
Aplikace matematiky

Anatolij Dvurečenskij
On joint distribution in quantum logics. II. Noncompatible observables

Aplikace matematiky, Vol. 32 (1987), No. 6, 436–450

Persistent URL: http://dml.cz/dmlcz/104275

Terms of use:
© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104275
http://dml.cz


32(1987) APLIKACE MATEMATIKY No. 6, 436—450 

ON JOINT DISTRIBUTION IN QUANTUM LOGICS 
II. NONCOMPATIBLE OBSERVABLES 

ANATOLIJ DVURECENSKIJ 

(Received February 24, 1986) 

Summary. This paper is a continuation of the first part under the same title. The author studies 
a joint distribution in c-finite measures for noncompatible observables of a quantum logic 
defined on some system of o*-independent Boolean sub-cr-algebras of a Boolean cr-algebra. We 
present some necessary and sufficient conditions for the existence of a joint distribution. In 
particular, it is shown that an arbitrary system of observables has a joint distribution in a measure 
iff it may be embedded into a system of compatible observables of some quantum logic. The 
methods used are different from those developed for finite measures. Finally, the author deals 
with the connection between the existence of a joint distribution and the existence of a commu­
tator of observables, and the quanrum logic of a nonseparable Hilbert space is mentioned. 
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This paper is a continuation of the first part under the same title, hereafter referred 
to as [I]. Sections, theorems and formulae are numbered consecutively, starting 
with Section 3. References [1 — 18] are listed at the end of [I]. 

3. JOINT D1STRJBUTION OF NONCOMPATIBLE OBSERVABLES 

In the present section we concentrate ourselves on the main aim of this paper. 
We shall study the problem of existence of noncompatible cr-observables. We give 
new results which are valid also for measures on 5£ with infinite values, and which 
generalize the known results for states. We note that the methods developed in 
[6—11, 19, 20] are not applicable to our case. 

The existence of a joint distribution closely depends on the concept of a commutator 
Let 5£ be an OML. For a finite subset F = [al9 ..., an} of 3? let us put, following 
L. Beran [21], 

1 n 

(3.1) com F: = V A a{{ 

jl..Jn=0 i = l 
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where a0 := a1, a1 := a. The element comF is called the commutator of a finite 
set F c S£. For a two-element set F = {a,b}, com F has been defined by Mars-
den [22]. We recall that independently of [21] the commutator of F has been used 
in [7] to show that the so-called question observables qai,..., qaa have a joint distribu­
tion in a state m iff m(com F) = 1 (here qa is a J^^-cr-observable with qa({0}) = 
= ^({l}) = a). In [21], the elements com1 F and com F are called the upper 
and the lower commutator, respectively, of F. It is clear that at, ...,an e S£ are 
mutually compatible iff com F = 1, where F = {al9..., an}. 

Now, for any M,M <=. S£, put 

(3.2) com M = A { c o m P : F is a finite subset of M} , 

if the element on the right-hand side of (3.2) exists in S£. By definition we put 
com0 = 1. The commutator comM of M has been introduced for the first time 
in [6] for the study of joint distributions. 

The following notion has been defined in [9]. We say that a subset M of S£ is 
partially compatible with respect to a, a e S£, if (i) a <-» b for any be M; (ii) {b A a: 
b e M} is a set of mutually compatible elements of S£. It is known [11] that if a = 
= com M exists, then M is partially compatible with respect to a. 

Let {as: s e S} be an indexed set of elements of S£. The element a e S£ is said to be 
countably obtainable over {as: s e S} [10, 8] if a = /\as, and if there is a countable 

seS 

subset S0 cz S with a = /\as. From [10, Prop. 2.3] if follows that if there is an at 
seSo 

most countable subset i V c M o f a quantum logic S£ which generates the minimal 
sublogic S£0 of S£ containing M, then com M exists and is countably obtainable 
over {com F: F is a finite subset of M}. 

The following result, due to W. Puguntke [23], is of particular interest for the 
present study: There is an OML S£ and M c S£ for which the commutator of M 
does not exist in j£f. 

Let xt be an j^-observable of S£, i = 1,..., n. Define 

(3.3) a(E1,...,En)= V kxt(Ei')9 
11...In = 0 i = l 

n 

where Ete stfh i = 1,..., n. Then, due to [10], for M = (J ffl(xt), where xt is 
f = i 

a ^(i^-cr-observable, i = 1,..., n gj oo, the commutator comM exists in the 
quantum logic S£ and it is countably obtainable over {com F: F finite subset of M}, 
and, moreover, comM is countably obtainable over {a(Et,..., En): Ete^(R1), 
i = 1,..., n}. If there is a0 = com ((J &(xt)), we call a0 the commutator of the 
a-observables \xt: t e T}. teT 

The following result has been proved in [12]. 

Theorem 3.1. Let xl9 ...,xn be ^(R^-o-observables of a quantum logic S£ and 
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let m be a measure on ££. Let us denote a0 = com ( (J R(xt)). If 
i = i 

(3.4) m(ai) = 0, 

then there is a joint distribution in m. If at least one xt is a-finite with respect to m, 
then the joint distribution is unique. 

