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ON THE OPTIMAL CONTROL PROBLEM GOVERNED
BY THE EQUATIONS OF VON KARMAN
III. THE CASE OF AN ARBITRARY LARGE PERPENDICULAR LOAD

IGor Bock, IvAN HLAVACEK, JAN LOVISEK

(Received February 18, 1986)

Summary. We shall deal with an optimal control problem for the system of von Kéarmén
equations for the deflection of a thin elastic plate. We consider the perpendicular load on the
plate as the control variable. In contrast to the papers [1], [2], arbitrarily large loads are admitted.
As the unicity of a solution of the state equation is not guaranteed, we consider the cost functional
defined on the set of admissible controls and states, and the state equation plays the role of the
constraint. The existence of an optimal couple (i.e., control and state) is verified. By using
Lagrange multipliers, some necessary optimality conditions are derived.

A control problem with the cost functional involving all possible solutions of the state equation
for arbitrary perpendicular load-control is investigated in the last part. The optimal control
problem is solved via a sequence of penalized optimal control problems.

Key words: optimal control, Karman’s equations, existence proof, conditions of optimality.
AMS Subject classification: 73K 10, 73HOS, 49A22, 49B22.

1. FORMULATION OF THE STATE PROBLEM

We consider the same state problem as in the paper [2]. Let 2 be a bounded
1

simply connected region with the boundary I' = (J S;, where S; are simple smooth
=1

arcs and the angles of the tangents at the corners, if there are any, are positive.
Problem I. To find functions y, ® such that

(1'1) Azy = [¢s ,V] +v ’
AP = — [)’, .V] in Q, where I:(P, ‘p] = @u¥as + @22¥11 — 2012¥12,
)
y= , hi=1,2;
Pu 0x; 0x; !
(12) y=y,=0 on Iy,

y=M(y)+k2yn=0 on Fz,
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M(y) + k31yn = T(y) + k32y,, =0 on F3 5

(1.3) b =¢,, D, =¢,0nl,
(1'3') Pyony — Pyony =X, Pyyny — Pyong = Yon Iy,
where

r=ryul,uly, I''nl;=0 for is%j.

The data and operators from (1.2), (1.3), (1.3") are specified in the papers [2] or [3].
We introduce a weak solution of the problem (1.1)—(1.3) in the same way as
in [3].
Let I*(Q) be the Hilbert space of all real measurable square integrable functions
in the Lebesgue sense on Q with the scalar product

(1.4) (4, v) = juv dx
and the norm ’
(1.5) lulo = (u, u)e’? .
We introduce the Sobolev space
H*Q) = {u|ueI}Q), D*ucI*¥Q) for |of < 2}
with derivatives
oy

Dy = ———— | |oc|=a + o
1 2
0x{t 0x3?

in the distributive sense. H*() is the Hilbert space with the scalar product
(1.6) (u,v), = J(uv + Y. D*uD%)dx

Q la]=2
and the norm

(1.7) lull, = (u, w)3’?.
Let us set

={u|ueC®Q), u=u,=0o0n Iy, u=0onI,}

and denote by V = 7 the closure of ¥~ in the space H*(Q). Further we define two
bilinear forms on V x V:

A(u, U) = J\[ullvll + 2(1 - ﬂ) u12012 -+ UjyaV32 + ﬂ(ullvzz + uzzull)] dx,
2

a(u, v) =J ka0, ds +I (k3ytp0, + kspuv)ds,
I, r;
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where p € (0, 1) is the Poisson constant appearing in the boundary operators M, T
(see [2]). If the partition of the boundary I' = I'; u I', U Iy satisfies some conditions
([3], Lemma 3.1), the bilinear form

((u, v)) = A(u,v) + a(u,v), u,veV,

determines a scalar product on ¥ with the associated norm [u]| = ((u, u))*/?, which
is equivalent to the original norm [ju]|,. Hence V is a Hilbert space with the scalar
product ((u, v)) and the norm [ul.

