¢-koneénych mierach pre nekompatibilné pozorovateIné kvantovej logiky, definované

na niektorom systéme o-nezavislych Booleovych pod-o-algebier Booleovej a-algebry. Dané sa
nutné a postaujice podmienky pre existenciu zdruZenych rozdeleni. Ako ddsledok je ukazané,
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7e¢ TubovoIny systém pozorovateInych ma zdruZené rozdelenie v miere vtedy a len vtedy, ked
pozorovateIné moZzu byt vnorené do systému kompatibilnych pozorovatelngch niektorej kvan-
tovej logiky s dodatodnymi vlastnostami. PouZité metédy sa odlisné od metdd, znamych pre
koneéné miery. Nakoniec sa pojedniva o vzfahu medzi existenciou zdruZeného rozdelenia a
existenciou komutatora pozorovateInych, a taktieZ sa spomina kvantova logika neseparabilného
Hilbertovho priestoru.

Pesiome

O COBMECTHOM PACIIPENEJIEHIN B KBAHTOBBIX JIOTHIKAX
II. HEKOMITATUBMUJIbHBIE HABJIFOOAEMBIE

ANATOLI DVURECENSKIS,

IIpenyaraemas paGoTa ABIAETCA NPONOIDKCHAEM IEPBOH YaCTH PaGOTHL C TEM XK€ CAMBIM Ha3Ba-
wAeM. VI3y4aroTcsi COBMECTHEIE pacIpefelieHHss B O-KOHEYHBIX Mepax i HeKOMIATHOMIBHBIX
Ha6IIOaeMEIX KBAHTOBOM JIOTHKH, ONPeAeIeHHBIX Ha HEKOTOPO CUCTEMe 0-HE3aBHCHMEIX OyJIEBBIX
o-nopanre6p OyneBoil g-anreOpsl. IIpeanoKeHsl HEKOTOPBIE HEOOXOIMMBIE M JOCTATOYHBIE YCIIO-
BHSL 1A CYIECTBOBAHUSA COBMECTHOrO Pacupe/ie/ieHds. B 4aCTHOCTH [OKa3aHO, 4TO Jrobas cucteMa
Ha0JOJa€MBIX MMEET COBMECTHOE PacIpelesieHHe TOrJa ¥ TOJIbKO TOTZA, KOrZia OHA MOXeET OBITh
BHEJIPEHA B CHCTEMY KOMIATHOWIBHBIX HAGJIFONa€MBIX HEKOTOPOW KBaHTOBOM JIOrmky. VICHONb30-
BaHHBIE METOIBI OTIHMYAIOTCA OT METOJOB, M3BECTHHIX ISl KOHEYHBIX Mep. B xoHme paGorsl mc-
CJIeAyeTCsl COOTHOIMIEHHE MEX/AY CYIIECTBOBAHAEM COBMECTHOIO PACHpPE/IENICHHUs] H CYIECTBOBAHUEM
KOMMyTaToOpa Ha6IIIoqaeMbIX, a TaKkKe YINOMMHAETCH KBAHTOBAas JIOTMKA HeCeNapabelIbHHOro
ruB6epToBa NPOCTPAHCTBA.
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