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SHAPE OPTIMIZATION
OF AN ELASTIC-PERFECTLY PLASTIC BODY

IvAN HLAVACEK
(Received June 17, 1986)

Abstract. Within the range of Prandtl-Reuss model of elasto-plasticity the following optimal
design problem is solved. Given body forces and surface tractions, a part of the boundary, where
the (two-dimensional) body is fixed, is to be found, so as to minimize an integral of the squared
yield function. The state problem is formulated in terms of stresses by means of a time-dependent
variational inequality. For approximate solutions piecewise linear approximations of the unknown
boundary, piecewise constant triangular finite elements for stress and backward differences in
time are used. Convergence of the approximations to a solution of the optimal design problem
is proven. As a consequence, the existence of an optimal boundary is verified.

Keywords: domain optimization, time-dependent variational inequality, eclasto-plasticity,
finite elements

AMS Subject class.: 65 K 10, 65 N 30, 73 E 99.

INTRODUCTION

The present paper is a continuation of the research in optimization of two-dimen-
sional elastic [ 1] and elasto-plastic [2] bodies. Whereas in [2] the model of Hencky
(cf. [3]- [4]) has been considered, here we apply the constituent law of Prandtl-
Reuss, which leads to a weak formulation in terms of a variational inequality of
evolution [3], [4], [5]-

Given body forces, surfaces loads and material characteristics of an elasto-plastic
two-dimensional body, we have to find the shape of a part of its boundary such
that a cost functional is minimized. The latter functional is an integral of the
square of the yield function over the time-space domain. Zero displacements are
prescribed on the unknown part of the boundary.

We use piecewise linear approximation of the boundary, backward differences
in time and piecewise constant (external) approximations of the stress field. Employing
also some ideas of C. Johnson ([5], [6]), we prove the convergence of the approxima-
tions to a solution of the original optimal design problem.
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1. FORMULATION OF THE OPTIMAL DESIGN PROBLEM

Let us recall the basic relations of the elasto-plastic bodies obeying the Prandtl-

Reuss law.
Let Q@ = R? be a given (bounded) domain with Lipschitz boundary Q. Assume that

oQ=r,ul,, I'nl,=0,

where each of the parts I',, I', is open in 0Q.
Let R, be the space of symmetric 2 x 2 matrices (stress or strain tensor). A repeated

index implies the summation over the range 1, 2. We introduce the following inner
product in the space R,
{o,7) = 0,7;;, (o,0)!% = ”a’" .
Let a yield function f: R, - R be given, which is convex, Lipschitz and satisfies
the condition
) f(a0) = |A| f(6) VoeR,, VieR.
These assumptions are fulfilled e.g. by the well-known von Mises function
fle) = K. [0}, + 03, — 04,02, + 307,]"%, (K = cost.).
We introduce the following spaces and notations:
5(Q) = {:Q->R,|7;e Q) V,,;},
(o % = J' . dx, oo = ooy
for o, e € S(Q). ’
In S(Q) we introduce also the energy scalar product
(0,7)0 = <bo, T, |o]q = (0,0)?,
where b: S(Q) - S() is an isomorphism defined by the generalized Hooke’s law
e=bo<we;= b0, Vij.

We assume that b;;; € L*(Q), a positive constant b, exists such that

(2) boo'ijo'ij = bijkl(x) 00
holds for almost all x e Q and all 6 € R,, and
bijki = by -

Then we have
(0, €)q = <bo, &)y = (o, be), = {be, a)g = (e, %o,
3 bolol5. < [a]a < by|olls.a VoeS(Q).
We consider a time interval I = [0, T], T < + co.
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Assume that the body forces F and the surface tractions g are of the following
particular form:

F(x, 1) = y(1) F(x),  g(x, 1) = 7(1) 8°(x),

where y e C*(I),y 2 0, y(t) = Oin a “small” interval [0, 7,],0 < y, < T.
We define the space of test functions

V(Q) = {we[H'(Q)]* |w=10on I,}

and the set of statistically admissible stress field at the moment ¢t e I:
&(Q; 1) = {te5(Q) | <7, e(W)>g = Lo(w, 1) V we V(Q)},
where
e(w);; = 271 (ow;[ox; + ow;[ox;),
Lo(w, 1) = f F(f)w;dx + J‘ gi(t)w;ds.
Q r,

The set of plastically admissible stress field is

P(Q) ={reS(Q)|f(r) £1 ae. in Q}.
Let us introduce the set

K(Q;t) = 6(2; 1) 0 P(Q) .