Further we introduce the space

HY(Q) = {u|ueH¥Q), u = u, = 0 on I in the sense of traces} .
H3(Q) is a Hilbert space with the scalar product
((u, v)o = JAu Av dx

Q2
and the norm

Jullo = ((u, u))o™ -
Next, we define the trilinear form on [H*(Q)]?
B(u, v, w) = J[ulz(vzwl + VWy) — UpU Wy — Uy 0w,y ] dx .
)
Let F € H*(Q) be a function fulfilling the relations
(1.8) ((F,¥))o =0 forall yeHyQ),
(1.9) F=¢,, F,=¢, on T.
Setting @ = F + f, f € Hy(R), we arrive at the following definition of a weak solution
of Problem 1.

Definition 1.1. 4 couple [y,f] eV x Hé(Q) is a reduced weak solution of Problem
1, if
(1.10) (3, @) = B(f. . @) + B(F,y,9) + (v,0)y forall ¢eV,
(1.11) ((fs¥))o = —B(y, y,¥) forall YeHyQ).

The system (1.10), (1.11) can be transformed to an operator equation in the space V.
Let us define the following operators:

M: Q) > V:

(1.12) (Mo, @)) = (v, ), forall @eV,
LV->V.

(1.13) ((Ly, ¢)) = B(F, y, ¢) forall ¢eV,
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CirHY(Q)x V-V

(1.14) ((Cy(u, ¥), 9)) = B(u, y, ¢) forall geV,
Cy: Vx V- H}(Q):

(1.15) ((Co(y, W), @))o = B(y, w, @) forall ¢eH)Q),
C: V-V

(1.16) C(y) = C(Co(3,¥), ¥) -

The following lemma expresses some properties of the operators introduced
above.

Lemma 1.1. (i) The operator M is linear and compact; (ii) the operator Lis linear,
selfadjoint and compact; (iii) the operator C is compact.

Proof. We shall verify only the compactness of M. All the other properties were
proved in the papers [2], [3].
As the norm in the space V is equivalent to the original norm |||, in the space
H?{Q), the imbeddings
VQIHQ)Q V*

hold, where V* with the norm |- |, is the dual space to ¥ and the symbol (3 denotes
a compact imbedding. Due to the Riesz theorem we obtain the relation

(1.17) [Mo| = |o], forall veI*Q).

Let v, — v (weakly) in L*(Q). The compactness of the imbedding I*(2) & V* implies
v, — v(strongly)in V* and Mv, — M (strongly) in V. Consequently, the compactness
of the operator M: I*(Q) — V follows.

The system (1.10), (1.11) can be rewritten in the form of an equation in the space V:

(1.18) y—Ly + C(y) = Mv.

A couple [y,f] is a reduced weak solution of Problem I if and only if y is a solution

of (1.18) and f = —C,(y, y).
The following theorem yields the existence of a solution of the equation (1.18).

Theorem 1.1. Let y < 1 be such that

(1.19) ‘ ((Ly, y) = vly]* Vyev.

Then for arbitrary v €L2<Q) there exists a solution y € V of the equation (1.18).
Movreover, the estimate

(1.20) Iy] = =7 colvlo

holds, where c, is the constant from the inequality

(1.21) |#lo = colle] Voev.
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Proof. The existence of a solution y € V is verified in the papers [3], [5]- The
estimate (1.20) results from the relations

((Cy, ¥) = (Ci(Ca(y, ), ), ) = B(Cx(y,¥), ¥, ¥) =
=B(y,5,C:(».5) = [C.(», »)|* 20 VyeV

and the equation
(1.22) [Mo] < colv]le YveV,
which is a consequence of the relation (1.17).

Remark 1.1. The possibilities of satisfying the condition (1.19) are discussed
in the paper [3]. We can assume that the functions ¢,, ¢; in (1.3) are sufficiently
small, or that the form B(F A y) is nonpositive for all y € V. The latter case cor-
responds to some state of tension in the plate, determined by an Airy stress function F.

2. OPTIMAL CONTROL PROBLEM WITH THE STATE EQUATION
IN THE FORM OF A CONSTRAINT

Let U,q4 = I*(Q) be an arbitrary convex closed and bounded set of admissible
controls v:

(2.1) oo £ K VveUy,.

