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Summary. The paper concerns the (local and global) existence, nonexistence, uniqueness and 
some properties of nonnegative solutions of a nonlinear density dependent diffusion equation 
with homogeneous Dirichlet boundary conditions. 
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0. INTRODUCTION 

This paper deals with the (local and global) existence, nonexistence and some 
properties of nonnegative solutions of the initial-boundary value problem 

vt - A(vm) = f(v)\ in D x (0, T) , T > 0 , 

(0.1) v(x, t) = 0 on 3Dx (0, T) , 

v(x, 0) = v0(x) in D , 

where m is a positive constant less than 1, D is a bounded domain in RN with smooth 
boundary <9I), A is the Laplacian, f is (in general) a locally Lipschitz continuous 
function with f(0) _ 0, and v0 is nonnegative and bounded. Problems of this kind 
arise in the theory of plasma physics, where v denotes the plasma density, and so it 
is natural to consider v jg 0 only (the casef = 0, m = 1/2 corresponds to the "Okuda-
Dawson diffusion" [3]). Computing the Laplacian A(vm) = div(mvm_1 grad v) we 
see that the diffusion coefficient K(v) = mi/""1 (0 < m < 1) tends to infinity as 
v I 0 which is why we speak about the so-called "fast diffusion" case. The most 
striking manifestation of this type of the nonlinear density dependent diffusion is 
the fact that the solution of Problem (0.1) withf = 0 (for f =$= 0 see Section 4) decays 
to zero in a finite time T* depending on the initial data (see [13]). This contrasts 
with the heat conduction case, m = 1, and the "slow diffusion" case, m > 1 (K(v) = 
= mv™'1 tends to zero as v J, 0), where the solutions decay to zero in infinite time. 
An other serious consequence of the "degeneracy" of this equation is the fact that 
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the solution need not be classical (even if the data are smooth) near the points where 
v = 0, and it is necessary to consider some well defined generalized solutions (see 
[13]). 

In Section 1 of the present paper we solve Problem (0.1) with a global Lipschitz 
continuous function / using the method of lines, which was applied to the "slow 
diffusion" case in [7] (see also [4]) and has been intensively studied in [8]. The 
exact power nonlinearity in the diffusion term seems to be necessary for our way 
of proofs, but this loss of generality is, in our opinion, counter-balanced by its 
simplicity and obviousness. The continuous dependence as well as the comparison 
principle stated in Section 2 are obtained by an adaptation of the method of [1]. 

In Section 3 we use the "maximum principle" from Section 1 and a uniqueness 
result (Section 2) to prove the local existence for an arbitrary locally Lipschitz 
continuous function / , and then the nonexistence of a global solution of Problem (0.1) 
is established (see [11], where the slow diffusion case is considered). In Section 4 
the existence of the finite extinction time for / ^ 0 is demonstrated by a simple 
comparison technique. 

1. GLOBAL EXISTENCE FOR SMOOTH INITIAL DATA 

In this section we prove the existence of a global solution of Problem (0.1) as­
suming global Lipschitz continuity of/and smooth initial data. In what follows it is 
more convenient for us to transform Problem (0.1) by setting u = |v|msgn(v) into 

(P(u))t -Au= f(P(u)) in QT = D x (0, T) , 

(1.1) u(x, t) = 0 on ST = dD x (0, T) , 

u(x, 0) = u0(x) in L>, 

where /?(w) = |w|* sgn (u), a( = l/m) > 1, and from now on we shall deal only with 
Problem (1.1). 

Remark. The function spaces we use are rather familiar and we omit the defini­
tions (see e.g. [8], [9]). In the sequel we shall adopt the notation \D u(t) <p(t) = 
= jD u(x, t) (p(x, t) dx. Nonnegative constants will be denoted by C, which may 
stand for various constants even in the same discussion. 

Our result reads as follows: 

Theorem 1.2. Let T > 0 be arbitrarily fixed. Suppose that u0 e Hl(D) n L°°(I)), 
uQ = 0,/(0) = 0 and f is globally Lipschitz continuous with a constant K. 