If xl9 ...9xn have a joint distribution in m and at least one xt is a-finite with 
respect to m, then (3.4) holds. 

Moreover, maps xi0: E -> xt(E) A a09 Ee J^JR1), are mutually compatible 
<r-observables of a quantum logic S£(0, a0) := \be$£; b < a0} (here an ortho-
complementation """ is defined as b' — bL A a09 b < a0). 

It is known [7,8] that ^(.R^-cr-observables x1? ...9xn have a joint distribution 
in a state m (finite measure, too) iff 

(3.5) m(a1(El9...9En)) = 0 

for any Ei9 ...9Ene @(RX). This is equivalent to the condition [7, 19, 20] 

(3.6) m(Axj(Eji\jEj2))= £ m(Axj(EJkj)) 
i = i fci...fcn=i j = i 

for any Ejt f\ EJ2 = 0, Ejl9 Ej2e^(R%j = 1,..., n. 
For measures with infinite values this equivalence has been proved only in particular 

cases [12]: (3.5) for measures with carriers, and (3.6) only on a c-continuous logic. 
Below we will prove the equivalence of (3.5) with (3.6) and with the existence of 
a joint distribution in measures attaining even infinite values. 

In the following we shall suppose that s/l9...9sin are independent Boolean 
sub-cr-algebras of a Boolean algebra si and xt is an e^-a-observable of a logic S£9 

i = 1,..., n. A decomposition of 1 in a logic ££ is a system {at} c= j§? such that 
a i J- aj whenever i =f= j , \/at = 1. 

i 

Lemma 3.2. Let ht: &t -> sit be a a-homomorphism of a Boolean sub-a-algebra 
&t of sii9 i = 1,..., n. Then xl9 ...9xn have a joint distribution in a measure m 
iffxx o hl9 ...9xnohn have a joint distribution for any a-homomorphism ht and any 
Boolean sub-a-algebra M{ of s4i9 i = 1, ...9n. 

Proof. It is evident. Q.E.D. 

Lemma 3.3. Let xl9..., xx have a joint distribution in a measure m. Then 

(3.7) m( A xfa) A A a{E\,,..., £*)) = m( A *,&)) 
i = l fc=l i = l 

for any Eh E\ e s$i9 i = 1,..., n, k = 1, ...,K, whereK may be an integer or +oo. 

Proof. It is the same as that of Lemma 2.2 in [12]. Q.E.D. 
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Theorem 3.4. Let at least one of xl9..., xn be o-finite with respect to m. Let the 
commutator a0 of xl9 ...9xn exist and let it be count ably obtainable. If xl9 ...9xn 

have a joint distribution in m, then 

(3,8) m(at) = 0 . 

The converse is true, e.g., if s/ are o-isomorphic to B(RX). 

Proof. From [6,10] it follows that if a0 is countably obtainable over {com F: F 
n 

is a finite subset of U &(xi)} t r i e n a0 is countably obtained over {a(El9 ...9En): 
f = i 

Et e stfi9 i = 1,..., n}9 and vice versa. 
Let xl9 ...9xn have a joint distribution in m, and let xx be cr-finite with respect 

to m. Using (3.7) we can establish that if m(xx(E)) < co for some Eestfl9 then 
m(xt(E) A a0) = 0. Therefore, if {Ek}k

x>
=1 c stfx is a countable decomposition of 1 

with m(x1(Ek)) < co, k = 1, then 
oo oo 

m(aj-) = m(ai A xt( V Ek)) = £ m(a£ A X^EJ,)) = 0, 
fc=i /c=i 

where we use the property of the partial compatibility of a0. 
Let (3.8) hold. Then putting m := m | =£?(0, a0), we have 

n n n 

m( A Xi(Et)) = m( A **(£,) A a0) = m( A x.ov^)) > 
i = l i = l i = l 

where xi0(E) := xivF) A a0 are j/rcr-observables of J5?(0, a0), i = 1,..., n, which 
are mutually compatible. Refering to Theorem 2.2 of [I] we see that xl9...9xn 

have a joint distribution in m. Q.E.D. 
We note that if xt is an j/rcr-observable of the quantum logic J5f, t e T, where 

{ j / , : *e T} is a system of cr-independent Boolean sub-cr-algebras of a Boolean o-
algebra s/9 and if {xt: teT} have a countably obtainable commutator a0, then 
Theorem 3.4 is valid for {xt: t e T}, too. 

