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Summary. The author studies a system of polynomials orthogonal at a finite set of points,
its weight approximating that of the orthogonal system of classical Jacobi polynomials.
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1. MOTIVATION

The use of orthogonal polynomials for the needs of computational mathematics
is traditional, wide and ever growing. Particularly, some discrete argument analogues
of the classical orthogonal polynomials may serve to process samples. From the view-
point of a numerical analyst the Clebsch-Gordan coefficients (see [1], p. 181 in the
Russian edition) are very close to some “very” sampled or quantized Jacobi poly-
nomials. Peculiarities of quantum optics (see [2] for comments on its problems)
suggest to attain this — more classical than quantum — ideal by varying the results
of physicists according to the remarks in [1], pp. 25, 72.

We merely wish to call the attention of the computing community to this fruitful
tool by our defining the quantized Jacobi polynomials and deriving their properties.
They have been partly known since the past century when P. L. Cebysev quantized
the Legendre polynomials which may be held for a special case of the Jacobi poly-
nomials (see [3], 10-23). The process of generalization ended apparently in 1952 when
Weber and Erdélyi [4] commented on the polynomials due to W. Hahn.

2. THE SPECIAL CASE

The polynomials Py ,(ny), Py ,(ny), ..., P, ,(n,) of the respective degrees 0,1, ..., n
orthogonal on the set {0, 1, ..., n} are called the Cebysev orthogonal polynomials.

Note that in the notation for the Cebysev polynomial P, ,(n,) the first subscript k
stands for the degree of the polynomial and the second n for the size of the set less
one.
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The Cebysev polynomials are explicitly written as follows [3]:

(1) Pea(ny) zéo(“l)s (::) (k + s) n

o
where n§? = ny(ny — 1)...(n; — s + 1) and i = n(n — 1)... (n — s + 1) are the
corresponding generalized powers.

The set of polynomials {P, ,(n,)} is not normed. Nevertheless, it can be shown
that

N

- . , _(n+k+1)H
(2) "Pk,n" =(n+1) néo[Pk,"("l)] - _(2—k~+—1_) ptdd

Dividing the polynomials P, ,(n,) by their norms, we obtain the normed set of the
Cebysev orthogonal polynomials

(3) Py (ny) = |Pin|| * Pen(ny) (k=0,1,2,...n).
We shall show that the polynomials P, ,(n,) satisfy the finite difference equation
) L(Pya) (ny) = —ny(n — ny + 1) Py (ny — 1) +

+ [(ny + 1) (n = ny) + ny(n — ny + 1)] Py u(ny) —
—(ny + 1)(n — ny) P (ny + 1) = k(k + 1) P, ,(ny) .
Proof. The left-hand side of (4) is equal to
ni(n — ny + 1) [P (ny) — Ppo(ny — 1)] +
+ (ng + 1) (n — ny) [Peu(ny + 1) = Py (n))] -
By simple algebra
Ln$! = s[(s + 1) nf — s(n — s + 1) nf~ "],

or
k + s\s(s + 1) n®1 — s*(n — s + 1) a1

L(P,,,) (n,) =s§0(— 1y (I:) < s ) pls]

Again by simple algebra

L(P,,) (n,) = k(k + 1) P, (n,),
Q.E.D.
The Legendre polynomials are defined by the relation

1 d \*
5) P¥) = EkTu(E) (2 = IF, xe(—1,1).
Denote
(6) G(x) = P(1 — 2x), xe<0,1).
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We obtain

© 69 = 1 (5:) B0 - 901,

Hence

®) 6 =2 (5) (7).
Since

©) [ =2

we have

(10) f [0,(9] dx = J Ol % - 2k‘+ .
Evidently

(11) Py (ny) = G(x)

asn — o0, ny/n - x, x € 0, 1.
It can be easily seen that

(12) MZOP,‘ WSn1) '( — :)' x"(1 = x)"T" = Gy(x) .

This transformation leads from a function of a discrete argument to a function of
a continuous argument.
We shall prove that the following “‘quantum relation” holds:

! (n + 1) - nlk
13 G, (x ——x"(1l = x)"""dx = —-——— P, (n,).
(13) Lk(nﬂw_nm (1 - ) o i P
First of all, we have

13) [aey e g Sy (V) ()

7 (ny + )t
(n+s+ I)[‘]'

By the composition of the transformations

(14) T(f) ("1) —ng f( 1) ( _ )v

X (1= = g(x)
and

(15) S(9) (x) EJ g(x)- ("(+ ”n 5= s = i)
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we obtain the transformation
n -1 ” - ”
(16) W(n) = 3 <2n + 1) (nl + n1> (Zn ny nl)f(n'{
n"=0 n ny n—ng

It can be easily seen that if (a) the eigenfunctions of this transformation are poly-
nomials of degree k then the eigenvalues are
( o (=01, n)
17 B =0,1,...,n).
) (n + k + )™

Consequently, if we prove the assumption (a) then we shall complete the proof
of the relation (13).