Then Problem (1.1) admits a (strong) nonnegative solution u(x, t) such that 

u e Q[0, T] ; L2(D)) n L»([0, T] ; H0(D)) n L°(QT), 

u^^eH^T];^^)), 
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and the equation is satisfied in the sense that 

(1.3) f ((P(u(t)))t w + Vu(t) Vw) = f f(p(u(t))) w , «(0) = «0 
JD J D 

holds for any test function w e H0(D) and a.e. on [0, T]. 
Moreover, the following estimates hold: 

(1.4) |«(0I*-W) = ( M - - a » + (/(0)/-J") exp ((X + 8) mf) 

(/he "maximum principle") for 0 <^ t _Z T, Q < e < co, 

(i-5) r - ~ - f i(«(*+im^D) + n«(o) = n«o) 
(a + ij J 0 

/0r 0 ^ f £ T, where V(£) = J jD |V£|2 - JD J0/()8(r)) dr, and 

(1.6) \\u(t) - u(s)\\LHD) ^ C\t - , | ^ » 
for 0 ^ t, s ^ T. 

The key idea for solving Problem (l.l) is to replace the /-derivative by a difference 
quotient of the given step size Ant, where 

Ant = Tjn for /? ^ n0 

(without loss of generality we may assume n0 ^ KT). 
Therefore, let us first treat the problems 

^ " ) - ^ - l ) - A u ? ^ i in D, 
(LI) Ant 

un = 0 on 3D , i = 1, 2 , . . . 

where//!_! = /(j8(uf_i)) and u0 = u0 is given. 
Under our assumptions we are able to solve Porblems (1.7) recursively for un 

by the already known u"_ x and thereby construct sequences of step approximate 
"solutions" {un}, {u*}, defined by 

(1.8) un( = un(x, t)) = un(x) for iAnt _i t < (i + 1) Ant, i = 0, 1, ... , 

(1.9) u*( = u*(x, r)) = P(un(x)) for iA„l ^ l < (i + 1) A„*, i = 0,l,..., 

and piecewise linear approximate "solutions" {u*j, 

«:(=«:(x, 0) = P(u1(x)) + l=ZJ^(p(u1+l) - /?(«")) (*) for 
(1.10) A»' 

iAa« g f ^ (/ + 1) \ t , i = 0, 1 , . . . . 
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Their convergence to a desired solution u (or f}(u)) of Problem (1.1) in the sense given 
later on will be shown. We start with 

Definition 1.11. A function u" is said to be a solution of (1.7) if u" e H^(D) n 
n La+1(D) and the following identity holds for all w e H^(D) n La+1(D): 

(112) | ^ n - ^(u^o w + V M „ V W N = j 

Lemma 1.13. There exists a unique solution u\ of Problem (1.7) for any positive 
integers i, n *> n0. 

Moreover, each w" e L°°(D) and u\ = 0 On D. 

Proof. By induction with respect to i (n ^ n0 arbitrary). By the assumption we 
have ul = u0e Ho(D) n L°°(D), w0 ^ 0. Suppose the assertion is true for i = 1, 2, ..., 
k — 1. Let us now prove it for i = k. 

Existence. Let 

J(») = f (2-qVt,|2 + (A,.(a + l))"1 |t>|*+1 - / ; . . » - (jM)-1 j8(«J_.) -) . 

Then it is easy to see that J is a continuous, strictly convex and coercive functional 
over Hl(D) n La+1(D). The existence of a solution of Problem (1.7) for i = fc now 
follows immediately if the classical results concerning the minimization of J,namely 
the existence of the minimum and the characterization of solutions, are taken into 
account (see e.g. [6]). 

Nonnegativity. By contradiction. Let u\ < 0 on E cz D and meas (E) > 0. 
Putting w = (ul)" ( = min (0, ufl) into (1.12) we obtain 

0 < (Ant)~
1 f (fi(ul) ul + |Vt/2|2) - f (K_! + (Ant)"

x P(un
k-1)) "2 -S 0, 

j £ JE 

because /fc
rt_j + (AMt)-1 fi(un

k-)) = 0 (by the induction hypothesis u\_1 ^ 0 and 
K ^ (A,,*)"1). This contradiction yields u\ ^ 0. 

Boundedness. Suppose the contrary, that is, there exists {cj}f=l9
 cj = cj+u 

Cj -> co for I -* oo and K, = {x e D, u£ > c j with meas (K,-) > 0. Putting 

u "ľ 
ufc for x G D \ Ky, 
c7- for x e Kj 

we easily obtain J(u\\J) < J(u£) for sufficiently large j, which contradicts the mini­
mum property of u\. 
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Lemma 1.14. For any n g: n0 and 1 ^ i g n, the solution u" of Problem (1.7) 
satisfies 

(U5) ||«-1_-(_> = (||«o|Uz» + (f(OW) exp ( ^ ~ f ) . 

for any e5 0 < e < (Ant)~
l. 