Lemma 3.5. Le? x1? . . . , xn have a joint distribution in m and let xl9 say, be o-fimte 
with respect to m. Then 

.(3-9) (i) m(a1(£1,...,£„)) = 0 

for any Etes/i, i = 1,.... n; 

(3.10) (ii) m(comxF) = 0 
n 

for any finite subset F a U &(xj). 
f = i 

n 

Proof. Any finite 0 4= F cz U &(xt) generates a finite decomposition 3HTt of 1 
f = i 

in each s/t in the following manner. If there is no element of s/t in F, then we put 
tfi = {0,1}. If st% 0 F = {-Ei,..., Efe},then weput JTt = {E{1 A ... A EJ

h
k:jse {0,1}, 
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s = 1 , . . . , k). Let {Fj}f=! be a countable decomposition of 1 in $$1 with m(x1(Fj)) < 

< oo, 7 2> 1. Denote by ^ the minimal sub-c-algebra of s/± containing {Fj n A: 

AeJft, j ^ l ) , and, for 2 g i <5 n, denote by J\- the minimal sub-cr-algebra 
of j / f generated by Jf,-. Then 3cf := xt\^t are a J^-cr-observables of J£? and, due 
to Lemma 3.2, they have a joint distribution in m. Since the subset Jt = {com G:G 

n * 

is a finite subset of (J ^(x f)} of j£? has at most countably many elements, there is 
i=i 

a commutator a0 of xl9 ..., xn and, moreover, a0 is countably obtainable. Because 
xt is or-finite with respect to m, by Theorem 3.4 we have m(a0) = 0. Since com F e J( 

and a0 < com F, we obtain (3.10). 
To prove (3.9) it is sufficient to put F = {x^E^),..., *,.(£„)}. 
The next three technical lemmas will be useful in the following. If F = {cl9 . . . , ct} c 

c= JS?, 5£ is an OML, then we put com (c l5 . . . . c() : = com F. 

Lemma 3.6. Let <£ be an OML. If al9 ..., ak are mutually orthogonal elements 

ofS£, then for any bl9 ..., bn, 
k k 

(3.11) ( V ^ i ) A c o m 1 ^ , ...,a*, bl9..., bn) = M (a, A com1 (ah bl9 ..., bn)). 
i = l i = l 

Proof . Lemma 2.1 of [8] implies that 

com(a1? . . . , ak, bl9..., bn) = V (ai A bd v ... v ak A bd v (ax v ... v ak)
L A bd) 

deDn 

where D = {0, 1}, fcd := b\x A . . . A b*", d = (dl5 . . . , d„) e D\ Calculate 
k 

a := ( V ^ i ) A c o m 1 ^ ! , . . . , afc, bl5..., bn) = 

= ( V « i ) A A ((a1 v bdl) A . . . A ( a 1 v bdL) A (a , v . . . v ak v bdl) . 
i=l deD" 

For all i,7 = 1, . . . , n , and each deDn, al^,aL v bdL, we have af4->(a1 v . . . 
... v akv bdl). Hence, according to [1, Lemma 6.10], we may apply the distributive 
law. Consequently, 

k 

a = V («< A A (ai v bdl) A . . . A (ai v fcáJ-)) = V («» A A (at v i ' - ) ) = 
i = l deJD" i = l deDn 

= V ("i A com1 (a i ; 6 . , . . . , b„)). Q.E.D. 
І = l 

Lemma 3.7. Lef 5£ be an OML.If for F = {a, bl9..., bn} we have m(comx F) = 0, 
then 

(3.12) m(a) = £ m(a A 6 J ) = m(a A com F) . 
deDn 

Proof. m(a) = m(a A comF) + m(a A com1 F) = m(a A comF) = 

= m( V a A 6'), 
del>" 

where we use the notation from Lemma 3.6. Q.E.D. 
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Lemma 3.8. Let S£ be an OML. Let F = {au . . . , ak, bu . . . , bn) c= S£, where 
au . . . , ak are mutually orthogonal elements. If m ^ o m 1 F) = 0, then 

(3.13) m(( V a.) A A bj) = £ m(a ; A A fry) • 
i = l J=l i = l J=l 

Proof. Using [8, Lemma 2.1] and the distributive law we obtain 

k n k n 

™((V fli) A A bj) = m(( V «i) A A bj A com F) = 
i = i j=i i = i j=i 

fc n 

= m(( V af) A A &/ A V ((^i A bd) v ... v (afc A bd) v 
i = 1 j = 1 deDn 

v (ax v . . . v ak)
L A bd)) = m(y(ai A A &;)) • Q.E.D. 

i = i i = i 

The following notions are needed for the main result of this section. Let S£ be 
an OML. A non-empty subset f c S£ is said to be a p-ideal [22, 3] if (i) if a, b e f, 
then a v b e f; (ii) if b e /", a < b, then ae f; (iii) be/" implies (b v a1) A 

00 

A a e / for all a e e£f. If instead of (i) we suppose (i)' if {art}^L i <= f, then y ane f, 
n = l 

is called a a-p-ideal of J5f. If /i is a cr-homomorphism of a quantum logic c_if into 
a quantum logic i f u then Ker h is a a-p-ideal of S£. We write a ~ b iff (a v b) A 
A (a A b)1 e f, a, b e S£. Then the relation " ~ " is an equivalence relation on S£, 
and (i) if a ~ b, then a 1 ~ b1; (ii) ax ~ b1? a2 ~ b2 imply at v bt ~ a2 v b2. 
Denote by i f / / the factor OML defined via Jgf// = { |XU aeS?}, where [ a ] y : = 
:= {be S£: b ~ a} and [ a ] ^ := [ a 1 ] / , [ a ] / v [ b ] / := [a v b]^. The map 
hy. S£ -> JSf// which assigns [ a ] / to any a e f is a homomorphism of S£ onto 

Finally, we present a theorem which generalizes all the known conditions con­
cerning the existence of a joint distribution in a measure in two main aspects; (i) 
measures may attain also the infinite values, (ii) the conditions do not depend on the 
existence of the commutator of a given system {xt: t e T} of cr-observables. 