Let C(I)(I , S(R)) be the space of continuously differentiable functions on the interval
I with values in S(®), which vanish at t = 0. We define Hy(I, S(Q)) as the closure
where ¢ = do/dt.

of Cy(1, S(R)) in the norm
T
(| 1otiaac).
0
We observe that

4 lo(8) = (1) 0. = |t = "> o] ora,scan
is true for every o e Cy(I, S(@)). Then continuity of functions from Hy(I, S(Q))
follows easily and (4) holds for all ¢ € Hy(I, S(Q)).
Given a domain Q we can define the state problem: find o € Hy(I, S()) such that
(5) o(1)eK(Q;1) Vtel
and
(6) (6(1), = = o(1)a 2 0
holds for all T e K(Q; f) and almost all re 1.

Throughout the paper, C will denote a positive constant not necessarily the same
at each occurence.
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Passing to the shape optimization problem, we introduce the following set of
admissible design variables
U,s = {ve C®(]0, 1]) (i.e. Lipschitz functions),
x <o B, |dofdx,| £ Cy,

1
j vdx, = C,},
0
where a, f, C; and C, are given positive constants.

Throughout the paper, we shall consider a class of domains Q = Q(v), where
ve U, and

Qo) = {(x1,%,) |0 < x; < 0(x,), 0 < x; < 1}.

For any ve U,,, the graph I'(v) of the function v will coincide with the part T,
of 6Q(v). Assume that the constants b, b, in (3) do not depend on v € U,q.
The function v has to be determined from the following

Optimal Design Problem:
) #(o(w)) = min q

over the set of v € U,,, where

T
® stow) = [ at] Flo)ar,
0 2(v)
and ¢(v) is the solution of the state problem (5), (6) on the domain Q = Q(v).
We first show that the above definition has sense, if we restrict the class of state
problems by some assumptions imposed upon the loading forces.
Let & > B, Q5 = (0,8) x (0, 1), I'; denote the graph of the (constant) function
v = 8. Assume that the reference forces F® and g° are defined on Q, and 9Q; — I,
respectively. Let them be such that there exists a stress field °, satisfying the follow-
ing conditions:

9) 6® e S(2;) n [C N (@,)]*,

(10} {a® e(w))g, = ‘[ Fw,dx + J‘ giw;ds Ywe V(Q,);
Qs MNs—Ts

(11) Je > 0 such that

(1 + &) y(7) 6° € P(Q,),

where 7 €I is the argument, realizing the maximum of 'y(t) on the interval I.
We present the existence result, which is baséd on the paper by C. Johnson [5].

Theorem 1. Let the assumptions (9), (10), (11) be satisfied. Then there exists
a unique solution a(v) of the state problem (5), (6) on Q(v) for any v e U,,.
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The Proof will not be given here. It is an easy generalization of the proof of C.
Johnson, who considered only the case dQ = I',. To verify the assumptions of his
theorem, we show that

(12) (1) 6®|awy € E(Qv); 1) Viel, VoeU,
and y(7) 6°|q ., € K(2(v); 7) follows from (10), (11), (1).
Remark 1. Since f is Lipschitz and (1) holds, we may write
[7(@)] = |7(e) = f(O)] = C|s] .
(13) J fie)dx = C f lo]? dx = Clofia < +@ Voes(@).
2 2
Consequently,

F(a(v) < CJ‘:“a(v)”f,,mv) dt < +0 VoeU,

follows from (13), (4) and Theorem 1.
Remark 2. From the condition (10) we derive

dive® + F°=0 in Q,,
. v=g" on 8Q,-T,.

The latter relation together with (9) implies that g° is a Lipschitz function on any
side of 0Q; — I';. The condition (11) restricts the “magnitude” of the stress field
¢° in a certain sense.

2. APPROXIMATIONS BY PIECEWISE CONSTANT STRESS FIELDS

Let N be a positive integer and h = 1/N. We denote by A;, j = 1, ..., N, the sub-
intervals [(j — 1) h, jh] and introduce the set

Uy = {”h € UadIUhIA,E Pl(Aj) Vit

where P, denotes the set of polynomials of k-th degree.

Let Q, denote the domain Q(v,), bounded by the graph I', of the function v, € Uk,
The domain Q, will be carved into triangles as follows.

We choose o, € (0, ) and introduce a uniform triangulation of the rectangle
Z = [0, 2] x [0, 1], independent of v, if h is fixed.