Proof. Let us omit the index n throughout the proof. Putting w = (ut)
k into (1.12), 

where a positive integer k is arbitrarily large (it may be easily shown by Lemma 1.13 
that (ut)

k e H0(D) n L°°(D)), we obtain 

f (Ui)*
+k + Atk \ (u^ |Vuf|

2 = At f ( f . ! + (A*)"1 flu,-!)) (utf> 
JD JD JD 

which by the Lipschitz continuity off implies 

(1.16) f («,)«+* S(l+KAt)( («,_.)«(«,)* +/(0) At f («,)*. 
J D J D J D 

Applying Young's inequality to the last term of (1.16) we further have 

(1 - s At) ! (u;)"
+* g (1 - £ At) f (1 + t- At) («,_x)« («,)* + At C(e) (/(0))("+*>'« , 

JD JD 

where n = (K + g)/(l - e A.) and C(e) = (fc/e(a + k))*/a a meas (D)j(a + fc). The 
above inequality yields (again by Young's inequality) 

(и f)"+* ѓ(ì+t, Дŕ)<«+*>t« («,-iГ* + 
(1.17) 

+ (a - (xs At)-1 (a + fc) c(e) Af f(0)(*+*)/a . 

From (1.17) we obtain recurrently 

(1.18) f (W f)
a + f e £ (1 + fl At)<<«+*>/« / f (Uoy+* + (8~i f(0)ya+k)/aC,N), 

where the constant C =_= C'(a, fc, s) is such that its (a + fc)-th root tends to 1 if 
k -> oc. Indeed, (1.17) may be formally rewirtten as yt g ayi-i + b g ... <£ al>0 + 
+ b(a* - l)/(_j - 1) g a^o + b/(a - 1)) and going back using 
Y\ At((\ + i; A/)l(«+t)/flt - I)"1 g 1 we have (118). Now, taking the (a + fc)-th 
root of (1.18) and letting k -> oo we obtain 

||«,fl_-<_) _. (1 + fj A0'''«(||MO||L-(I,) + (s -7(o))m) , 

where we can still estimate (1 + r, Af)'7« by exp (i Af m(K + e)/(l - e At)). This 
completes the proof. 
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Corollary 1.19. The sequences of the approximate "solutions" defined by (1.8) — 
— (1.10) are bounded in L*(QT) (e.g., {un} is bounded by L_ = (||WO||L«(D) + 
+ (f(0)JB)m) exp (Tm(K + e)/(l - Anote))). 

Lemma 1.20. There exist nonnegative constants Lt such that 
n llf «"_<«+*>/2 - (un _(*+1)l2 2 

(i) __ _____ J_____ii A_. __ L_ _ 
i = i || A„f j 

(1.21) (ii) ||V«.||__(I)) _ L3 , 1 __ i _S n , 

L-(D) 

Ш) t|"W>-/W-'ľ __!.. 
' = i A_í 

(ш 
IІL-(D) 

where ai/ estimates are uniform with respect to n __ n0 and Lj depend only on the 
data of our problem and on T. 

Proof. Putting w = ut - u.-! (again omitting the index n) into (1.12) we obtain 

(At)"1 f (/»(«,) - /?(«.__))(«, - «.__) + 2" 1 f |V«f|
2 - 2" 1 f 1V«€__|2 g 

JD JD JD 

(1.22) rg [ ( P /(/}(r)) dr + ["' (/(/?(«._.)) - /(/3(r))) dA ^ 
J D \J m-1 J ttf-i / 

= £ ( f /w)dr+«(#«.) - /3(«i-i))(«i - «<-.))• 

In the sequel, the following inequality plays an important role: 

4a 
(1.23) 

(« + 1) 

. (_,(«+D/2 __ _(«+D/2)2 <; (y , _ __-)(_, _ -) 

for j>. z _ 0, which may be verified e.g. by simple calculation with a nonnnegative 
function _(A) = (A" - 1) (A - 1) - (4a/(a + l)2)(A<"+1)/2 - l)2 for A _? 1. 

So (1.22) by (1.23) yields 

4a(l - K At) 

(«+ l ) 2 J 

(ц.)(«+D/2 „ ( ц ^ . y а + P / г 

Ař 
Ař + 

+ 2 " 1 f |V«.|2 - 2 - 1 f |VMf__l2 S f f" /(/9(r))dr. 
JD JD JDJw.-i 

Summing the above inequality through i = 1, 2,..., fe we obtain 

^2-(Ui^r+i)/2^ (1.24) ^ - - " - - 0 __ f I W * " 
(a + l) 2 ; = i j в | Ař —iÍJ VиJ2 -