We introduce the cost functional J: V x U,; — R of the form

(2.2) J(y,v) = #(y) +j(v), yeV, veU,,

where #: V- R, j: [}(Q) > R are some functionals.
We shall investigate the following

Optimal Control Problem P,: to find a couple (yo, u) € V x U,q4 such that

(2.3) J(yo, u) = min J(y,v),
) (y,v)ex
where
(2.4) A ={(y,0)|(y,v)eV x Uy, y — Ly + C(y) — Mv = 0} .

Hence the canonical equation (1.18), equivalent to the original Problem (1.1)—(1.3),
appears here as a constraint.
We formulate the existence theorem for Problem P,.

Theorem 2.1. If (1.19) holds and the functionals ¢, j are weakly lower semi-
continuous on V and I}(Q), respectively, then there exists a solution (y, u) € A

of Optimal Control Problem P,.
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Proof. Let {(y, u,)} = & be a minimizing sequence for the functional J, i.e.

(2.5) lim J(y,, u,) = inf J(y,0).

n— o (y,v)ext’

The set U,4 is weakly compact and weakly closed in I*(), being bounded, closed
and convex. Hence there exists a subsequence {u,,} such that

(2.6) u, — u (weakly) in I}(Q), ueU,.

The corresponding sequence { y,,,} is bounded in ¥, due to the estimate (1.20), and
there exists a subsequence {y,} such that

(2.7) Vi — Yo (weakly) in V, y,eV.
We have
(2.8) Ye = Ly + C(y) = Mu, .

The operators L, M, C are compact by virtue of Lemma 1.1. Passing to the limit
in (2.8), we arrive at

(2.9) Yo — Lyo + C(yo) = Mu,,
so that (yo, u) € X
As the functionals ¢, j are weakly lower semicontinuous, we obtain

J(yos ) = £(¥o) + j(u) £ klim inf #(y,) + klim inf j(u,) <

< liminf J(y,, ) = inf J(y,v).

k=0 (y,v)ex

Consequently, the couple (¥, u) is a solution of Optimal Control Problem P;.

3. NECESSARY CONDITIONS OF OPTIMALITY
Let us first recall the following theorem from the book [4] (Chapt. 1.1.3).

Theorem 3.1. (The extremal principle in smoothly convex problems.) Let X, Y be
Banach spaces, U an arbitrary set, F: X x U-> Y, fi X xU->R,i=0,1,...,n
and

(3.1) % ={(x,u)|(x,u)eX x U, F(x,u) =0, fi(x,u) 20, i=1,...,n}.

Let (x4, ) € % be a couple satisfying the following conditions:
(i) there exists a neighbourhood W = X of x4, such that
(32) fO(x*y u*) = min fo(x, u) ,
(x,)e(W x U)n%
(ii) the mappings x> F(x,u) and the functionals x> f(x,u), i =0,1,...,n,
are continuously Fréchet differentiable at the point x, for each u e U,
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(iii) the mappings > F(x,u) and the functionals uw fi(x,u), i =0,1,...,n,
fulfil for each x € W the following conditions:
for arbitrary us, u, € U and a €0, 1) there exists u € U such that

(3.3) F(x,u) = aF(x,u;) + (1 — o) F(x, u,),

(3'4) fi('x’ u) é a“fi(‘x’ ul) +(1 - tx)fx'(x! ul)’ i = Oa 19-"9n;

(iv) the set {y |y €Y, y = Fix4, yx) x, x € X} is of finite codimension in Y.

Then there exist Lagrange multipliers 1y = 0, ..., 4, = 0, y* € Y not vanishing
simultaneously and such that

(3-5) ,S,”;(x*, Uy Aoy« v s y*) = Z A; i'x(x*’ “*) + Y:F;(x*, u*) =0,
i=0

(3.6) L(Xgr Uy Ags +vvs Ay ¥*) = Min L (X, 1, Loy s Ay ¥¥)

ucll

(3.7) Aifixgpouy) =0, i=1,..,n,
where & is the Lagrange function of the form
(3.8) L(x, Uy Aoy o vy Ay Y¥) = _iolifi(x, u) + <y*, F(x, u))
and {y* o Fi(xy, ty), x) = {¥*, Fi(xy, uy) x) for all xeX.