In the remaining part Q, — % let the nodal points divide the intervals [«y, v,(jh)]
into M equal segments, where M = 1 + [(B — %) N] and the square brackets
denote the integer part. Thus we obtain a regular family of triangulations { T \(v,)!,
h -0, v,eU",. Note that for any v, e U"; we construct a unique triangulation
T i(vy)-
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Denoting the triangles of (1) by 7, we define the finite element spaces -
Vi(Q) = {w, e V(2) |w,|5 € [Py(9)])* VT e T4(vs)}
Hu( Q) = (1€ S() |1|5 € [Po(T)]* VT € T(vs)}

and external approximations of the set &£(€,; 1):

Qs 1) = {1,€ #4( D) | <t €(Wi)Da, = Lo, (Wi 1) Yw, € V(2,)} .
Let n be a positive integer, k = T/n,
6" = (" — " Yk, m=12,...,n,
" =mk, o"=o(t"),
K@ ™) = E(Q4; t™) N P(2,) .

Assume that y is such that a uniform partion D° of I exists such that y is monotone

in every subinterval [f"~', "] of D°. Henceforth we consider only partitions,
refining the partition D°.

We define the approximate state problem:
find the array {ol, o7, ---» O}
such that form = 1,2,...,n
(14) oy € Ky(Qu ™), op =0,
(15 (00, T — O )a, = 0 Vie K, (Q4t7).
Lemma 1.Assume that (10), (11) hold.

Then the approximate state problem has a unique solution.

Proof. 1° We show that K,(Q,, ") &= @ Vm. In fact, (12) yields y(t") ¢°|g, €
€ 6(Q, t™). From (11), the convexity of f and f(0) = 0 we easily deduce that
() 0¥, P().

Let us introduce a projection mapping r4: S(,) — #,(€2,) by means of the relation

(16) <1: — 1T, 6h>ﬂh = 0 VO';, € '#h(gh) .
Let us write for simplicity ¢°|, = ¢° and show that
- 2™ r46® = r(p(") 6°) € E,(2 ™) -

In fact, given a function w,, € V,(2,), we have e(w,) € #,(2,) and w, € V(2,), so that
<9(Wh), 'Y(tm) rhdo>§),, = <e(wh)’ Y(tm) 60)0;- = L!I;.(wha tm) .

Consequently, (17) holds.
Furthermore, we have

0% = (mes 7)7! J‘ 6®dx VT e T\(v)
7
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and the convexity of f implies
(18) Wt")a® e B ae. = y(t") e’ e B ae.,
where
B ={teR,|f(x) < 1}.

Consequently, y(t") r,6° € P(Q,) follows from (11) and (18). Thus we obtain
P(I™) 1,6° € Ky(2,5 ).

Every inequality (15) is equivalent with the minimization of the quadratic functional

(p(‘c) = %”1’.”527;‘ - (”I’l';c_l’ T)Qh

over the set K,(@,; ). The functional is strictly convex, the set K,(®,; ") is non-

empty, convex and closed in S(©2,). Hence the existence and uniqueness of gy, follows
by induction scheme form = 1,2, ..., n.

Proposition 1. Assume that (9), (10), (11) holds. Let {v,}, h =277, j = 1,2,..,,
be a sequence of v, € ULy, such that v, — v in C([0, 1]). Let { Ea}} ", be the solution
of the problem (14), (15), extended by zero to the domain Qs — .

Then for any m = 1,2, ..., n

(19) lim Eojj, = oy in S(Q,)
h=0
and the functions o} satisfy the following conditions:
(20) of =0 on Q,— Qv),
(21) o¥law € K(Q(); 17),
(22) (96,7 — 0oy 2 0 Vz € K(Q(v); 1),

with ¢ = 0.

Proof. 1° By an induction scheme, we prove that { Ea},},_,, is bounded. In fact,
we may substitute t = y(t™) r,6° into the inequality (15). For m = 1 we obtain
(cf. (3))

lowlla, < ¥(0) - [10°]a, = ¥(D) - b1*|rs6°]lo,0, = Cll6°]0,0, = C -
Consequently

”E‘T;k”o,no = bo_llze-

Assume that Ee™ ! are bounded by a constant, independent of h. Then we may
write for m > 1 (dropping the indices hk for the time being)

Ham”éh é (dm~l’ dm)!lh + (T’ " — Gm—l)ﬂh = "0'"'”9" ""m_lum +
C(lo"lan + o™ 2 = Clo”|a, + Co.
We conclude that
(23) “‘7;’.1"9,, =C, m=1,...,n,

where C is independent of h.
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Consequently, there exist a subsequence of {Eajy}, h — 0, (we shall denote it by
the same symbol) and a function o} € S(£;) such that

(29) Eo}, — o (weakly)in S(Q,), Vm.