369 



- / ( / ? ( r ) )d r< i | V « 0 f - | f{P{r))dr. 
JDJO *-JD JDJO 

Now, Lemma 1.14 and the obvious estimate 

\P(Ui) - P(u^)\ ^ - 2 ^ (max(w ,w / . 1 ) ) ( a - 1 ) / 2 | ( « , ) ( a + 1 ) / 2 - ("*-i)(*+1)/2| 
( a + 1) 

a.e. on D give the assertion (1.21). 
As a result of Lemma 1.20 and Corollary 1.19, using a standard argument (see 

e.g. [8, Lemma 1.3.13]) we arrive at 

Corollary 1.25. (i) The sequence {un} (see (1.8))) is bounded in L°°([0, T]; H^(D)) n 
n LQ0(QT) and there exists a function u such that 

(1.26) un -* u weakly* in L°°([0, T]; H^(D)) 

(through a subsequence). 
(ii) The sequence {u*} (see (1.10)) is bounded in &([(), T]; 13(D)) n L°°([0, T]; 

H0(D)) n L°°(Qr), {w*} given by (1.9) is bownded in L°°([0, T]; H0(D)) n L°°(Qr), 
and 

(i) w* -> w* weak/j in Hx([0, T]; L2(D)), 

(ii) w* -» w* strongly in C([0, T]; L2(Z))), 

(iii) w*, w* -» w* weak/j' in H0(^) for a.e. t e [0, T], 

(iv) w* -> w* strongly in l}(QT), 

(v) w*, w* -> w* a.e. on QT, (through a subsequence), where w* = P(u) 

and w£C([0, T];L2(D)). 

The fact that w* = P(u) follows from the monotonicity of /?(•), (1.26) and 
(1.27) (iv). 

Indeed, from the monotonicity of P we have 

•Г 

0 < ' ({ӣ:~ß{W)){ӣn-W), 
0 JD 

and letting n -* oo we obtain 

- T 

0 ^ f f (w* - fi(w)) (u - w) for any vv e U>(QT) • 
Jo J D 

Putting w = w + Av, A > 0, the above inequality (after letting X -+ 0) yields 

f f («* - £(")) » = 0 for any v e L°(QT) and so w* = p(u). 
Jo JD 
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Now, using our notation, (1.12) may be rewritten in the form 

* ((uXt)), w + Vun(t) Vw) = f f(ut(t)) w, 0<t£T. 
J D J D 

Multiplying this identity by q(t) e L°°(0, T) and integrating over (0, T) we obtain 

(1.28) fT [ ((u*), Wq + Vu„ V(wqj) = f f j(un*) W<? . 
J o JD JO JD 

Letting n ~» oo in (1.28) we obtain by (1.27) (i), (1.26), (1.27) (iv) and the global 
Lipschitz continuity off 

[ ( [ ((P(u))t w + WuVw- f(p(u)) w\q = 0 for any q e L°°(0, T) , 

hence (1.3). 
To prove the estimates (1.4) and (1.5), let now te [0, T] be arbitrary but fixed, 

and for each n let i(n) be such that 

(1.29) tn ^ t < tn + Ant, where tn = Anti(n) . 

By (1.29), the estimate (1.15) yields 

(1.30) |K) |UD) ^ ( M ™ + (f(0)/e)m exp ( |™ ( **J) • 

Taking into account that u„(t) = un
i(n) on [*„, *M + Ant) for each n and that (1.27) (v) 

implies un -> u a.e. on Qr we have the "maximum principle" (1.4). 
To show the energy estimate (1.5) we rewrite (1.24) with the help of (1.29) as 

c (" f K O I 2 + v(un(ij) ^ v(Uo) + c„ I" f IK*),!2 , 
J O J D J f „ J D 

where u** is constructed analogously to w* in (1.10) by means of (u")(a+1)/2. Using 
the estimate (1.21) (i) we obtain the validity of Corollary 1.25 (ii) for w** in the same 
way, and w** = w(a+1)/2. 

Now, letting n -» oo we easily obtain (1.5) by virtue of the weak lower 
semicontinuity of a norm and the fact that tn -> t as n -> oo and (1.21) (i) 
(C„ - 4a(a + I)"2). 

To verify (1.6) we calculate 

IKO - «W||i.(D) ^ f |u("+i>/2(0 - M(«+D/-(s)|4/(«+i) <g 
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g c ( [ r(«<«+i>'2),y/("l) ^ c((j ri("(a+i)/2)'i2) 
hence the assertion. This completes the proof of Theorem 1.2. 

2/(<x+l) 

2. COMPARISON AND CONTINUOUS DEPENDENCE 

In this section we follow the corresponding part of [1]. Though the procedure is 

very similar, we shall indicate its main points because we cannot use the results of 

[1] for another type of nonlinearity. 

