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ON JOINT DISTRIBUTION IN QUANTUM LOGICS
I. COMPATIBLE OBSERVABLES

ANATOLI) DVURECENSKIJ
(Received February 24, 1986)

Summary. The notion of a joint distribution in o-finite measures of observables of a quantum
logic defined on some system of o-independent Boolean sub-g-algebras of a Boolean o-algebra
is studied. In the present first part of the paper the author studies a joint distribution of compatible
observables. It is shown that it may exists, although a joint observable of compatible observables
need not exist.
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This and the subsequent papers are devoted to the notion of a joint distribution
of observables in a o-finite measure on a quantum logic for a given system of observ-
ables defined on some collection of g-independent Boolean sub-g-algebras.

In this paper we study the problem of existence of a joint distribution for mutually
compatible observables in a measure. It is shown that in this case the joint distribution
in a measure may exists; however, a joint observable need not exist.

We postpone a detailed study of the existence of a joint distribution in a measure
for noncompatible observables to a subsequent paper.

1. PRELIMINARIES

Assume that the set, &, of all experimentally verifiable propositions of a physical
system forms a quantum logic. So, according to [1], we suppose that & is a o-lattice
with the first and the last elements 0 and 1, respectively, with an orthocomplementation
l:a—a', a,at € &, which satisfies: (i) (a*)* = a for any ae &; (ii) if a < b,
then b* < a*; (ili) a v a* =1 for any ae &; (iv)if a < b, then b=a v (b A
a*) (the orthomodular law).

In particular, the notion of an orthomodular lattice (abbreviation OML), that is,
a lattice & with (i)—(iv) above, is also of interest.

427



Two elements a, be % are (i) orthogonal, and we write a L b, if a < b*; (ii)
compatible, and we write a « b, if there are three mutually orthogonal elements
ay, by, ce & such that a = ay; v e, b = b, v c. It is known that a & b iff a =
=(a A b) v (anbh)

Let &, and &, be logics. A map h: &£, —» £, is called a 6-homomorphism of ¥,

into &, if (i) h(1) = 1; (i) h(a) L h(b) whenever a L b, a, be Z; (iii) h(V a;) =
© i=1

=V h(a;) forany {a;}2 = &;,a; L a;, i #+ j. The kernel of a g-homomorphism h
i=1

is the set Ker h := {a € &,: h(a) = 0}.

An OML 2 (logic &) is called a Boolean algebra (Boolean c-algebra) if the
distributive law holds on %, that is, for all a, b, ce £, (a A b) v c =(a v ¢) A
A (b v ¢). Due to [1, Corollary 6.15], the notion of a Boolean algebra(c-algebra)
coincides with that in [2]. The notions of sub OML, sublogic subalgebra and sub-
o-algebra of & are defined in a straightforward way, see [1, 2. 3], for instance.

Physical quantities of physical systems are identified with the observables of
a quantum logic. Let &/ be a Boolean algebra and ¥ an OML. We say that a map
x: o - & is an -observable of £ if (i) x(1) = 1; (ii) x(E) L x(F) whenever
EAF=0, E,Fes; (i) x(Fv F)=x(E) v x(F) if EAF=0, E Fe ..
If &/ is a Boolean o-algebra and & is a quantum logic, then an «Z-observable x

of Zis called an /-g-observable of & if x(V E;) = V x(E)) for any {E;} 2, = o/,
i=1 i=1

E;NE;=0,i%]. (Shortly observable, g-observable, respectively, if & is clear
from the context.)

The case which is of great importance for the quantum mechanics occurs when .o/
is a Boolean (o-)algebra of subsets of a set X, in particular, when X = R' and
of = B(R") is the Borel g-algebra of subsets of the real line R*.

The range of an /-(g)-observable x, #(x) := {x(E): E € &/}, is a Boolean sub-
(0-)algebra of £. A Boolean c-algebra 4 is separable if it is generated by countably
many elements. 4 is a separable sub-g-agebra of & iff thereis a Z(R"')-g-observable
x such that # = %(x) [1, Lemma 6.16].