2° We show that ¢ = 0 a.e. in Q; — Q(v). In fact, let o} + Oonaset M = Q; =
= Q(v), mes M > 0. Introducing the characteristic function y, of M, we obtain
forh - 0

CEafy, xuOtYa, - <o%s Xm0y da, = [o%F . > O
by virtue of (24).
On the other hand,
|<Edhmk’ XMd;c”>05| = |<E0';:;(, 6:‘)9;‘an é
= "Ec;:;‘"().ﬂ.s . ”6;{"”0,9).{'\1‘{ -0

follows from (23), if we realize that

lim (mes (2, " M)) = 0.

h—0

Thus we arrive at a contradiction. %
3° We show that

(25) o}|aw € K(Q{v); ™) VYm.

Let w e V(2(v)) and denote its extension by zero into @, — Q(v) by Ew. There
exists a sequence {w, ', x — 0, such that

w,e[C(Q,)]*, w,=0 in @, —Q(v), supp w,nI'(v) =090,
(26) w,— Ew in [HY(Q;)]> for »x—-0.

Obviously, w,|o, € V(€,) for all sufficiently small h. Let us consider the interpolates
n,W, € V,(2,) and denote their extensions by zero to Q; — Q, by the same symbol.
By definition of &,(Q,; t™) we have

<6;:;c5 e(nhwx)>ﬂh = Lﬂ;.(nhwx’ tm) >
which can be rewritten as follows
(27) <EG;:;‘, e(nhwx)>95 = Lﬂa(nhwn’ tm) .
Since

mw, > w, for h—0 in [HY(Q,)]*,
we have

e(mw,) > e(w,) in S(Q).
Passing to the limit with h — 0 in (27) and using (24), we obtain

07> e(Wx)a, = Loy(#, 1) -
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Passing to the limit with x — 0 and using (26), we arrive at
(o o(EW)>a, = <o, 6(W)>ate = Las(EW, %) = Lo, ).

Consequently, o € &(2(v); ™).

Since P(©;) is closed and convex in S(€,), it is weakly closed.

Any Eo}. belongs to P(2;) and hence the weak limit o' € P(25). Then of|ac, €
e P(Q(v)).

4° We show that the restrictions of a7 solve the inequalities (22). Let = € K(2(v); ™)
be given. First we construct a “‘shifted” function 7* on the domain Q, = Qv + 1),
where A is a small positive constant.

Let us define:

o=1—7y1t")d°,

denote by Ew the extension of @ by zero to the negative half-plane (x; < 0)and
o*(xy, x;) = Eo(x; — 4, x,), xe€Q,.

We can show that
(28) (0, e(w))g, =0 VYweV(Q,).

In fact, we use the coordinates
(29) YVi=X—4, y2=x;
and define w(y) = w(y; + 4, y,) = w(x). Then

(0?, e(W)>q, = f Eo(x; — 4, x,) e(w(x)) dx =

2

. j  oly) o(#() dv = j oly) e(@(y)) dy = 0.

*

Here we used the fact that w e V(Q(v)), @ = 7 — p(f) ¢°, = and y(¢") 6° belong
to £(Q(v); ™).

If we define

= (") 0® + 0(2) &,
where
o) = (1 = J@f)I(1 + V@),

then 7% € £(Q;; ™) follows from (10) and (28).

Next we prove that t% € P(Q,). To this end we introduce

a*(y) = 2(t") o%(y) + o(D) o(y), yYeQ),

where y is defined as a shift of x by (29).
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For all xe Q; = (0, 2) x (0, 1) we may write
(30) [=() = a*(¥)]| = (") (e°(x) - o°(y)] =
<790 [o°() - °(y)] = Clx -y = 1,

making use of the assumption (9).
One can prove that

(31) U+ YD ) = (1 + YD () < 1

holds for sufficiently small A and for almost all y € Q(v). In fact, we have
(L+Ne" =1+ YD) e® + ez — 9(") o°)] =
=y(Me® (1 + e)l/*/1 + 1:(1 - ﬁ)
€ €

and (31) holds for \/(4) < e, since both y(¢") (1 + &) ¢° and © belong to the set
P(Q(v)

Since f is Lipschitz, we may use (31) and (30) to derive

f(# ) < f(e*(y) + C[e00) — ] = (1 + YD) + Ca =1
for sufficiently small 4 and for almost all xeQ, = (0,4) x (0,1). In the strip
(0, ) x (0, 1) we have
™ = (") 6°
since w*(x) vanishes. Then
fEHx) = f(r(") o°(x)) = 1

follows from the assumption (11). Thus we obtain
(32) e P(Q,) n 6(2,; 1) = K(Q,; )
for A sufficiently small.