If, moreover, the set
(3.9) {(y|yveY, y=Fxquy)x + Fxy, u), (x,u)eX x U}
contains a neighbourhood of zero in Y and there exists a point (xq, ug)€ X x U
such that
(3.10) Flxy, uy) xo + F(xy, ) = 0,
(3.11) (X uy), X0 + filXgs thg) < 0
for all i > 0 such that f{(x, uy) = 0, then Xy + 0 and we can set Ay = 1.

Using Theorem 3.1, we obtain

Theorem 3.2. (Necessary conditions of optimality.) Let the estimate (1.19) hold
and let the couple (yo, u) € V x U,q be a solution of Optimal Control Problem P,
with a convex functional j and continuously Fréchet differentiable functionals ¢, j.
Then there exist a number Ay = 0 and an element z € Vot vanishing simultaneously
and such that

(3.12) [I—L+C(y)]z= —%R # (o),
(3.13) (Aoj'(u) —z,0 —u)y 20 VoeU,,
(3.14) Yo — Lyo + C(yo) = Mu,,
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where
C'(yo) 2 = 2C1(Cy(yos 2)s ¥o) + C1(Ca(¥o» ¥o)» 2)
and R: V* — Vs the Riesz representative operator.

If, moreover,
(3.15) ulo < o'2(1 — 32 Co ([ Co] |C2)H2,
where a € (0, 1) is arbitrary, then A, + 0 and we can set o, = 1.

Proof. We shall verify the assumptions of Theorem 3.1.

We have X = Y = V — a Hilbert space, U = U,g, (xx, ux) = (yo, #), F(y,v) =
=y—Ly+Cy)— My, (y,v)eVxUq %={yv)|(yv)eVx U,
F(y,v) =0}, fo = £(y) + j(v).

The mapping y — 97(y, v) is continuously Fréchet differentiable at each point
Y« € V and we have

(3.16) Fywv)y=y—Ly+C(y)y, yeV,
where
(3.17) Cl(}’*) y = 2C1(C2(y*, J’), )’*) + Cl(cz(J’*, Y*), y) .

The differentiability results directly from the definition of the Fréchet derivative
and of the expression C(y) = Cy(Ca(y,¥), ), yeV (see (1.16)). The continuity
of the mapping 7 — C'(n) e #(V, V) is a consequence of the estimates (for details
cf. [2])

(3.18) lede ) s e lelo Iyl veeHY@), yeV,

(3.19) [C2(.mllo = [Coll Il n] ¥y, mev.

The property (3.3) holds for arbitrary elements u,;, u, € U,y and a€(0, 1) if we
take u = ou; + (1 — @) u, € Uy, since the set U,q is convex and the operator M
in the mapping & is linear.

The operator & ,(y, v) € #(V, V) can be expressed in the form

(3.20) F(ywv)=1+ 4,
where ‘
(3.21) A= —L+ C'(ys)

is a linear compact operator, because Lis linear compact due to Lemma 1.1 and the
compactness of C'(yy) results from the compactness of the operator C (see [7],
Th. 4.7). Moreover, A is selfadjoint due to Lemma 1.1 and to the form of the operator
C'(yx) (for details we refer to [2], Lemma 5.1). According to the theory of equations
with linear compact operators ([6], Chapt. VI, § 2) we have the identity R(I + A) =
= N(I + A)*, where R(I + A) is the range of the operator I + A and N(I + A)*
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is the orthogonal complement of the set N(I + A) = {y|yeV, (I + 4) y = 0}.
The space N(I + A) is finite-dimensional and hence the space R(I + A) has a finite
codimension which is equal to the dimension of the space N(I + A). Hence the as-
sumption (iv) of Theorem 3.1 is satisfied, too.