Theorem 3.9. Let xt: si't -> S£ be a a-observable of a quantum logic S£, t e T, 
where {s/t: teT} is a system of a-independent free Boolean sub-a-algebras with 
countable generators of a Boolen a-algebra srf. Let at least one a-observable, say 
xto, be a-finite with respect to a measure m. Then the following conditions are 
equivalent: 

(i) {xt: t e T} have a joint distribution in m; 

(3.14) (ii) mfcom1 ({xt(At): t e a})) = 0 

for any At e sft, t e a, and any finite 0 =# a c T; 
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(3.15) (iii) m(comLF) = 0 

for any finite subset F of (J {$(xt): teT}; 

(3.16) (iv) m( A xt(Alt v A2r)) = £ m( A x,(Aj(,)) 
i t = l řєa 

fєa 

for any Alf A A2t = 0, Alt, A2t e stft, t e a, and any finite 0 4= a c T; 
00 CO 

(3.17) (v) m ( A x , ( V 4 ) ) = Zm(Ax,(/ l w ) ) 
tea k~l kt-1 tea 

tea 

for any {Akt}™=! <= j / f , Ait A ^4if = 0, i 4= j , f e a, and any jinfte 0 4= a c T; 

(vi) fhere exists a Boolean o-algebra J*, & 4= {0}, and a o-homomorphism h 
of the minimal sublogic ££0 of ££ containing all &(xt) onto & such that m(a) = 0 
for all a e Ker h; 

(vii) there is a quantum logic S£^ 4= {0} and a o-homomorphism h of 5£0 onto 
££± such that {hoXt: teT} are mutually compatible o-observables of Lt and 
m(a) = Ofor all a e Ker h; 

(viii) there is a (unique) measure ft on\\^t suc^ that 
teT 

(3.18) n(AAt) = m(Axt(At)) 
tea tea 

for any At e s/t, tea, and any finite 0 4= a c T. 

Proof. We shall prove the following implications: (i) => (ii) => (iii) => (iv) => 
=> (v) => (i), and (i) => (vi) => (vii) => (viii) => (i). 

(i) => (ii). Let a non-empty finite subset a c T b e given. If t0 e a, then we apply 
Lemma 3.5 and (3.9). If t0 $ a, we change a to a (J {t0} and use the monotonicity of m. 

(ii) => (iii). Let a finite F cz \J{&(xt): t e T} be given. Then there is a finite subset 
a c T with diverse indices tu ..., tn. Analogously as in the proof of Lemma 3.5, 
for each i = 1, ..., n, F generates a finite decomposition Xx = {A\,..., Ajct} c $tu 

n 

of 1. Theorem 2.2 of [8] yields com F = com ((J Jff) and a repeated application 
of (3.11) gives i = 1 

n 

0 ^ m^om1 F) = m(l A com1 (U Jf t)) = 
i = l 

= m((V * , K , ) ) A com1 (IJ jr,)) = | m(x.l(i4ji) A com-({xr. « ) } u-lj Jf1,)) = 
i*i = l i = l »i = l 1 = 2 

= | m(com^ ({x r i(4)) u (J *,)) = ..; = £ ... 
ii = l » = 2 ii = 1 

... I m K (*.,«), - , x,K))) = 0 . 
i „ = l 
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(iii) => (iv). Let a non-empty set oc = {tt,..., tn} c= T be given. Let Alfi A A2ti = 0, 
Alti9 A2ti e s4u, i = 1,..., n. Define ak = xtl(Akti), fc = 1, 2, by = xfJ(Alf, v A2f.), 
7 = 2,. . . , n. Repeatedly applying Lemma 3.8 we see that (3.16) is true. 

(iv) => (v). To prove (3.17) we limit ourselves to the following case. Let a non­
empty subset a = {tl5..., tn} c T be given. Let {Ahi}ksxl c stfu, Aki A Akj = 0 
whenever fc + j , be given for any i = 1,..., n. There are two possible cases: (i) t0 e a, 
then we put lx = *0; (ii) t0 <fc a, then without loss of generality we can change a 
to a u {t0} and we also put tx = r0. There is a countable decomposition {Ev}v*

>
=zl c 

- j ^ f i of 1 with m(xtl(Ev)) < oo, y = 1. Define ^ t as the minimal Boolean sub-cr-
oo 

algebra of s4H containing {Ev A Akl, Ev A A\:V, fc _ 1}, where At = V Aki, 
fc = i 

i = 1,..., n, and let ^ f , i = 2,. . . , n, be the Boolean sub-cr-algebras of s4t. generated 
by{A f ,A f c : fc^ l} . 