Besides, we may write for A - 0

(33) I7* = 0.2 = o(?) ©* — @] ,00) =
< o(4) |o* — @fo,00y + () — 1] [@]o,00) = O,

lim g(4) = 1

since

and
lim |0* — @]o,0u) = 0

(cf. [7] — Theorem 1.1).
The function 7* will now be used to the construction of test functions in the ap-
proximate problem (15). It is obvious that Q, = , for all k < hy(4). Then

g, € (2 ™) N P(Q,) = K(Q,; ")
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and
(34) ritt € 8(Qy; ™) N P(Q,) = Ky(2; 1)

(cf. the proof of Lemma 1).
Let Q5 be a polygonal domain inscribed into @, (i.e., 2,4 = Q,) and such that

the following two conditions
(l) ‘Qh < QAH ’
(ii) the partitions D, of the interval [0, 1] refine the partition Dy, (i.e., H is a multiple

of h),
hold for the sequence of h under consideration, provided h < h,(2).
Let us consider extended regular triangulations

Twn 2 T i(vs)
of the domain Q,; and the projection mapping
% S(Qum) = H#4(Qn)

defined on 7,5 by means of the relation parallel to (16). Obviously, ryz* is an

extension of r,t* onto Q,y.
By definition (15) and using (34), we may write

(aa;l';nrhrl_”hmk)ﬂhgoa m=192,'--9n9

which is equivalent to

(35) (ark’ rhrl)ﬂh - (dhmk_l’ rhrx)ﬂh - ”a}’:;c”f);. + (O'hmk_l’ o‘l’:;c)ﬂ;. g 0.
First let us consider m = 1. Since 62, = 0, we obtain
(36) ("'}}ks "h"l)n,. 2 ”0';}1;"?2,, .

Passing to the limit with & — 0, using (20), (24) and
(37) lim [|[r}fe* — <*], 0., =0,
we deduce that ""0
(38) (0 7 e = (Eone> T2 00 = (04 ez = (085 ™) -
The weak convergence (24) and (20) imply
e tm inf el 2 [ot o
To prove the strong convergence (19), we insert © = oy € K(Q(v); t*) (cf. (25))
into the previous argument. We obtain — as in (36) —

”Ea.;k”éa = (a;k’ rh(al:)x)ﬂh .
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Passing to the limit with h — 0, we arrive at
im sup |Ezef3, = (o4, (01 )aco-
Passing to the limit with A — 0 and using (33), we obtain

timsup [Eobl3, < o
Combining this result with (39), we are led to
tm B, = Jet 5,

Together with the weak convergence (24) and the equivalence of norms we thus
obtain that

Eo}, - o}
(strongly) in S(R,) for h — 0.
Let us assume that form > 1

(40) lim Ea}, ' = o™ in S(Q;) (strongly).
h=0

Passing to the limit with h — 0in (35), we obtain

(41) (@3 1472, = (Eaj 1370)a,, = (0%s ©)a)

using also (24) and (20). The same argument yields

(42) (@ 1)a, = (677, ™agy -
Moreover, from (40) and (24), (20) we get
(43) (om ' ":;c)n,. = (E"Tkul, Ea':;c)ﬂs - (0':'_ ' 0;’:")9(.;) .
The weak convergence (24) implies
(44) lilﬁ‘ionf lowla, = lo¥]ae -
Combining (41), (42), (43) and (44), we arrive at
(“;zn’ Tl)a(v) - ("Z'—l’ 1;.)0(0) + (0'?_1’ % )aw) = ""'kmuszz(v) .