Therefore, let us consider the problem 

(2.1) 

(tj(u))t - Aм = g(u) in Qт , 

u(x, t) = 0 on Sт , 

u(x, 0) = u0(x) in D , 

where tj: R -> R is locally Lipschitz continuous and nondecreasing, 

g: R -> R is "locally Lipschitz" continuous in the sense that for each bounded 

subset 17 of R there exists a constant Lv such that \g(u) — g(v)\ ^ Lv\rj(u) — tj(v)\ 

for all w, t; e U. 

Definition 2.2. A (weak) solution u of Problem (2.1) on [0, T] is a function u 

with the following properties: 

(i) u e q ^ ^ j L X D ^ n L ^ Q ^ , 
(ii) w satisfies 

(2.3) i7(мíf))(/>(í) (řf(ы) <p, + u Åę + g(u) ę) ц(u0) ę{0) , Oйt ѓT, 

for all (p e C1>l(QT), <p ^ 0 and y = 0 on 3D, 0 ^ t ^ T A solution on [0, oo) 

(global solution) means a solution on each [0, T ] , a subsolution (supersolution) 

is defined by (i) and (ii) with equality replaced by ^ ( ^ ) . 

Clearly, the strong solution from Theorem 1.2 is also a weak solution of Problem 

(1.1) in the sense of the above definition. 

Theorem 2.4. (i) Lei* u, v be solutions of Problem (2.1) on [0, T] with initial 

data u0, v0, respectively. Let K be a Lipschitz constant for g on [ —M, M ] , where 

M = max( | |n | | L » ( Q T ) , H L « ( Q T ) ) . T h e n 

(2.5) \\rj(u(t)) - IZ«0)I |L-(D) -S |K«-O) - ^ O ) | | L H D ) exp(Kt) . 

(ii) Let u be a subsolution and v a supersolution of Problem (2.1) with initial 

data u0 and v0, respectively. Then u0 ^ v0 implies that u ^ v a.e. on QT. 
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Proof. We start with (ii). For u and v, (2.3) gives 

f (tj(u(t)) - t,(v(t))) (p(t) - f I (u - v) (a<ps + &<p) fZ 

(2.6) J D J J Q ' 
t* i* /* 

g (»j(u0) - .,(-„)) ep(0) + (a(«) - g(v))<p 
JD JjQt 

for any test function cp, where 

. = { « - • 0 — ? ?( I ? ) ) / ( M ~~*0 f ° r " ^ ^ 
otherwise, 

and under our assumptions it is easy to see that a e L°(QT) and a = 0. 
Now let aM = JR£a + n"1, where Rs is a mollifier (see [5, page 72]) and e is such 

that ||a — REa\\L2iQT) S n'1. Then an are smooth and it is not difficult to see that 

(2.7) n- 1
 = an= \\a\\L~(QT) + n"1 , (an - a)\jan -* 0 in L2(QT) 

as n ~> oo . 

From a„ we obtain functions <p„ as solutions of the backward problems 

an(x, s) (cpn)s + Acpn = Xan(x, s) cpn for xsD , se [0, t) , 

(2.8) cpn(x, s) = 0 on a/) , 0 = s < t, 

<?.,(*, 0 = x(x) on D , 

where 0 < t = T is now arbitrary but fixed x(x) e C^(D), 0 = x(x) g 1. The existence 
of <pn e C2,1(QT) follows from the fact that (2.8) is a nondegenerate parabolic problem 
for each n, which may be rewritten into 

(<rV>t ~ an\x> t - *) AI//„ = - A ^ in D x (0, t] , 

(2.9) ^ (x , T) = 0 on dD x [0, f ] , 

UX>°) = X(X) in D, 

and all its data are smooth (see e.g. [10, page 364]). 
Moreover, 

(2.10) 0 = cpn(x, s) = exp(-A(r - s)) on D , 0 = s g t and J J a„((<?>n)s)
2 g Cr 

where the constant C does not depend on n. The first assertion is a consequence of 
the maximum principle [12, page 173] and the second can be obtained from (2.9). 
Multiplying the equation by a

n($n)t and integrating over Qt we find after integrating 
by parts and using Young's inequality 

f f an((uy + \ f |v^(oi2 ;̂ f N 2 + e ff a„((uy + c(s) ff aaxm, 
JjQt 2JD -iJjD JJ f 2 t JJg, 
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hence the assertion, because 

f f a„(x, t - T) ((xffn\f dx dr = f f an(x, s) ((<p„)s)- dx ds . 
JjQt JJQt 

Now, if we put (p = (pn into (2.6) we obtain 

(2.11) f (n(u(t)) - r,(v(t))) X - f f (« - f) ^ g 
JD JJO.t 

g f (r,(u0) - r,(v0)) <pn(0) + (T (g(u) - g(v)) cpn + 2M IT Y-Lh J~ ( % ) j 
JD JJqt JJQtl \an 

where the last term tends to zero as n -> oo by (2.7) and (2.10)2. Thus, letting n-+ oo 
in (2.11) we have by (2.10)! 