A mapping xf : = xf | Ĵ f is a ̂ -cr-observable of JSf, i — 1,..., n, and 3ct is (7-finite 
with respect to m. It is clear that xl9 ...9xn have a countably obtainable commutator 

n 

a0 over (comF: F is a finite subset of (J ̂ (x()}, because the last set has at most 
countably many elements. I==1 

00 

We will show m(a0) = 0. Let a0 = A c o m Ek. It is evident that if F and G are two 
fc=i 

finite subsets of =£? with F a G, then com G < com F. Therefore, we can choose Fk 

to be nondecreasing and containing xx(Ev) for any fixed v g: 1. Indeed, put Gk = 
fc 

= \JFiu(x1(Ev)}, then 
i = l 

00 00 

ao — A c o m Fk> A c o m ^/c > flo • 
fe=l fc=l 

Using the continuity from above of m and the properties of the commutators we 
obtain 

m(xi(Ev) A a0) = lim m(xl(Ev) A com Ffe) = lim mfi^E^) = 
fc k 

= m(xx(Ev)). 

In the previous step we used Lemma 3.7 and (3.12). This implies m(x1(Ev) A a0) = 0 
00 

for any v _ 1, and, consequently, m(a0) = £ m(x1(Ev) A a0) = 0. Theorem 3.4 
v=l 

entails that xl9..., xn have a joint distribution in m, so, in particular, (3.17) holds. 
(v) => (i). Let 0 -# a c T, a finite, be given. Without loss of generality we may 

assume that t0 e a. The property (v) and the Caratheodory method of measure exten­
sion applied to Boolean algebras, [17, 18], guarantees that there is a (unique) measure 
lia on Yl s&t s u ch ^a t 

tea 

Ha( A At) = m( A xt(At)) for any At esft,te<x. 
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(i) => (vi). Let S£0 be the minimal sublogic of a logic $£ containing M = (J ^(xr). 
feT 

Define 
00 

(3A9) f = {ae$?0: a <\/ com1 Fh Ft is a finite subset of M, i ^ 1}. 
i = i 

It follows from [11] that f is a er-p-ideal of J^V Theorem 5 of [22] says that the 
factor logic S£0\f is a Boolean cr-algebra. Let us put @ = S£0\^. A map h\$£0-+ 2% 
defined by h(a) = [a~\f is ^ a cr-homomorphism of S£0 onto ^ . 

Now we show that m(a) = 0 whenever h(a) = 0. In other words, m(a) = 0 
whenever as f. From the definition of f it follows that there is a sequence {Fi}£-1 

00 

of finite subsets of M such that a < V com1 Ff. Let us put Gf = Ff u {xfo(Ei)}, 
» = i 

i *> 1, where {JSj^j is a decomposition of 1 in s/to with m(xfo(Ff)) < oo. For any 
Gh there is a finite subset af of Tsuch that for any b e Gt there is t e a with xf(A) = b 

00 00 

for some A e s4v Put G = [) Gt and a = (J af. We order the elements of a as follows: 

Let J*,- be the minimal Boolean sub-cr-algebra of s4ti generated by stt. n G. Then 
3c i :=x f . | J

f i is a J^-cr-observable of j£f, and {xi}hl:i have a countably ob­
tainable commutator a0- {^i: * ^ 1} is a system of ex-independent Boolean sub-<r-
algebras of a Boolean cr-algebra s4. Since at least one of {xi}?Ll is cr-finite with 
respect to m, Lemma 3.2 and Theorem 3.4 yield m(ao) = 0. 

An easy calculation yields 
oo oo 

a < V com1 Fi < V com1 Gt < a0 
i=i i=i 

so that m(a) = 0. 
It remains to show that & is not a degenerate Boolean cr-algebra. In the opposite 

case 0 = 1 in Si and, therefore, h(0) = h(l) so that m(l) = 0 which is a contra­
diction. 

(vi) => (vii). Let (vi) hold. Defining $£x := <% and taking the a-homomorphism h 
from (vi), the condition (vii) is proved. 

(vii) => (viii). Let (vii) hold. Define a measure m on S£x as follows: m(h(a)) = m(a). 
We show that m is well defined. Let h(a) = h(b). Then h(a v b) = h(a A b) and 
h((a v b) A (a A b)1) = 0. Therefore m((a v b) A (a A ft)1) = 0. Using the 
orthomodular law we have m(a v b) = m(a A b) + m((a v b) A (a A b)L) = 
= (m(a A b). Consequently, m(a) = m(b). 

Clearly, m(0) = 0. Let {h(a^)}hizl be orthogonal elements in $£\. In S£0 we define 
00 

bx = fll9 bn = an A (V ai)1, n — 2. Then {bn}n°°=i a r e orthogonal elements and 
n=l 

h(bn) = h(an). An easy check shows 

m(Vh(an)) = m(\/h(bn)) = m(h(V b„)) = m(V K) = 
n = l n=l n=l n = l 
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= I HK) = I m(h(bu)) = £ m(h(an)) . 
« = 1 « = 1 n = 1 

Since at least one c-observable of j*f x from {h o xt: t e T} is cr-finite with respect 
to m, Theorem 2.2 of [I] entails that there is a unique measure \i on \\ s/t such that 

feT 

fi( A -4r) = m( A ft o x,(-4r)) 
tea tea 

for any A, e .*/.> and any finite 0 =j= a cz F. Using the definition of m we prove (3.18). 
(viii) => (i). This implication is evident. 
Theorems 3.9 is completely proved. Q.E.D. 