It can be easily proved that the commutation relation AB = BA holds, where A
is the symmetrical matrix of the transformation (16) and B is the symmetrical matrix
of the transformation

(16" q(ny) = —ni(n — n} + 1) p(n] — 1) +
+ [ + 1) (n = n) -+ ni(n = nf 4+ 1) p(nf) — (0 + 1) (n — n) pln + 1)
Thus the transformation (16) has the same eigenfunctions as the transformation (16)
which is already known to have the eigenfunctions P, ,(n,). Q.E.D.
3. THE GENERAL CASE

Let R, S = 0 be integers. The particular Jacobi polynomials will be denoted by

= 2o () e T

The quantized Jacobi polynomials will be denoted by

\ : KN(S+R+k+1)...(S+ R+ k +s)n{]
19) PES(n) =14+ Y (=1) ) cSh
(19) Pisi(m) 5};1( ) (s/ R+1)...(R+5) nls1

Let us further denote

(20) Pin(ny) = V((n + 1) ViH5(ny)) P(n)

where

RS(n.) = n\(R+111)...(R+1)(S‘+n—n1)--~(s+ 3]
(21) Var(n) ("1/ R+S+2)...(R+S+n+1) '

We are going to show that the functions PR (n,) satisfy the finite difference
equation
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(22) = JmJR+n)J(n—n +1)J(n—n, +S+1) P,’f,',,s(r?_‘ - 1)+
+3H{m + D) —n)+R+n +1)(n—ny +8)+
+nn—ny + 1)+ R+ n)(n—ny + S+ 1)] PFn,) —

- Jny + D) JR + ny + 1) J(n — n))J(n — ny +5) T’,’f,’,,s(nil +1) =

=i - (355) ] e,
where I = (S + R)/2 + k.

Proof. Equivalently, we show that the polynomials Py;(n,) satisfy the finite
difference equation

(23) L(PEY) () = ny(S + n — ny + 1) [P (ny) — Pin(ng — 1) —
— R+ ny + 1)(n — ny) [PE3(ny + 1) = PEI(ny)] =
= k(k + R + S + 1) P3(n,).
By simple algebra we obtain

Lo =s[(S+ R+ s+ D) —(R+s)(n—s+ 1)nf~ 1],

or
- ¢ KN(S+R+k+1)...(S+R+k+s
L) ) = 3 (-1 (4 ¢ ) )y
s=0 s (R+1)...(R+5s)
" s(S+ R+ s+ D)k —s(R+5)(n—s + 1)nf 1
nisl I
as well as

L(Pgy) (n1) = k(e + S + R + 1) P{(ny)
which proves (23) and thus also (22).
It can be easily seen that
" 'R+ S+ n+ 1)
24 VES (n,)) PR (n NI x
@4 n;z=0\/( (1) P (m1) Jr (g + R/ (n = n)t/(n — ny + S)!

x xn1+R/2(1 _ x)n—m-&-S/Z — \/(UR’S(X)) Gf,S(x) ,

where

R+ S +1)!
RS (x) =( S ) xR(1 — x)s.

This transformation leads from a function of a discrete argument to a function
of a continuous argument.

We shall prove that the following ‘“quantum relation” holds:
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Y ors R.S(y Jo+ DR+ S +n+ 1) y
(25) L\/(U (%)) G&¥( )\/nllx/("l + R)!{/(n = ny)! J(n — ny + S)!

nlkl

(n+R+S+1+k“‘1x
x J((n + 1) VS (n) PG () =/((n + 1) VirS(n) Q82(na)
KNS+R+k+1)...(S+R+k+5s) N
(”‘)"Z( 1)(} R+1)...(R+9)

(ny + R + 51
R+ S+n+s+ 1)1

x x"‘“”z (1 _ x)n—n1+S/2 dx =

where

By the composition of the transformations
(26) T(f) (n) =

()7 + DR+ S+n+ D avriny _ eemssiz _
= Zf( )\/n1|\/(nl + R J(n — n)tJ(n — ny + S)! (1 -x) u

= g(x)

and

o Py Ao DR+ 5+ n 1
@) SO0 = [ e T e 5

X xn1+R/2(1 _ x)n ny+S/2 dx — h(nl),
we obtain the transformation

" (R+S+2n+ 1\"1/n +n] +R\"?/n, + 1} + R\'/?
28) h(n,) = t t ! 1 X
@) wo = 3 (12 (R

ng n; + R

2n —n; — 0 + S\"?/2n — n, — 0 + S\V2 ., ,
X( 1 1 ) < 1 1 ) f(nl

n—n n—ng +8S

It can be easily seen that if (a) the eigenfunctions of this transformation are of the
form \/((n + 1) VX**(n,)) U(n,), where U is a polynomial of degree k, then the eigen-
values are

[k]
(29) A = !

R+S+n+k+1)H

(k=0,1,2,...,n).