-M) + 

(2.12) 

ľ 0/(40) - »M')))x = ľ tøW - чЫУ exp(-Дř) 
JD JD 

+ ľľ (g(u) - ff(») + X(r,(u) - r,(v))У exp (Л(s - t)) 

where £+ == max (C, 0), because by (2.7), an -> a in L2(QT) as n -> oo. By the same 
argument as in [1] (we omit it) (2A2) implies 

f („(«(.)) - ^(t,(f)))+ ^ f (ri(u0) - tfa0))
+ exp(Kt), 

JD JD 

which proves Theorem 2.4 (ii), and (i) follows by adding the corresponding inequality 
for (n(v(t))-n(u(t))y. 

As a consequence of Theorem 2.4 the existence of a global weak solution of 
Problem (1.1) may be proved for u0 e L°(D), 

Theorem 2.13. Letf be as in Theorem 1.2 and u0 ^ 0, w0 e L°(D). Then Problem 
(1.1) has a nonnegative weak solution on [0, oo) (in the sense of Definition 2.2) 
and the maximum principle (1.4) holds again. 

Proof. We choose {u0n} c H*(D) n L°°(D) such that \\u0n - w0||Li(D) -> 0 as 
n -> oo and |JWO„||LOO(D) ^ ||WO||L°°(D)- Let un be strong solutions of Problem (1.1) 
with initial data u0n. Then by (1.4) we have 

MOILED) ^ ( K I U D ) + (f(0)/s)m)exp((K + e) mi) 
and by (2.5), 

\\p(un(t)) - P(uk(t))\\LHD) ^ \\p(u0n) - P(u0k)\\LHD) exp(Kf) ^ 

-S al"olL«(D) K«. ~ WofclUnD) eXP (Kf) , 
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which gives the existence of a function we C([0, T]; L\D)) such that /}(u„) -> w 
strongly in C([0, T]; L1(D)) as n -* oo. Now by Lebesgue's dominated convergence 
theorem we have un -> P~x(w) strongly in Lp(Qr), 1 g p < oo (through a sub­
sequence). Denoting u = /?" *(w) it is easy to see that u is a weak solution of Problem 
(1.1) and satisfies (1.4). Moreover, due to Theorem 2.4, this solution is unique. 

3. LOCAL EXISTENCE AND A BLOW UP RESULT 

We start this section by stating its main results. 

Theorem 3.1. Let f be locally Lipschitz continuous, f(0) ^ 0 and u0 g; 0, u0 e 
e L°(D). Then there exists Tmax, 0 < Tmax ^ oo such that Problem (1.1) has a unique 
weak solution on any [0, T], T < Tmax. 

If in addition u0 eH0(l>) then this solution is strong and satisfies (1.5) for any 
0 ^ t < Tmax. In the case Tmax < oo we have 

(3.2) lim |K0[|L°O(I>) = +co . 
' ~* Tmax *" 

Moreover, if f satisfies 

(3.3) f(r) ^ Kr + f(0) for all 0 ^ r < oo , 

where K is a constant, then Tmax = oo, i.e. there exists a global solution of Problem 
(i.i). 

Theorem 3.4. Let f be locally Lipschitz continuous, f(0) ^ 0 and 

(3.5) f(r) ;> cry for some c > 0 , 7 > 1 and for all O ^ r < 00. 

Suppose that 

u0^0, u0$0, u0e H0(D) n L»(D) , 2"1 f |Vw0|
2 - c(ay + l ) " 1 f ti0

y+1 ^ 0 
J D J D 

and let u(t) be a strong solution of (1.1) on [0, T], T > 0. Then T satisfies 

(3.6) T<T0~-([ uS+1V (y ' W + l)/c(y - 1) (a + 1) (ay - 1) 

and 

(3.7) KOlt—aw ^ const (T0 - »)--«»-->. 