An o/-observable x and a J-observable y are compatible if x(E) < y(F) for any
Eeof, Fe#. It is known [1, Lemma 6.14, Corollary 6.15] that if x, is an /-
(o-)observable of £ and {x,:te T} are mutually compatible observables, then
there is a Boolean sub-(c-)algebra of & containing all ranges #(x,), te T.

We shall identify physical states with measures. A map m: & — [0, o] is a measure
0

if (1) m(0) = 0; (ii) m(V a;) = Y, m(a;) whenever a; L a;, i  j. A measure m is
i=1 i=
(i) finite if m(1) < oo; (ii) a state if m(1) = 1; (iii) o-finite if there is a sequence of
mutually orthogonal elements of %, {a;}{2,, such thatV a; = 1 and m(a;) < oo
i=1

forany i = 1. In the sequel we shall use only measures with m(1) # 0. An observable
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x is o-finite with respect to m if there is a sequence {Ei} iz1 © o suchthatE; A E; =
o0

= 0 whenever i # j, V E; = 1, and m(x(E;)) < o0, i = 1.
i=1

We say that a system {&/,:te T} of Boolean sub-(s-)algebras of a Boolean
(0-)algebra o is independent (o-independent) if for any finite (countable) subset
ac T
(1.1) A4, +0

tea
forany 0 + A, e &/, and any t € .

For example, let (X,, &,) te T, be a measure space, that is, &, is a (o-) algebra
of subsets of a set X, & 0. Denote by X the Cartesian product of all spaces X,,
i.e., the set of all w = {w,:1e T}, w,€X, for te T. Let m, be the t-th projection
function of X onto X,, thatis 7,0 = w,, e X. Let ¥} := {n, ' (4): 4e &}, teT
Then &, is (¢-)isomorphic to #;. The minimal sub-(s-)algebra of X generated
by all &} is denoted by & = [[ &#,, and the system {#}:te T} of Boolean sub-

teT
(o-)algebras of & is (o-)independent [2].
Let {/,:1e T} be a system of (o-)independent Boolean sub-(c-)algebras of
a Boolean (a-)algebra . Denote by 2 the system of all Boolean rectangles A 4,

tea

defined for any A4,€ o,, tea, and each finite « = T. As in the Cartesian product
of (a-)algebras of subsets of X,, one may verify that the minimal subalgebra #
of o/, generated by all &7,, t € T, consists of all finite joins of orthogonal elements
from 2. The minimal sub-o-algebra of o/ generated by all sub-o-alggbras {Jzi steT}
is denoted by [] ..

teT

2. JOINT DISTRIBUTION OF COMPATIBLE OBSERVABLES

One of important problems of the quantum logic theory is the determination
of a joint distribution for noncompatible observables, as is indicated in [4, Problem
VII]. Following Gudder [5] we give the following generalization of the notion of
the joint distribution.

Definition. Let m be a measure on a quantum logic £. We say that (i) a finite
system Xy, ..., X,, where x; is an </ ~c-observable of &, i =1,...,n, and o, ...
..., o, are independent Boolean sub-c-algebras of a Boolean o-algebra </, has
a joint distribution in m if there is a measure y on the minimal Boolean sub-o
algebra s/, x ... x &, of o generated by A, ..., o, such that

(2.0) n(A A;) = m( A x(4)
i=1 i=1
forany Aje o i=1,...,n;
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(ii) an infinite system {x,:te T}, where x, is an o c-observabls, te T, and
{,: te T} are o-independent Boolean sub-c-algebras of a Boolean c-algebra o,
has a joint distributitn in an m if {x,: t € a} has a joint distribution in m for any
finitea = T.

S. P. Gudder introduced the notion of a joint distribution only for #(R')-o-
observables and states. Necessary and sufficient conditions for the existence of a joint
distribution for Z(R')-c-observables in a given state may be found in [5—11].
The case of a o-finite measure, including also a logic & = Z(H) of a separable
Hilbert space H, is investigated in [12].

It is known [6, 7] that the existence of a joint distribution in a measure closely
depends on mutually compatible og-observables of some quantum logic. Therefore
in this section we concentrate ourselves on the study of a joint distribution of mutually
compatible observables.