Remark 1. As an example of particular interest for the present study we give 
a proof of the implication (vii) => (i) in which we do not apply Theorem 2.2. 

So, let (vii) hold. First of all we show that $£± is a Boolean cr-algebra. For b e $£0, 
denote by K(b) the set of all a e $£0 such that h(a) *-* h(b). If b = xt(A), where t e T 
and A e s#taxQ arbitrary, then K(b) is a sublogic of s/0 containing \J{@(xt): teT}. 
So, xt(A) <-» a for each a e S£0. Now let b e S£0, then the same argument shows 
that K(b) = J.i?0. Hence h(a) *-> h(b) for any a, b e 5£0. In other words, J£?\ is a Boo­
lean cr-algebra. 

It is known that Ker h is a cr-p-ideal of j£?0. The factor logic if0/Ker h is cr-iso-
morphic to S£0 [24, p. 41], hence J^0/Ker h is a Boolean cr-algebra. A result of 
Marsden [22] shows that in this case Ker h contains the c-p-ideal f from (3.19) 
as a subset. Hence m(a) = 0 for any a e f, in particular, m(comL F) = 0 for any 
finite subset F of \j{&(xt): teT}. In virtue of the condition (ii) of the last theorem, 
this is equivalent to (i). 

Remark 2. (a) The implication (v) => (i) has been proved by Gudder [5] for 
^(j^-cr-observables and states. 

(b) The implication (iv) => (v) was proved by Pulmannova [1] for states and 
o--observables defined on Borel cr-algebras of topological spaces equipped with 
a tight topology, by using the results of compact approximations on these spaces 
[25]. 

(c) The implication (ii) => (iv) has been proved in [7] for states and cr-observables, 
where the main tool of the proof has been the following simple observation: if 
U ^ s{ i e{1, 2,...} and -co < £ tt = ]•] st < oo, then tt = st for any i. However, 

i i 

when at least one of ^(sf) is + oo, then this is not true in general. 
(d) A very elementary proof of (ii) => (i) for J^K^-tr-observables and states 

is presented in [19]. It is based on the properties of the distribution function 
n 

F(h> • •., tn) : = m( A xi((~" °°J U))* U e J^1» f = -•» •••>"• This approach is not 
i = i 

applicable to the general cases. 
(e) The equivalence between (i) and (vi) has been established in [11] for a system 

of @l(R^-cr-observables and states. 
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(f) The implications (i) -> (ii) -> (iii) -* (iv), (v) -» (i), (vii) -> (i), (vii) -> (i) are 
true under the more general conditions, too. 

In the rest of this section we deal with some corollaries of Theorem 3.9. 

Proposition 3.10. Let the assumptions of Theorem 3.9 hold. If (i) of Theorem 
3.9 is valid then, for any a e S£0, ma(b) := m(a A b), be S£0 is a a-additive a-
finite measure on S£0. 

00 

Proof. If m(a) = 0, the proposition is evident. Let m(a) >0, and let b = V bh 
i = l 

{bi} e S£0, bt JL bj if i -# j . Due to (vi) of Theorem 3.9 there is a Boolean cr-algebra 
J* and a cr-homomorphism h from S£0 onto $. Therefore m(h(a)) := m(a) is a a-

$ . , 00 00 00 

finite measure on M. Then ma( V bj) = m(a A y bv) = m(h(a A V &*)) = 
i = l i = l i = l 

00 00 00 

= m( V (h(a A &,)) = Z w(fc(a A 6f)) = £ m.(bf). Q.E.D. 
i = i i = i i = i 

Remark 3. If aeS£0 and 0 < m(a) < oo, then ma(b)\m(a), beS£0, may be 
treated as a conditional probability on S£0. 

Proposition 3.11. Let the assumptions of Theorem 3.9 hold. Then {xt: t e T} have 
a joint distribution in a measure m iff, for any a e \J{&(xt): te T}9 the function 
ma(b) .= w(a A b9)9 beS£0, is additive on S£0, that is, ma(b x v b2) = ma(bi) + 
+ mfl(b2) whenever bu b2 e S£0 and bt _L b2. Moreover, ma is always a a-additive 
a-finite measure on S£0, and ma(b v c) = m((a A b) v (a A c))9 b9ce S£0. 

Proof. One part of the proposition follows from Proposition 3.10. 
To prove the second part we show that (iv) of Theorem 3.9 holds. First of all 

let a = {tl912} c= Tand Alh A2ies/t.9 Au A A2i = 0, i = 1,2, be given. Then 
2 

m (Ax t i (A l t v A2i)) = mb(xtl(Alt v A21)) = 
i = l 

= mL(xri(An)) + mb(xt2(A21)) = mai(xt2(A12 v A22)) + ma2(xt2(A12 v A22)) = 
2 2 

= X m(Axti(AJti))9 

where we use b = xf2(Al12 v A21)9 aj = x^Aj^), = ' 1, 2. 
The general case of (iv) is obtained from the just established fact by using mathe­

matical induction, which proves that {xt: t e T} have a joint distribution in m. 
The last assertion of Proposition 3.H follows from Proposition 3.10. Q.E.D. 