To prove the strong convergence (19), we insert 7 = o} into the previous argument.
We thus obtain, on the basis of (35),

(@5 o) Na, + (@5 o = 7l07))a, Z |0l -
Passing to the limit with h — 0 and using (41), (42), (43), we may write

:ilg sup |Eoqi[a, < (a7 (6F)ay + (65~ ok — (0%))aw) -



Passing to the limit with 4 — 0 and using (33), we obtain
lim sup | Eoji[G, < [o7]ae -

Combining this result with (44), we arrive at
() im £ 3, = oF -

From the weak convergence (24) and the convergence of norms we deduce the
strong convergence
(46) Eoy, — af
in S(Q,) for h - 0. By induction we thus conclude that (46) holds for all m =

=1,2,...,n.
Finally, let us write (35) in the form

0 < (Eafy, — Eop” ', ric* — Eop)a,.
and pass to the limit with & — 0. By virtue of (46) and (37)
0 < (o] — a1, 7% = 0o -

Passing to the limit with 2 — 0, on the basis of (33) we obtain the inequality (22).
It is easy to show that there exists a unique array {e, 67, ..., 67|, satisfying

(21), (22). In fact, every inequality (22) is equivalent with minimization of the follow-
ing strictly convex functional

?(0) = 4|o]aw — (68", 0)ac

on a convex closed and non-empty set K(2(v); t™). From the uniqueness we conclude
that the whole original sequence {Ea},}, h — 0, tends to o} in S(Q,), for any m =
=1,2,....n Q.ED.

Proposition 2. Assume that (9), (10), (11) holds. Let & be the solution of the state
problem (5), (6) and let the array {a}}n_, be the solution of the semi-discrete
problem (21), (22) on the domain Q < Q(v).

Then

max |of — o(t")]o,0 £ Ck'/?
1Smsn

holds for sufficiently small time-steps k.

Proof. We shall follow some ideas of C. Johnson [5], [6], (cf. also [8]). The key
role in the proof is played by the following

Lemma 2. Let the assumptions of Proposition 2 be fulfilled. Then there exist
positive constants C and k, such that

S k[ool|20 < C Vh < ko .
m=1
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To prove the lemma, we shall introduce a penalized semi-discrete problem first,
as follows. We define the projection mapping n: R, > # onto the convex set #
with respect to the scalar product <+, -)> and the penalty functional

J(o)=@uw vt - )5 q, teS(Q), n>0.

We shall consider the penalized semi-discrete problem: find the array

1 2 .
{4y Ouys ---» Op,) such that o}, € £(2; ™),

(47) (9op, 7)o + <T (o), e =0 Vreé,, m=1,..,n,
where o}, = 0,

8o = {1€5(Q)| <7, e(w))g = 0 Ywe V(Q)}
and

I = e = 7

is the Gateau derivative of J,; note that J, is monotone and J, is convex.
The problem (47) has a unique solutlon for every m, since oy, mlmmlzes the
strictly convex, coercive and continuous functional

®(0) = 3||o]5 + k J,(0) — (™!, 0)g

on the set &(Q; ™), which is closed and convex in S(Q). By the technique of C.
Johnson [5] the following a priori estimates for o}, can be proven. Positive constants
C and k, exist such that

(48) max ||of e £ C,
1smsn

(49) Yk J(af) £ C,

(50) ‘L_j“kIIJL(”L"u)UL*(n> =C,

hold for all k £ ky and any u > 0. Here
[Zlim = | 2] 0.
Q2
Making use of (50), one derives that positive constants C and k, exist such that
(51) ¥ ks, 3.0 < €

holds for all k < k, and all u > 0.
Let us consider a sequence u — 0, u > 0. From (48) it follows that
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(52) ol = (% Ko 2.0 = €

forall k < ko and u > 0.
Hence a subsequence of {4} exists such that

(53) 6y, — 6, (weakly) for p— 0

in the space I*(S) of n-arrays, equipped with the norm |- |z, introduced in (52).
Similarly, (51) yields the existence of a subsequence such that

(54) 0oy, — S, (weakly) for p—0 in I*(S).

It is easy to verify that S, = 05,.
Next we show that &, is a solution of the semi-discrete problem (21), (22). Since
J, is convex, we have

(55) Ju(fm) 2 J”(a,""”) + <J;t(°'kmu)’ - ";cnu>ﬂ .

If 7" € £(Q; t™), then ©" — o}, € &, and we may use the equation (47) to obtain
(we again drop the subscripts)

{Ty(@™), 7" = 6™g = — (6™, 7" — 0™)q .
Combining this with (55), we may write
(@6™, 7™ — 0™)g + J,(v") — J(¢™) = 0.
Let us consider 7" € K(2, ™), so that J,(¢™) = 0 and
(00p,, T" — op)a = J(of) 2 0 Vi"e K(Q; ™).
On the basis of (53), (54) we deduce forany M = 1,2, ...,n

M M
(56) 0 £ lim sup [- Zlk(aa}:‘”, oo + Zlk(a";:w ™o] =
pu- m= m=
y M M
— tmsop [~ 1Jo5f5 - 45 o, o813 + 3 ket ] =
u m= m=

= —#|afla - X o7 ~ 74 + X k(0a7, +7)a =

M
= Zlk(aar, ™ — G-

We can show that &} € K(Q; t™) Vm. Recall that o}, € #(Q; t™) and &(Q; ™) is
weakly closed in S(Q). From (53) it follows easily that o Ji,— &5 (weakly) in S(2).
Consequently, 6§ € &(€2; ™).