Hence there exist Lagrange multipliers 1, = 0 and z* € V* such that

(3.22) Ao F'(vo) + z*o[I = L+ C'(yo)] = 0,
(3.23) Aol #(vo) + j(u)] + <2*, Flyo, u)) =
= mi" {A[£(vo) + ()] + <z*, F(yo, 0)>} -

Let R: V* — V be the Riesz operator and Rz* = z. Then we have
(3.24) ¥,y = ((Rz*, 1)) = ((z,n) VneV.

Rewriting (3.22), we obtain the relations

0= <lo £ (o) 1) + <2z, [1 = L+ C'(yo)] n) =
= (2R A" (yo)sm)) + ((z. [1 = L+ C'(yo)] m)) =
= ((;LOR fI(J’o) + [I - L+ C’()’o)] Z, '1)) VneV,

which imply (3.12) immediately.
Using the convexity of the set U,,, we obtain from (3.23) the inequality

(Aol E(¥o) + J(0)]ouo + 2% F(30: 0)Dtcs 0 — U)o 2 0 Vo Uy

and, further,
0= (A j'(u), v — u)y — (z*, M(v — u)) =

= (Ao j'(u), v — u)g — ((z, M(v — u))) = (Ao j'(u) — z,v — u)y VueU,,

which yields the inequality (3.13). The state equation (3.14) completes the necessary
conditions of optimality.
If (3.15) holds, then due to (1.20) and Theorem 1.1, we arrive at the estimate

(3.25) [yol? < et =y [Ci] ™ o] 7
For arbitrary y € V we may write
(3.26) (Fy(yo, u) 9, 3)) = ((y = Ly + C'(yo) »,)) =

= [y]* = (Ly, ») + 2((Co(Ca(vo: ), ¥o), ¥)) +
+ ((Ci(Calyor y0) ), 1) = V[P = ((Ly, »)) +
+2[Co(yo, M5 + (Co(Calyos ¥o)s ¥), ¥)) 2
z (1 =y =[Gl lC] [y I7]* = (0 = o) (1 = 9) [¥]* = m|y|?,
m=(1-a)(l—-9)>0.

323



Let ye V, ve U,y. Then we have

F (o 1)y + F(yo,0) = F}(yo, ) ¥y + yo — Lyo + C(yo) — Mv =
= F(yo,u)y + Mu — Mv.

Using again the theory of equations with linear compact operators, we conclude
that for every z € Vthere exists an element y € ¥ such that

g;,:()’o’“)y + 97()’0»”) =2z,
and

F(y0,u) 0 + F(yo,u) =0.

Hence all the assumptions of Theorem 3.1, ensuring 4, = 0, are fulfilled and the
proof is complete. Q.E.D.

We can show another application of Theorem 3.1 for a particular set U,,.

Theorem 3.3. Let the couple (yo,u)€V x U, be a solution of Problem P,
where U,y = {v|veIXQ), |v|o < K}, the functionals ¢, j are continuously dif-
ferentiable in the sense of Fréchet and the functional j is convex. Then there exist .
numbers Ay = 0, 1, = 0 and an element z € V, not vanishing simultaneously and
such that

(3.27) [I =L+ C(yo)]z = —AR #(yo),
(3.28) Ao j(u) + Ju —z =0,
(3.29) A(julo — K) =0,

(3.30) Yo — Lyo + C(yo) = Mu. .

If, moreover, (3.15) holds, then 4, + 0 and we can put 14 = 1.

Proof. It suffices to verify the assumptions of Theorem 3.1. Weput X = Y =V,
U=I¥Q), F(y,v)=y~—Ly+Cy)— Mo, fo(y,0) =) +i), fily,v) =
= 3(o]* - K2),

U = {(y’ U) | (y’ U)G V x LZ(Q)’ f(y, v) =0, fl(y, U) =< 0} .