Proof of Theorem 3.1. Let Af = ||M0|U-(I>> + (f(°))m a n d d e f i n e 

JiAPV)) - | / ( M + !) otherwise . 
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Then Problem (1.1) with / replaced by fM has a unique global weak solution uM 

(Theorem 2.13), and it satisfies 

M O I I L - ( D ) ^ M exp((K + 1) mi) ((1.4) for 8 = 1 ) , 

where K is a Lipschitz constant of the function fM. Now we take S so small as to 
have M exp ((K + 1) m8) S M + 1. So uM(t) is a solution of the original Problem 
(1.1) on [0, <5] and by using the standard continuation procedure we obtainTmax, 
0 < Tmax ^ oo, so that Problem (1.1) has a unique weak solution on [0, T], T < Tmax. 
The arguments for a strong solution are the same. 

Now let Tmav < oo. We first show that 

(3.8) Hm K O I W ) = + 0 0 -
t~*l max 

If (3.8) does not hold then |«(0it-(j» ^ c for all 0 ^ f < Tmax, and (1.5) yields 

l(«('+1)/2).|i,(j» -5 ^ n s t . I 
So we have \\u(t) - w(s)||L2(D) ^ C\t - s|1/(a+1) for allO ^ t, s < Tmax, which implies 
that lira u(t) exists in L2(D). Let us denote it by v. Then (1.5) gives that u(t) -> v 

f - T m a x " 

weakly in H^(D) as t -» Tmax and we have v e Hj(D) n L°°(L>), contradicting the 
maximality of Tmax. 

Now suppose that (3.2) does not hold. Then there exists a sequence tn -> Tmax as 
w ~» oo with |H(0IIL-(D) ^ c - L e t K b e a Lipschitz constant of/ on [0, C* + 1], 
where C* = C + ()(0))m. Then for all n we have by (1.4) 

Htn + OIL-(D) = ( | |«(0I |L- (D) + (/(0)Dexp((K + l)mt) 

for 0 g r g r*, where C* exp((K + 1) mf*) = C* + 1. So 

|K^» + OILOOCD) -̂  c * + X for all n , O ^ ^ r * . 

But for sufficiently large n we have Tmax - *„ < ?*, therefore 

IK0| |L.(D) SC* + 1 for frt ^ t < Tm *max > 

which contradicts (3.8). 
In the end, let / satisfy (3.3), then the solution v of Problem (1.1) with f(r) = 

= Kr + /(0) is a supersolution of Problem (1.1) (with the original / ) which exists 
globally (Theorem 1.2) and so does u by Theorem 2.4 (ii). 

Proof of Theorem 3.4. Let v be a solution of Problem (1.1) with/(r) = cry and 
v0 = u0. Then v is a subsolution of (1.1) and by the comparison result stated in 
Theorem 2.4 (ii) it is sufficient to prove the assertion for v. The proof proceeds in 
a standard way (see e.g. [11]). 
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The assumptions on u 0 imply by (1.5) that 

(̂ •9) f \Vv(t)\2 ^ - - - - f « 0 ) a ? + 1 f o r 0 ^ t _ T . 
Jz> a? + 1J.0 

Now putting t>(f) into (1.3) and integrating we obtain 

(3.10) f t>*+1(r) - f u 0

+ 1 = - ± i r f (-|Vt; | 2 + c t f ' + l ) . 
JD JD

 a J O J D 

Since X0 d ~ f | D v"
+1(t) is absolutely continuous on [0, T ] , (3.10) yields 

/«- — f c-ivw+^or*1). 
a JD 

which by (3.9) and the Holder inequality gives the differential inequality 
/ ( r ) _ (g + *) C ( a y "" D (^))(«y+l)/(«+l) = o 

(ay + 1) a 

for a.e. t e [0, T ] , assuming for convenience that meas (D) = 1 . As (ay + 1) . 
. (a + l)"" 1 > 1, by the standard comparison theorem for ordinary differential 
equations we have 

W0Г1 = 7 ґ u S + Л " ( ' _ 1 ) _ (У - ! ) ( « + 1) c(«y - 1) V ' 
Л J D / (aľ + l)a J 

hence (3.6) and (3.7). This completes the proof. 

4. A FINITE EXTINCTION TIME 

Let us begin with the simple problem 

(P(u))t - Au = 0 in D x (0, oo) , 

(4.1) u(x, t) = 0 on 3D x (0, oo), 

u(x, 0) = u0(x) in D , 

where u 0 eHJ(D) n L°°(D) for a while. It is known that the solution of (4.1) has 
a finite extinction time T*, i.e. u = 0 for t i> T* (see [13], [2]). 