Making use of the estimate (49), we obtain

C 2 kJ(o%,) = 20) " k|, — nol, 3.0
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Then
|6y — 6730 < hm mf lop, — o]0 < lim 2uCk™' = 0
and consequently, &y € P(Q).
We may thus insert " = &} into (56) for all m < M, if M > 1, to obtain
(06¥, 1 —6y)e 20 VieK(Q,t™), M>1.

The case M = 1 follows from (56) immediately.
Since the problem (21), (22) is uniquely solvable, we have &y = o} Ym.
Finally, making use of (54), we arrive at

3 klooflio = iminf 3 kool s

Thus the Lemma 2 is proved. Modlfymg slightly the argument of C. Johnson ([6] —
Theorem 1.) we are now able to prove the Proposition 2. Q.E.D.

Theorem 2. Let the assumptions of Proposition 1 be satisfied. Let the array
Ow = {0}, 6, ..., oy} be the solution of the approximate state problem (14), (15).
Let us define

fhk(o'hk) = kilcj |- fz(";l;k) dx,

Q2

where c; are the coefficients of the trapezoidal or Simpson’s rule.

Then an increasing positive function H(k) exists such that lim H(k) = 0,
k=0

}Cif:) F hk(o'hk) =4 ("(U)) >

h<H(k)

where o(v) is the solution of the state problem (5), (6), on the domain Q(v).

Proof. Using the extensions Eoy, and ¢ = ¢(v) by zero to the domain Q; ~ Q,
and Q, ~ Q(v), respectively, we may write

#(0) = J‘TF(t) dt, F(i) = L FX(o(t) dx,

n
Fulon) =k Zlchf.k » Fuo= J. fH(Eop) dx .
= o
Denoting a(’) by ¢’, we also have

|f*(Eal)) — f3(e”)| < |f(Eoly) ~ f(a’)l |f(Ealy) + f(o))] <
< C|Eaj, — '] (2[f (') + C|[Eaiy — o']).
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Since f(0’) < 1 a.e. in Q,, we obtain

) — F()] = f If(Eel) ~ 1) 0x 5

scC [jﬂd]]Eaik - o] dx + J;J[E::,’,k - o/|? de <

< Cl)Esiy = ’llo.0, + |Eon — o'[3.0,] -
Making use of Proposition 1 and 2, we may write
61 Bk~ loa, < [Ech = olloa, + ot - Lo, 0
fork - 0, h < H(k) - 0.
Consequently,
(58) lim [F}, — F(Y)| =0
B0 < H(k)

holds uniformly with respect to j.
Next we show that the function F is continuous on I. In fact, let t, s € I. Then

[F(s) = F()] = C[|lo(s) = o(D)]o.a, + [la(s) = a()]5.0,]

and the continuity is a consequence of (4).
For any F e C(I) it holds

(59) lim

k=0

jTF(t) dt — ki ¢ F(tf)l =0.
j=0

0o

Finally, we write

(60) 1#(0(0) = Sulowdl 5 || 70t = k5., )]+ 65 eF(0) = ).

0 J

On the basis of (58), for the last term we have the upper bound
(61) kY ¢;|F(¥) — Fj| < Cnke, = CTey Ve, >0,
Jji=1

if kand h = h(k) are small enough.
Combining (59) and (61), the assertion of the theorem follows from (60).  Q.E.D.
We define the Approximate Optimal Design Problem: find u(® e U*, such that

(62) F hk(“hk(“;,k))) =4 hk(o'hk(vh)) Yo, € U:d >

where ,,(u") denotes the solution of the approximate state problem (14), (15) on
the domain @, = Q(uf").