The equation (3.28) is a necessary condition for the minimum of the differentiable
function v » L(yo, v, 4o, 41, 2), "

Z(vo, 0, 20, A1 2) = Ao(F(vo) + J(v)) + %}“l(l”

o = K%) + ((z F(yo, v))) ,

at the point u on the whole space I*(Q). The relation (3.29) corresponds to the con-
dition (3.7) with i = 1.
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4. AN OPTIMAL CONTROL PROBLEM WITH A COST
FUNCTIONAL INVOLVING ALL SOLUTIONS OF THE STATE EQUATION

We again consider nonempty bounded closed and convex set U,y = L¥Q) of
admissible controls v, which fulfil the condition

(4.1) lolo S K VoeU,.
Let #:V x U,y — V be the state operator of the form
(4.2) P/’-(y,U)Ey~Ly+C(y)——Mv,

where the operator L: V — V satisfies the estimate (1.19). We introduce the cost
functional of the form

(4.3) J(v) = sug) [#(y) + iv)], veUu,
F=0
where #: V — R, j: }(Q) — R are given functionals. The functional J: U,y — R is

defined correctly, as follows from Theorem 1.1 on the existence of solution.
Next, let us define

Optimal Control Problem P,: to find u € U,4 such that
(4.4) J(u) = min J(v) .
veUga
To solve this problem, we shall use the method of penalizations. If v € U, then

due to Theorem 1.1 every solution y € ¥ of the equation F(y, v) = 0 fulfils the
estimate

(4.5) Iyl 7, r=(01-19)"1CK

The functional J can be expressed in the form

(4.6) Jv)y= sup {#(y) +i(v)}, veUy,,
F();eu)' 0

where V, = {y|yeV, |y| £}
J can be also written in the form

(4.7) J(v) = sup {£(y) + j(v) = B(y,v)}, veUu,
yeVe
where B: ¥, x U, > R U {+ 00} is defined as follows:
o _
(4.8) B(y,0) = /0 if #F(y,v)=0

N+, if F(yv)*0.

For arbitrary ¢ > 0 let us consider the functional J,: U,q — R of the form

yeVr

(4.9) J0) = sup[j(y)+ (o _|1g-(y,v)||] veUy.
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First we shall solve some penalized Problem P, with the functional J, instead
of J. We verify the existence of a solution u, of Problem P,. Further, we show the
existence of a sequence {u,,} weakly convergent to a solution u € U,4 of some modified
Optimal Control Problem Pj.

Lemma 4.1. Let #:V —> R be a weakly continuous functional. Then for each
v € U,q there exists an element y, € V, such that

£ 3 1 €
(410 76 = £0) +0) - L #0591
Proof. The functional J, ,: ¥, - R defined by
- 3 1
(4.11) Toaly) = £0) +i00) =~ |#0)]» yeV,

is upper bounded for every & > 0, ve U,y. Let {y2°},2; = V, be a maximizing
sequence for J, , on the set ¥}, i.e.

(4.12) lim J, (y2*) = sup J, ,(») .

n-*o yeV,

The sequence {yy*} is bounded in the Hilbert space ¥, so that we can extract a sub-
sequence {y,,*} such that

(4.13) yut -yt (weakly)in ViyieV,.

We have used the fact that the set V; is closed and convex and hence weakly closed
in V. By virtue of the properties of the operators L, C we have

(4.14) F(yut,v) = F(y;,v) (weakly)in V,
(4.15) [Z (¥, v)|| £ liminf | F(y5", v)|| -
The relations (4.13), (4.15) and the weak continuity of # imply

L) = 209 +6) =~ [#(0)] 2
2 timsup | S0%) +J6) = 2 170 01| = im 10%) = sup 1,0,

yeVr

Consequently, we may write

(4.16) J(v) = sup J, ,(y) = J..(3})

yeVe
which is equivalent to (4.10).
Next we introduce

Extremal Problem P,: to find u, € U,4 such that
(4.17) J(u,) = min J,(v) .
veUad
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Lemma 4.2. Let #: V — R be weakly continuous and let j: I*(Q) > R be a weakly
lower semicontinuous functional. Then there exists a solution u, € U,q of Extremal
Problem P,.

Proof. Let {u}} = U,4 be a minimizing sequence for J,, i.e.