Lemma 2.1.If x;, i = 1,aremutually compatible B(X)-c-observables of a quantum
logic &, where X is a complete separable Banach space and B(X) is the Borel

@
o-algebra of subsets of X, then there is a unique [| #(X)-o-observable x of &,
i=1 v

with
K07 () = Ax(E)

iea

for any E; € B(X), i € a, and any finite subset o of {1,2,...}. Here m; denotes the
i-th projection function from [| X onto X.
i=1
Proof. According to P. Ptdk [13] there is a #(X)-s-observable z of # and Borel
measurable functions f,: X - X such that x,(4) = z(f ~'(4)) for any Ae.%(X)

Define f(t) = (f1(1), £2(1),...): X > HX Then z: B - x(f~*(B)), Be H B(X)
is the desired o-observable. Q.E.D.

Theorem 2.2. Let {/,: te T} be a system of o-independent free Boolean sub-
o-algebras with countable generators of a Boolean o-algebra of. Let x, be an
&/ -g-observable of a logic &, te T. If {x,: te T} are mutually compatible ob-
servables and at least one of them is o-finite with respect to m, then {x,:te T}
have a joint distribution in m. Moreover, there is a unique o-finite measure yu on
[, with

teT

(2.1) ,“(t/; At) = m(tg xt(’fir))

for any A, e &, and any finite subset ) = o = T.

Proof. (i) First of all we show that if x, is an o/,-observable of %, t € T, where
{,9/ .- te T} is a system of independent Boolean subalgebras of a Boolean algebra o7,
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and {x,:te T} are mutually compatible, then there is a unique Z%-observable x
of # such that
(2.2) x(AA4,) = Ax(4,)

tea tea

for any A4, € &/, and any finite subset « = T. Here £ denotes the minimal Boolean
subalgebra of & containing all «7,, te T.
Notice that any two Boolean rectangles A A, and A B, can be assumed to have

tea sep

the same finite index set & U B. Indeed, if we put A¥ = A,iftea, AT = 1iftef — «,
and B = B,iftef —a, Bf =1, tea, then A4, = A {A}:teaUB}, AB, =
tea sep
= A {Bf:teau B}. Therefore (i) A 4, = 0, A, € o/,, t € a, iff at least one 4, = 0;
tea
(i) 0 +# A 4, < A B, iff 4, < B, for any tea; (iii) 0 + A 4, = A B, iff 4, = B,
tea tea tea tea

for any tea.

Hence, the map x defined via (2.2) is well defined on the set & of all Boolean
rectangles. Using the remark on the form on the minimal subalgebra £ containing
all o,, te T, and the fact that there is a Boolean subalgebra of & containing all
ranges (x,) [1], x may be uniquely extended to an #-observable of £. The uniqueness
of x follows from (2.2).

(i) Now we show that if x, is an & g-observable of a logic & and {</,: te T}
are g-independent free Boolean sub-g-algebras with countable generators of a Boolean
o-algebra o/ and {x,:te T} are mutually compatible g-observables, then for an

0

ZR-observable x of & we have: if A,€ Z,n 2 1,and 4 = V A4, € &, then

n=1

(23) x(4) =S/1x(A,,) .

Since any free Boolean o-algebra &, with a countable generator is g-isomorphic
to B(R,) [16, p. 335], (2.3) follows from Lemma 2.1.

(iii) Let x be the %#-observable on £ whose existence is guaranteed by the first
part of the present proof. Let m be a measure on & fulfilling the conditions of
Theorem 2.2. Then, due to (i) and (ii), u(4) := m(x(4)), 4 € &, is a o-finite s-additive
measure on #. Using the well known Carathéodory extension method concerning
the extension of a g-additive o-finite set function defined on an algebra of subsets
to a measure defined on the minimal s-algebra generated by the algebra [17], we

obtain the analogous result also for a Boolean subalgebra # and [[«, [18]. It is
teT
clear that pis the joint distribution of {x,: te T} in m, and the proof is complete.

Q.E.D.