Lemma 3. Assume that (10) and (11) hold. Then the Approximate Optimal Design
Problem (62) has a solution for any h = 1/N and k = T|n.
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Proof. Denoting by a € R¥N+1 the vector of nodal values
v;.(ih) =a;, i=0,1,..,N,
it is readily seen that
v,eUlwaed,
where &/ is a compact set.
One can prove that the function

a— ¢ hk(o'hk(a))

is continuous on the set &7. In fact, the conditions

<e(w,), 61> ani@) = Lowa(Wi ") Yw, € Vi(24(a))
are equivalent with linear systems
(63) A™(a)s™ = F"(a), m=1,2,...,n

where s™ denotes the vector of values of o in the triangles € 7 ,(a) and the
functions a > A™(a), a— F™(a) are continuous. The conditions a}; € P(2,(a)) are
equivalent with the following system of inequalities

(64) flomls) £ 1 VT €T )(a),

which are independent of a.
The coefficients of the quadratic functional

O*(s") = 0(7) = 3|7]gy@ — (O "> Do)
depend continuously on a. The minimizer s™(a) of ®*(s”) with the constraints (63),
(64) exists by virtue of Lemma 1 for any a € &/. Consequently, we can prove that
the functions a > s"(a) are continuous. The continuity of _#,,(d,(a)) then follows
easily from the properties of the yield function f.

Theorem 3. Assume that (9), (10) and (11) hold. Let {u{®}, k — 0, h — 0 be a se-
quence of solutions of the Approximate Optimal Design Problem (62), such that
h < H(k) (i.e., h is sufficiently small with respect to k), h = 27, j = 1,2, ..., and

k = Tn.
Then a subsequence {uf®} exists such that
(66) uPp > u in C([0,1]),
(67) max ”Eo,;k (ufP) — a™(u)]o.0, 0

1=msT
for k-0, h<HKk)-o0,

where u is a solution of the Optimal Design Problem (7), ¢™(u) is the solution of
(5), (6) at t = t™, extended by zero to Q; = Qu):

Proof. Let v € U,4 be given. There exists a sequence tu,,;, h — 0, such that v, e U",,
v, converge uniformly to v on the interval [0, 1] (cf. [9] — Lemma 7.1).
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Since U,4 is compact in C([0, 1]), a subsequence {u§®} exists such that (66) holds
and u € U,q. By the definition (62) we have

Fielow(ui)) = Frelom(vi)) -
Passing to the limit with k — 0 and & < H(k) - 0, on the basis of Theorem 2
we obtain
H(o(w)) = £(o(0)),
so that u is a solution of the problem (7). The convergence (67) follows from the
estimate (57), by virtue of Propositions 1 and 2.

Corollary. Let (9), (10) and (11) hold. Then there exists at least one solution
of the Optimal Design Problem (7).

Proof is an immediate consequence of Lemma 3 and Theorem 3.

Remark. The limit of any uniformly convergent subsequence of { u,(,")} represents
a solution of (7) and (67) holds for the corresponding stress fields.
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Souhrn
OPTIMALIZACE TVARU PRUZNE-DOKONALE PLASTICKEHO TELESA
IvAN HLAVACEK
Minimalizuje se Géelovy funkcional vzhledem k &asti hranice, na niZ je (dvojrozmémé) téleso
upevnéno. Kritériem optimality je integral z &tverce funkce plasticity. V ramci Prandtlova-Reussova
modelu je stavova uloha zformulovana v napétich pomoci evoluéni variaéni nerovnice. Pomoci

metody koneénych prvku se definuje pribliZzné feSeni a dokazuje se konvergence k FeSeni ptvodni
optimalizaéni alohy.
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Pe3ome
OINTUMM3ALIUS ®OPMEI VIIPYIO-IUVIACTUYHOI'O TEJIA
IvaNn HrAvACEK

MUHAMM3RPYETCS LeJIEBOi QYHKIHOHAII OTHOCHTEIILHO YaCTH IPAHHULIBL, HA KOTOPO’ (AByMepHOE)
Teno ¢ukcuposBano. KpurepueM ONTHMAJIBHOCTH CIYXHT MHTerpain (GyHKIMH IUIaCTHYHOCTH.
B pamxax monem Ipaunnrina-Poiica 3amaya cocrosnus (popMyMpoBaHa B HANPSDKEHHAX IOCPEIC-
CTBOM 3BOJIIOUMOHHOTO BapMallHOHHOro HepaBeHcTBa. IIpu nmoMomu MeToaa KOHEYHBIX JJIEMEHTOB

onpeaenseTcs NPUOIMKEHHOE pEINeHHe M OOKA3bIBAETCS CXOOMMOCTh K PEIUEHHMIO IPOGIeMEBI
ONTHMHB3ALIAN.
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