Consequently, if we prove the assumption (a) then we shall complete the proof
of the relation (25).
It can be easily proved that the commutation relation

(30) AB = BA
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holds, where A is the symmetrical matrix of the transformation (28) and B is the
symmetrical matrix of the transformation

31
( )q(n'l’) == /n{JR +n))J(n=n{+1)J(n —n7 + S+ 1)pn] - 1) +
+ i+ D) —n) +(R+n]+1)(n—ny+8)+
+nj(n—n{+ 1)+ R+n)(n—n]+S+1)]pn]) -
= J( + 1) JR + n} + 1) J(n — n}) J(n — n} + S)p(n] + 1).

Thus the transformation (28) has the same eigenfunctions as the transformation (31)
which is already known to have the eigenfunctions \/((n + 1) Vi'5(ny)) Pio(n,).
Q.E.D.

4. THE NORM OF THE QUANTIZED JACOBI POLYNOMIALS
We shall prove that
n
() IPESI? = 3 V(o) [PESn)T* =
ny=

k! (S+1).. (S+k)(R+S+1)'(n+R+S+1+k)”‘1
S+R+1+2k(R+1) R+ Kk)(R+ S+ k) nt

which represents a certain generalization of the relation

) e = [ S — o o (T ax =

k! (S+1)..(S+k(R+S+1)
TStR+1+2k(R+1)..(R+K(R+S+K

Proof. We are going to apply the method of singular values and singular functions.
Let us consider the transformation T as an operator from the space I*(1) to the space
I*(w,) [and the transformation S as an operator from the space I*(u,) to the space
I*(u), where u denotes the Lebesgue measure on the interval <0, 1), and p, the
measure ascribing to each point of the set {0, ..., n} the weight (n + 1)7*].

[Evidently
(33) T=5",

i.e., Tis the adjoint operator to S.]
The operator T has the orthonormal system

(34) 1PER1* V((n + 1) Vi(ny) PE(ny)
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in its domain and the orthonormal system

(35) 16771 V(0™(x)) G&-(x)

in its codomain, and it has the singular values

(36) == \/ ((R + S+ ':'i k + 1)[k]> :

So it replaces the function (34) by the function
(34) V) |G Y "5(x) G () -
The relation (24) implies that this operator replaces the function (34) by the function
(34") P& V(0™5(x)) G () -
By comparison it follows that
IPEST? = 476

which is (32).
Dividing the functions P{;>(n,) by the norms of the polynomials P{;(n,), we obtain
the set of normed and orthogonal functions

PRS(ny) = | PSS~ PRS(ny) (k=0,1,2,....n).

5. NOTES

(i) Similarly as the decomposition
Iy+12

1) © ) = % 1)
I=[l1—1z
leads to the Clebsch-Gordan coefficients C(Iy, I, I; j, k,j + k) (see [1], Eq. (5) at
p. 182). the related decomposition
I1+12
T,(u) ® T,(u) = Y T(u)

1=|l1-12|

where the bar stands for the complex conjugation helps to introduce analogous
coefficients

P(ll) 12’ l;]’ k’ k — .]) = (_l)ll—j C(ll’ lZ’ l;j; _k9] - k) .

Putting n; + R = my,n — ny = n,, n — n; + S = m, and expressing n,, my, n,,
myasly —j, 1, —k, 1y +j,1, + k, respectively, we obtain that

BEi(ny) = J(n + 1) x
<n n+R+S R+ S n+S—-R S—R)
x Pl - .

f ko MESZR
27 2 H ) ,2 1> 2 1> 9

424



(i) Replacing the factorials by the gamma functions with arguments increased
by one wherever necessary we see that the parameters R, S may take on all real
values greater than —1.

(iii) Our considerations concerning 4 = ST = SST partly imitated the proof
of Theorem (v) in [5], 1c.3. Our implicit use of the Hilbert-Schmidt theorem is legitim-
ate since

if[ JMJTR + S +n+2) N
I JO(ng + R+ 1) J(n = n ) JI(n — ny, + S+ 1)

2
X xn1+R/2 (1 _ x)n—n;+S/2] dx < ©

n=0 Jo

forR,S > —1.

6. APPLICATION

Taking into account the fact that we have studied a system of polynomials ortho-
gonal at a finite set of points with a weight approximating that of the orthogonal
system of the Jacobi polynomials, the methods of application are standard (see [6],
Ch.6,[7], p. 34).
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Souhrn
KVANTOVANE JACOBIHO POLYNOMY
ANTONIN LUKS

V préci se studuje systém polynomil ortogondlnich na kone¢né mnoziné bodii s vahou apro-
ximujici vahu ortogondlniho systému Jacobiho polynomd.
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Pesrome
KBAHTOBAHHBIE MHOI'OYJIEHBI SIKOBU
ANTONIN LUKS

B pa6ote mccnenyercsa KOHeYHas IOCIENOBATENFHOCTh OPTOTOHAIBHBIX MHOIOYJIEHOB JHCKPET-
HOrO IEPEMEHHOTO, Ui KOTOPHIX BEC ABJIAETCS NPHOIMXEHAEM BECa, COOTBETCTBYIOMIETO KJIaCCH-
YECKHM MHOTOWIeHaM SIko6u.
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