Corollary 3.11.1. Under the hypotheses of Theorem 3.9 we have: (i) let a e S£0, 
m(a) > 0; if {xt: te T} have a joint distribution in m, then {xt: te T}, as a-ob-
servables of S£0, have a joint distribution in ma; (ii) {xt: t e T} have a joint dis­
tribution in m iff(3A0) holds for any finite F cz S£0. 
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Proof, (i) If a e-\J{0t(x^: teT}, then the assertion follows from Proposition 
3.H. In the general case, according to (vi) of Theorem 3.9, there is a Boolean a-
algebra $ and a a-homomorphism h from S?0 onto £8 such that m(a) — 0 whenever 
h(a) = 0. Hence, if F c \J{@(xt): te T} is a finite subset, then h(ax)9..., h(an) 
are compatible in J , where F == [al9..., a j . Therefore 

m^com1 F) = m(h(a) A ^(com1 F)) = 0 , 

where m(h(a)) := m(a), a e Se09 is a measure on £%. 
(ii) Let {xt: teT} have a joint distribution in m. Analogously as in the first part 

we can prove that /.-(com1 F) = 0 whenever F is a finite subset of Se0. Hence 
m^om1 F) = 0. Q.E.D. 

We say that a measure m on a logic Se has a Jauch-Piron property if m(a) = 
= m(b) — 0 implies m(a v b) — 0. 

Corollary 3.11.2. Lef the assumptions of Theorem 3.9 hold. If {xt: t e T} have 
00 

a joint distribution in a measure m, then m( V ai) = 0 whenever m(at) = 0, a fe 
eSeQ9 i ^ 1. f=1 

Proof. This is a consequence of Corollary 3.11. 1 and the observation that for 
a measure m o n J w e have m(h(a) v h(b)) + m(h(a) A h(b)) = m(h(a)) -f m(h(b))9 

a9be Se0 (this is a valuation property of m and m, respectively). Q.E.D. 

4. JOINT DISTRIBUTIONS AND COMMUTATORS 

We have seen that the cornerstone of the theory of a joint distribution of c-ob-
servables in a measure is the commutator of observables. Although it need not 
exist in general, see for instance [23], and in Theorem 3.9 it does not appear, it is 
implicitly involved in partial steps of Theorem 3.9. In the present section we shall 
study some relationships between the existence of a joint distribution of observables 
and the existence of a commutator of observables. 

First of all we notice that the following is true. Let xt be an «£/f-<j-observable 
of a quantum logic Se9teT. Then 

(4.1) A{com F: F is a finite subset of (J{M(xt): teT}} = 

= A{com ({xt(At): t e a}): (VAr e s/t), (W e a), (Va a finite subset of T)} . 

This is understood as follows: if one of the elements in (4.1) exists in Se9 the the other 
one exists, too, and both are equal. This assertion may be proved similarly as Pro­
positions 2.1 and 2.2 from [10]. 

Let 0 4= M c J£\ By seQ(M) we denote the minimal sublogic of Se containing M. 

Proposition 4.1. Let 0 #. M c Se and let / = / ( M ) be the o-p-ideal of &0(M) 
defined by (3.19). Then (i) 

(4-2) at =- \ /{*: x e /(M)} (in SB) . 
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This means that if one the elements in (4.2) exists in ££, then the other one also 
exists, and both are equal; here a0 is the commutator of M. 

(ii) The commutator a0 of M is countably obtainable if and on if a0 e f(M). 

Proof, (i) and (ii) follow immediately from the definitions of f(M) and a0. Q.E.D. 

Proposition 4.2. Let there be a0 = com M and let a0 4= 0. Let ££ao be the minimal 
sublogic of a logic ££(§, a0) containing (a A a0: aeM}. Then hao: a -> a A a0, 
a e ££0(M), is a a-homomorphism of J£0(M) onto ££ao, and 

(4.3) Ker hao c f(M). 

Proof. Since the set K = {a e j£?0(M): a <-> a0} is a sublogic of ££0(M), the map 
hao is well defined and is a cr-homomorphism. Now we show that it transforms 
j£?0(M) onto ££ao. Denote Jf = {ae££ao: there is ce££0(M) with c A a0 = a}. 
Then J* is a sublogic of ££ao containing {a A a0: a e M}. 

Using the result of Marsden [22] we can establish (4.3), because ££ao is a Boolean 
a-algebra. (4.3) is also a consequence of the following simple observation: Ker hao = 
= {be J^0(M): b 1 a0}. Q.E.D. 

We say that an element a,ae ££, is the carrier of a measure m if m(b) = 0 whene­
ver b i . a. It is clear that if a carrier exists, then it is unique. 

Proposition 4.3, Let the assumptions of Theorem 3.9 be fulfilled, and the com­
mutator a0 of {xt: t e T} exist in ££. If a is the carrier of m, then the following 
conditions are equivalent: 

(i) \xt: t e T} have a joint distribution in m; 
(ii) m(4) = 0; 

(iii) a < a0. 