The next result is a simple consequence of the Theorem 2.2 (see Preliminaries).

Corollary 2.2.1. Let x, be an & c-observable of a quantum logic &, te T, and
let x, & x for any s, t € T, where &, is Borel a o-algebra of subsets of a complete
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separable metric space X,. If at least one of x,s is o-finite with respect to m,
then {x,: t € T} has a joint distribution in m, and there is a unique o-finite measure
won [1&, with

1eT

/‘('2 nt—l(Et)) = m( '/E\axt(Et))

for any E,e &,, t € a, and any finite subset ) + oo = T.

We note that for the Z-observable x of % with (2.2) there may exist no extension
of x to a [] s -o-observable of £. To establish this interesting fact, we need the

teT

following notions. Let ./ be a Boolean c-algebra. A non-empty subset ¢ < of
is said to be o-ideal if (i) A, € #, n = 1, implies V A4, € #; (i) if A < B and Be ¢,
n=1

then Ae #. The factor o-algebra, /[ ¢, is the system of all [A],:= {Be «:
B A A" v A A B e g), Ae.o. The Boolean operations in /¢ are defined via

(4], v [B], :=[4 v B, [Aly:=[4"],

Example 1. There is a quantum logic % with a non-empty set of states (even
with two-valued states), and with two compatible g-observables x;: &; - %, where
& is a separable g-algebra of subsets of a set X;, i = 1, 2, such that there is no
S, x &,-6-observable x of &£ with

(2.4) x(E x F) = x,(E) A x,(F), Ee¥,Fe¥,.

On the other hand, x, and x, have a joint distribution in any o-finite measure m
on .¥.

Proof. Let C be some analytic subset of R! which is not a Borel set. Let X; =
=R'-C, X, =R'and &, := BR")n(R;y — C):={Bn C:Be B(R")}, &, :=
:= A(R"). It is clear that &, and &, are separable g-algebras of subsets, i.e., they
contain generators with countably many elements. Denote by ¢’ the o-ideal of the
Borel g-algebra #(R?) of the real plane R? generated by all sets B x R', where
Be #(R") and B = C. Let us put £ = %(R?)/#'. The formulae

x;(Bn X,):=[B x R'];,, Be%(R"),
x,(B) := [R' x Bl,,, Be#(R"),
determine two compatible o-observables x;: &; - %, i = 1,2. Moreower, X; is
a o-isomorphism of &, into #. As has been shown in [18, p. 17; 2, § 37, Example A],
there is no & x &,-c-observable of £ with (2.4).

Now we will prove the second part of the proposition. Define the o-ideal ¢ of Z(R?)
as follows: # = {4 e B(R?): A < C x R'}. It is obvious that #' = #. We show
that ¢’ is a proper subset of #. If we had #’ =. ¢, then #(R?)/,# would be o-iso-
morphic to & = B(R*) N ((R' = C) x R'):={Bn(R* = C) x R': Be B(R?)}
(a o-isomorphism h of #(R?)[# onto & is defined by h(B ((R' — C) x R")) =

= [B], for any Be %(R?). Consequently, # possesses the strong ¢-extension

432



property (for definition see below or [2]) and, therefore, there is an x with (2.4)
which contradicts the first part of the proof.
Now we define an #-c-observable z of a quantum logic %, := #(R;)/.# via

z([4],) = [4],, AeaB(R?).

The z is well defined because if [4,],. = [4,],.,then 4; A A7 v A, A A7e # <
c # and [4,], = [42],.

Te logic #, is o-isomorphic to the o-algebra of subsets, #(R%) n ((R' — C) x
X R‘), hence %, has an order determining system of states (and also an order
determining system of two-valued states). (We recall that a system .# of states on
a quantum logic is order determining if m(a) < m(b) for any me # iff a < b.)

Let m be a measure on %, then m: a > m(z(a)), a € &, is a measure on Z.