(4.18) lim J,(u,) = inf J(v) .

n—w veUqa

Since the set U,4 is bounded and weakly closed, there exists a subsequence {u,‘;} < Uy
such that

(4.19) uf, — u, (weakly)in I*(Q), wu,eU,.
The operator v — F(y, v), v e U,q, is compact due to Lemma 1.1 and hence

(4.20) lim #(y, u;) = F(y,u,) VyeV.

m— o

Using Lemma 4.1 and the properties of the functionals #, j we arrive at the relations
. 1
T(uy) = sup [f(y) + i) =~ [#(0 uc)ll] =
YEY r
. . 1 :
= F0) + i) =~ [F(w)] =

< liminf [j( ye) + j(ut) — % [E0 ue)ﬂ] =

m—* o

m=*co

< lim inf f::}: |:f () + i(u;,) - i ”-97 (» uf..)“] =

= liminf J,(u%) = inf J,v).  Q.E.D.

m=- oo veUaa

Let us now formulate a modified optimal control problem.

Optimal Control Problem P,: to find a control u e U,y with a nonempty set
M, < V such that

(4.21) F(z,u) =0,
(4.22) H(2) +j(u) < sup [#(y) +i(v)]
F(y,0)=0

forallze M, and all ve U,,.
The main result of this chapter is represented by the following existence theorem.

Theorem 4.1. Let (1.19) hold, let the functional #: V — R be lower bounded and
weakly continuous and let the functional j: I*(Q) - R be lower bounded and
weakly lower semicontinuous. Then there exists a solution ue U,y of Optimal
Control Problem P;. If lime, = 0, g, > 0, then every sequence {u,"} cUyq of

n=*wo
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solutions of Problem P, contains a subsequence {u,,} such that
(4.23) u, — i (weakly) in IXQ),
where i1 € U,y is a solution of Problem P;.

Proof. Let {g,} be a sequence of positive numbers such that

(4.24) lime, = 0.
We denote u, = u,,n = 1,2, ..., where u, € U4 is a solution of Extremal Problem

P,,. There exists a subsequence {u,} < U,, such that

(4.25) u, — u (weakly) in I*(Q), ueU,.
Let y, €V, be any solution of the equation

(4.26) F(Vusthm) =0, m=1,2,..

The existence of y, results from Theorem 1.1. As the set ¥, is convex, closed and
bounded and the operators L, C, M appearing in the expression (4.2) are compact,
there exists a subsequence {y,,} such that

(4.27) Yue = Yu (strongly) in V,
where
(4.28) F(y,u)=0.

Since the functional # and j are weakly continuous and weakly lower semi-
continuous, respectively, considering (4.25), (4.26), (4.27) and the character of the
elements u, = u,,, k = 1,2,..., we are led to the inequalities

(4.29) F) + iu) £ lim inf [F(y,) + j(u)] <

< lim inf sup [f(y) + j(u) — = ﬂ.”/f'(y, u,‘)ﬂ] <

k= w yeVr {;k

k=

< timintsup [f(y) + i) =L 120, v)u]

= lim inf[f(yﬁ) + j(v) — ; ﬂg*’(y’;, v)ﬂ] £

< liminf [ #(y}) + j(v)] forall veUy,,
k- o N

where yf = y* and the element y®* is defined via Lemma 4.1.
There exists a subsequence {y}} < ¥, such that

(4.30) ¥ =¥, (weakly)in V, j, eV,.
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Let y, €V, satisfy the equation #(y,, v) = 0. As the funtionals ¢, j are lower
bounded, there exists a constant ¢ € R, such that

¢ < A(y,) +j(0) £ £(5%) + j(o) Slnzv(yﬁ, I, s=1L2....

S

Consequently,
(4.31) u.?'—(yf,, v)ﬂ <ecv), c(v)eR,
where we have used (4.30) and the weak continuity of #. Since the operators L, C
are compact, we have
F(y5,0) =~ F(J,»v) (weakly) in V
and (4.31) implies
(4.32) F(j»0) =0
due to the inequality
| # (5, v)|| < liminf |#(y5,0)] =0.