Proof. Using the properties of the carrier and the commutator and applying (ii) 
or (iii) of Theorem 3.9, the equivalence can be proved. 

This result may be applied to an important case of quantum logics — to the logic 
J£(H) of all closed subspaces of a Hilbert space H whose dimension is a non-measur­
able cardinal. We recall that a set X has a non-measurable cardinal if there is no 
nontrivial finite measure v on the power set 2X such that v({x}) = 0 for all xeX. 

Theorem 4.4. Let ££ = ££(H) be a quantum logic of a real or complex Hilbert 
space whose dimension is a non-measurable cardinal + 2. Let the assumptions 
of Theorem 3.9 be fulfilled. Then the following conditions are equivalent: 

(i) {xt: te T} have a joint distribution in m; 
(ii) m(ai) = 0 ; 

(iii) xth(Eh) ... xHn(Ein)f = xti(Ex) . . . xtn(En)f 

for any permutation (it,..., in) of ( 1 , . . . , n), n ^ 1, any Et e s/tl, any finite 0 4= 
=f= a = {tl9..., tn] c T and any vector f e a, where a is the carrier of the measure m, 
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Moreover, the Boolean a-algebra in (vi) of Theorem 3.9 may be chosen as a 

Boolean sub-a-algebra of a quantum logic of some Hilbert space. 

Proof. Since J£(H) is a complete lattice, the commutator a0 of {xt: t e T} always 
exists in &(H). According to [25], any cr-finite measure m on S£(H) possesses a car­
rier which is a separable subspace of H. Proposition 4.3 yields the equivalence of (i) 
and (ii). The equivalence of (i) and (iii) is a simple modification of the results in 
[12,25]. 

The last assertion follows from Proposition 4.2 and (4.3). Moreover, we note that 
xt0: £i—> xt(E) A a0 is an ja^-a-observable of 3?(a0) and {xt0: t e T} are mutually 
compatible. Q.E.D. 

We conclude this section with the following remark. If the commutator a0 of 
{xt: t e T} exists and (3.8) holds, then {xt: t e T} have a joint distribution in m. 

The converse implication is known only in special cases, for example, if a0 is countably 
obtainable or m has a carrier or a0 = 1. Therefore it would be of interest to establish 
conditions when (i) and (ii) of Proposition 4.3 are equivalent. 
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S ú h r n 

O ZDRUŽENOM ROZDĚLENÍ V KVANTOVÝCH LOGIKÁCH 
II. NEKOMPATIBILNĚ POZOROVATELNÉ 

A NATOLU DVUREČENSKIJ 

Předložená práca je pokračovanie pívej časti s rovnakým názvom. Študuje sa združcnč roz-
deienie v tr-konečných mierach pře nekompatibilně pozorovatelné kvantovej logiky, definované 
na niektorom systéme tr-nezávislých Booleovych pod-cr-algebier Booleovej (x-algebry. Dané sú 
nutné a postačujúce podmienky pře existenciu združených rozdělení. Ako dósiedok je ukázané, 
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хе ГиЪоVоГпу зузгёт ро2о^оVа^етусп т а гагигепё гогсЫете V ппеге \1Ыу а 1еп V^еа,у, кеб* 
ро2о^оVа^еIпе т б г и Ъу1 Vпо^епё до зузгёти котра11Ы1пусп р02о^оVаIетусп ш е к г о ^ ^ а п -
^ е ^ 1оё1ку 8 Цодагоспупп V1а81по8<ат .̂ РоигНё тег6с1у 8й осШзпё оо* те1ба\ гпатусп рге 
копеспё пнегу. №кошес 8а розеопауа о V2&пи теЙ21 ех181епсюи гагигепёпо гогсЫеша а 
ех181епс1ои котиШога рогогоуахеГпусп, а гакиег за з р о т т а куашоуа 1о§1ка пезерагаЪПпёпо 
НПЪег1оупо рпезгоги. 

Р е з ю м е 

О СОВМЕСТНОМ РАСПРЕДЕЛЕНИИ В КВАНТОВЫХ ЛОГИКАХ 
П. НЕКОМПАТИБИЛЬНЫЕ НАБЛЮДАЕМЫЕ 

А^ТС^И ОУиКЕСЕШКП: 

Предлагаемая работа является продолжением первой части работы с тем же самым назва­
нием. Изучаются совместные распределения в сг-конечных мерах для некомпатибильных 
наблюдаемых квантовой логики, определенных на некоторой системе ^-независимых булевых 
сг-подалгебр булевой ег-алгебры. Предложены некоторые необходимые и достаточные усло­
вия для существования совместного распределения. В частности показано, что любая система 
наблюдаемых имеет совместное распределение тогда и только тогда, когда она может быть 
внедрена в систему компатибильных наблюдаемых некоторой квантовой логики. Использо­
ванные методы отличаются от методов, известных для конечных мер. В конце работы ис­
следуется соотношение между существованием совместного распределения и существованием 
коммутатора наблюдаемых, а также упоминается квантовая логика несепарабельнного 
гильбертова пространства. 
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