0

Now let m be a o-finite measure on & and let V a; = 1, a; 1 a; whenever i # j,
i=1
a;e %, 0 < m(a;) < oo, i = 1. Then my(a) = m(a A a,), ae 2, is a finite measure
for any i = 1. Using the result of Duchoti [15] we see that x;, x, have a joint distribu-
0
tion in any m;, i = 1, and consequently, in m = Y m,.
i=1
Motivated by the above we say that mutually compatible o-observables x,: &/, > &
of a quantum logic Z, t € T, where {,szf,: te T} is a system of g-independent Boolean
sub-g-algebras of a Boolean o-algebra </, have a joint g-observable if there is
a []#, — c-observable x of & with (2.2). Neither existence of joint-g-observable
teT
nor joint distribution for compatible g-observables in general case is not known
to the author.
Lemma 2.1 determines an important class of compatible observables which has
a joint g-observable. According to [2], we say that a Boolean o-algebra 7’ has
the strong o-extension property if, for every Boolean g-algebra &, every map f
(from a set & o-generating &) into =/’ satisfying the implication

o

(2.5) AE® =0, then Xf(E,-))E“) -0,
i=1

i=1

[eel

for every sequence {E;}2; = ¢ and for every function &(i) € {0, 1} iz 1, can be
extended to a s-homomorphism h from < into &/'; here E° := E, E' := E.

Theorem 2.3. Let x,: o/, - £, te T, be compatible a-observables of a quantum
logic &, where {,:t€ T} is a system of g-independent Boolean sub-c-algebras
of a Boolean o-algebra </, and let the minimal sub-g-algebra of of generated by
all ranges A(x,), t € T, have the strong o-extension property (in particular, it is
c-isomorphic to some o-algebra of subsets). Then {x,: t € T} has a joint g-observable
of &.

Proof. It follows immediately from [2, Theorem 37.1]). Q.E.D.
In the frame of the study of a joint g-observable of compatible observables, in
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particular, in connection with Lemma 2.1, it may be interesting to note that P. Ptdk
[13] found the example of a quantum logic with two compatible 2(X)-o-observables
x and y such that the equalities x = zo f ™%, y = z o g~ ! do not simultaneously hold
for any two Borel mappings f, g: X — X and any %(X)-o-observable z of £. Here
X is a Banach space of non-measurable cardinality, %(X) is its Borel o-algebra
and & = #(X) x #(X). However, in this case there is a joint o-observable of x
and y, because x and y are induced by point transformations T;: X x X — X such
that x = Ty ', y = T; .
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Sdhrn

O ZDRUZENOM ROZDELENI V KVANTOVYCH LOGIKACH
I. KOMPATIBILNE POZOROVATEL'NE

ANATOLI) DVURECENSKIJ

Studuje sa zdruZené rozdelenie v o-koneénych mierach pre pozorovateIné kvantovej logiky,
definovanych na niektorych systémoch o-nezavislych volnych Booleovych pod-o-algebrach
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so spoditateInymi generatormi Booleovej g-algebry. V tejto prvej fasti prace sa Studuje zdruZené
rozdelenie kompatibilnych pozorovateInych. Dokazuje sa, e ono mdZe existovat, hoci zdruzena
pozorovateInd kompatibilnych pozorovateInych mdZe i neexistovat.

Pesiome

O COBMECTHOM PACIIPEJEJIEHI B KBAHTOBBIX JIOTUKAX.
I. KOMITATUBUJIBHBIE HABJIFOIXAEMBIE

ANATOLI) DVURECENSKIJ

M3y4aeTcss NOHsATHE COBMECTHOTO DacIpeleieHHss B 0-KOHEYHBIX Mepax I HablomaeMeix
KBaHTOBOM JIOTHMKH, ONPENENICHHBIX Ha HEKOTOPOW CHCTEME G-HE3aBHCHMBIX OYNEBHIX O-IOJAJ-
reOp OyneBoil g-anreOpel. B HacTOsIIel NEpBOM YaCTH 3aMETKH MBI M3y4aeM COBMECTHOE pac-
npeesieHde KOMOATHOMIBHEIX Habmomaemsix. IToka3aHO, YTO OHO MOXET CYyIIECTBOBAThH, XOTA
COBMECTHAs! HabroqaeMasi MOXET M He CyIIeCTBOBATh.
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