Weak continuity of the functional ,# and the relations (4.29), (4.30), (4.31) imply the
relations

(4.33) F(,) +j(u) < liminf [#(y) +j(v)] =

= #(5,) +i(v) £ sup [#(y) +j(v)].
#3wr=0
Since y, is a solution of the state equation #(y, u) = 0 and v is an arbitrary element
from U,y we see that y, € M, and u is a solution of Optimal Control Problem P,

which completes the proof.

Remark 4.1. The nonempty set M, contains all stable solutions y, of the equation
F(y, u) = 0, i.e. the solutions satisfying the condition:

u, = u (weakly) in L,(Q) implies the existence of y, €V, n=1,2,...,
F(Vups ts) = 0, y,, = y, in V.

Remark 4.2. Instead of the penalized functional J, we can consider in (4.9) the
functional

(4.35) J¢(v) = sup [/(y) + j(v) - %g(?' (v, y))] ;

yevVr

where g: V - R is weakly lower semicontinuous, continuous on ¥ and satisfies the
conditions

(4.36) 9(0) =0, g(y)>0 forall yeV, y+0.
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Conditions for weak lower continuity of a functional g are described in the book
[8], (Chapt. 1II, §8). One of such conditions is, for instance, the differentiability
of g and the monotonicity of its Gateaux derivative. Then we can put

(4.37) g(y) = |y]*, yev.

Remark 4.3. Due to the compact imbeddings of the Sobolev space H*((), the fol-
lowing functionals are weakly continuous:

(4.38) Foy) =y — zo|5, zo€I}Q),

(4.39) F1(y) =y = z1]i, z1€HY(Q),

(4.40) () = ’s;g) [y(x) = zo(x)|, z,€C(R), yeV.
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Souhrn

O PROBLEMU OPTIMALNIHO RESENI PRO KARMANOVY ROVNICE

III. PRIPAD LIBOVOLNE VELKEHO PRICNEHO ZATIZEN{

IGor Bock, IVAN HLAVACEK, JAN LoviSEx

- Je studovana uloha fizeni systému nelinearnich Karmanovych rovnic pro tenkou desku
prostfednictvim pravé strany rovnice rovnovahy. Na okraji desky se uvaZuji kombinované
podminky. Narozdil od ¢astiI a Il této prace pfipousti se zde libovolné velké pricné zatiZeni, takZe
neni zarucena jednoznacnost feSeni. Pro dva typy udelového funkcionalu se dokazuje existence
feSeni optimalizaéni ulohy, v prvém ptipadé jsou odvozeny téZ nutné podminky optimality.
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Pesome

OINTUMAJIBHOE VIIPABJIEHUE CUCTEMOM YPABHEHUI KAPMAHA
III. CJIVYAU MPOU3BOJILHO BOJIBIION IIPABOM YACTU
VPABHEHUSI PABHOBECH S

IGor Bock, IVAN HLAVACEK, JAN LoviSEx

PaccmaTpuBaeTcs yIPaB/ICHHE CHCTEMOMR HEJIMHEMHBIX YpaBHeHuit KapMaHa [i71st TOHKOR ynpyroi
IUTATBI IOCPEACTBOM IIPaBOM YaCTH ypaBHEHHs paBHOBecus. Ha rpaHHLE NpEeAnosararorcs CMme-
IDaHHbIE KpaeBble yCnoBus. B ormuune ot yacreit I u II 5T0# paboThl monyckaeTcs 31eCh NPON3BOIb-
HO Oonbmas monepeyHas Harpy3Ka, Tak YTO He CIeAYET OJHO3HAYHOCTh PELICHHS 3a0a4HM COCTOSHUS.
Jns OByX THOOB LENEBOM (YHKUMH HOKA3LIBAETCS CYIIECTBOBAHWE ONTHMAJILHOTO DEINeHHs
M B IEPBOM CJIyYae BBIBEICHBI TOXE HEOOXOAMMEIE YCIIOBHS OUTHMAJIBHOCTH.
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