To estimate T* let us sketch the proof of its existence. By Theorem 1.2, Problem 
(4.1) has a global strong solution and (1.3) for w = u(t) yields 

f u*+\t)- f „ « + - + « + _ f ' f |Vu|2 = 0, 
Jc JD a J O J B 
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which implies that \D u*+i(t) is absolutely continuous in t. So we have 

(4.2) 1 f ii«+i(r) + ^ - ± - i f |Vu(r)|2 = 0 for a.e. t. 
d'JD <* J^ 

If either N = 1, 2 and oc > 1 is arbitrary, or N = 3 and 1 < a = (N + 2)/(N - 2). 
we obtain from (4.2) that 

d̂  
dř 

n 4- 1 / C \2/(«+l) 

u«+i(,) + C ^ - - W w«+1(0) = °> 

because of the continuous imbedding H0(D) into H+1(D). This inequality implies 
the existence of T*( = T*(u0)) > 0 such that u(t) = 0 for t = T* (see [2]) and 

(4.3) T* = a|w0||L:+\(D)/C(a - 1) . 

In the case N = 3 and a > (N + 2)/(N — 2) we get, using the Nirenberg-Gagliardo 
inequality (see e.g. [5, page 27]), the estimate 

(4-4) \n^HD^c(jjn\2Y(\\i\uD)y-\ 

where £ e H0(Z)) n L°(D) and a = 2iV/(N - 2) (a + 1) < 1. Now by (4.4), (1.4) 
and (4.2) we obtain 

Since (N - 2)/N < 1, we again get T*( = T*(u0)) > 0 such that u(t) = 0 for t = T* 
and 

(4.5) T* = aN(|«0lt„(D))
2(1-,,)/a(||«o||r..+Hi»)2(a+1)/N(2(« + 1) C')"1 . 

So we have 

Theorem 4.6. For any u0 e L°°(D), u0 = 0 fhere exists T*(w0) = 0 swch fhaf the 
solution of Problem (4.1) vanishes for t _t T*, f.e.,w(f) = Oforf _ T* and T*(u0) -= 
= 0 only for u0 = 0. 

It remains to remove only the restriction u0 e HJ(D) from the beginning. To this 
end, let w0 e L°°(D) and choose a sequence {w0„} cz H 1(D) n LT(D) such that 

IK ~ WOnlLKD) ~* 0 a S " ~* °° a i l d ||M0nlL-(I)) = |«O||L«(D) • 

Let un be the solutions of Problem (4.1) with initial data u0n. Then un(t) = 0 for 
t ;> T*(u0n) and it is easy to see that Em T*(u0n) = T*(M0), where T* is given by 

n->oo 

(4.3) or (4.5) with regard to N and a. Now due to (2.5) we have 

lP«t))lmD) = l / K ) - JSK)IILI(D) = * K f l ™ I K - "0„JL1(D) 
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for t ^ T*(w0..) and letting n -» oo we have the assertion. 
Now we consider the problem 

(P(u))t - Aw = X fi(u) in D x (0, oo), X > 0 , 

(4.7) w(x, t) = 0 on dD x (0, oo), 

w(x, 0) = w0(x) in D . 

Putting u = v exp (Af/a) the equation in (4.7) gives 

(P(v))t exp (Xt(a - l)/a) = Av 

and after a simple transformation of time, t = — c""1 ln(l — CT) where c = 
= A(a — l)/a, Problem (4.7) can be rewritten into 

(P(w))T - Aw = 0 in I) x (0, Tc) , 

(4.8) w(x, T) = 0 on 3D x (0, Tc), 

w(x, 0) = w0(x) in D , 

where Tc = c"1 (T = c_1(l - exp(-cf)) (see [14]). 
As a simple corollary of Theorem 4.6 and of the comparison principle stated in 

Theorem 2.4 we have 

Theorem 4.9. Let u be a weak solution of Problem (1.1) with a locally Lipschitz 
continuous function f satisfying 

f(r) ^ Xr for some X > 0 . 

Ifu0(eLc(D)) is such that T*(w0) < Tc for T* given by (4.3) or (4.5) (corresponding 
to the cases mentioned above) then 

u(t) = 0 for t^ - c " 1 In (1 - cT*) . 
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Súhrn 

O RIEŠENIACH PERTURBOVANEJ ROVNICI RÝCHLEJ DIFÚZIE 

JÁN FILO 

Práca je venovaná otázkám existencie (lokálnej a globálnej), neexistencie, jednoznačnosti, 
porovnávania a niektorým vlastnostiam riesení počiatočno-okrajovej úlohy pre perturbovanú 
rovnicu rýchlej difúzie s homogénnymi Dirichletovými okrajovými podmienkami. 
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