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OPTIMAL CONTROL PROBLEMS
FOR VARIATIONAL INEQUALITIES WITH CONTROLS
IN COEFFICIENTS AND IN UNILATERAL CONSTRAINTS

IGor Bock, JAN LoviSex
(Received January 31, 1986)

Summary. We deal with an optimal control problem for variational inequalities, where the
monotone operators as well as the convex sets of possible states depend on the control parameter.
The existence theorem for the optimal control will be applied to the optimal design problems
for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control
variable.

AMS Classification: 49 A 29, 49 A 27, 49 A 34.
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1. EXISTENCE THEOREM

Let U with a norm ” l v be a Banach space of controls, U,y = U a compact set
of admissible controls. We shall consider a family {A(e)}, e € U,4 of monotone opera-
tors. We follow the papers [1], [3], [4], introducing in addition a system of convex
sets {K(e)}, e€ U,q. In order to characterize the dependence e — K(e) we recall
the special type of convergence of sequences of sets introduced by Mosco in [8].

Definition 1.1. A sequence {K,} of subsets of a normed space V converges to
a set K = V, if K contains all weak limits of sequences {u,}, u, € K, , where {K,,}
are arbitrary subsequences of {K,} and every element veK is the (strong) limit
of some sequence {v,}, v, € K,.

Notation: K = Lim K,

. n— o

Let V be a reflexive Banach space with a norm ||+||, V'* its dual space with a norm
|- |« and a duality pairing ¢+, *) between V* and V. Further, we introduce the systems
{K(e)}, {A(e)}, e € U,q of convex closed sets K(e) = V and operators A(e): V - V*
satisfying the following assumptions:

(1.1) e,—> ¢ in U= K(e,) = LimK(e,),
(1.2) CAle)u — A(e)v, u—1vy>0
forall eeU,, u,veV, u+v,
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(1.3) }_i)m CAle) [u + t(v — u)], wp = CA(e) u, w)
forall eeUy,y; u,v,weV,
(1.4) [o] £ M = |A(e) v]|ls < C(M) forall eeU,,

(1.5) there exists a function r: [0, 00) » R and elements w(e) € K(e) such that
lim r(t) = o, [w(e)]| < C, <(A(e)v,v — w(e)> = [jv] r(||v]) for all veV,
t—0

ee Uad'

The assumptions (1.2)—(1.5) mean that the system {A{e)} is strictly monotone,
hemicontinuous and uniformly bounded and uniformly coercive with respect to
eeU,y. We assume further that the operator A(+)v: U,y — V is continuous for
allve V

(1.6) e, > e, in U=Ae)v—> Ale))v in V* forall veV.

Let a continuous operator B: U,y — V* and a functional f e V* be given. Under
the assumptions (1.2), (1.3), (1.4) the operator Ale): V — V* is pseudomonotone for
every e € U,q (see [7] — Proposition 2.5, Chapt. 2). Then there exists (due to [7],
Theorem 8.2, Chapt. 2) a unique solution u{e) € K(e) of the following variational
inequality for any e € U,4:

(1.7) (Ale)ule),v — u(e)> = {f + Ble),v — ule)y forall veK(e).
Let us consider a functional j: U x V — R fulfilling the condition

(1.8) e, —e in U and v,—0v (weakly)in V= j{e,v) < liminfj(e, v,).

n—on

Our aim is to solve the following optimal control problem:

Problem P. To find a control e, € U,4 such that
(1.9)  (Aley)uley),v — ueg)> = {f + Bley), v — uley)y forall veKley),
(1.10) J{eo) = jleo, uley)) < jle, u(e)) = J(e) forall eeU,,
where u(e) € K(e) is a solution of the state inequality (1.7) uniquely defined for every
e € Uy.

Theorem 1.1. Let the assumptions (1.1)—(1.6) hold. Then there exists at least
one solution ey of Optimal Control Problem P.

Proof. Let {e,} be a minimizing sequence for the functional J:

(1.11) lim J(e,) = inf J(e)
n— o eeUaqa
(we putinf J(e) = —oo, if the set {J(e)} is not lower bounded).
e€Uaqg
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Since the set U,q is compact in U, there exist e, € U,4 and a subsequence (denoted
again by {e,}) of {e,} such that

(1.12) lime, =¢, in U.

Denoting u(e,) = u, € K(e,) we 'Ilnao; write

(1.13) CA(e,) v — u,> = {f + Ble,),v —u,y forall veK(e,),
n=12,...

Inserting v = w(e,) from (1.5) we arrive at

(1.14) (Ale,) u,, u, — wie,)> < <{f + Ble,), u, — wle,)) .

The uniform coercivity of {A4(e)} and the continuity of B imply

(1.15) [,

Since lim r(f) = oo, we have

| r(Jua]) < Cyfua]] + C,. n=1,2,...

t~o
(1.16) ”u,,” <C;, n=12,...

Then there exists a subsequence (denoted again by {u,}) such that
(1.17) u, ~u (weakly)in V, u,eK(e,).

The assumption (1.1) implies

(1.18) u € K(eo) .

By virtue if (1.4) and (1.16) we obtain

(1.19) [A4(e,) ]« < Coy n=1,2,...

Then there exists an element y € V* and a subsequence (again denoted by {A(e,) u,})
such that

(1.20) Ale,) u, — x (weakly) in V* .
Let {w,} be a sequence such that
(1.21) ‘ w,—>u in V, w,eK(e), n=12,..

The existence of w, is ensured by (1.1), (1.12) and (1.18). Combining (1.17) and
(1.21) we have

(1.22) (u, —w,) =0 (weakly)in V.

Inserting v = w, into (1.13) and using (1.22) together with the continuity of the
operator B: U — V* we obtain

(1.23) lim sup <A(e,) u,, u, — w,> = 0.

n—= o
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Combining the last inequality with (1.19) and (1.21) we arrive at
(1.24) lim sup {A(e,) u,, u, — u> <0,

n—+ow

and comparing it with (1.20) we have

(1.25) lim sup {A(e,) u,, u,» = {x, u) .

The monotonicity of A(e,) on ¥ (assumption (1.2)) implies
{x, uy 2 limsup [{A(e,) v, u, — v) + {A(e,) u,,v>], n=12,...

Taking into account the relations (1.6), (1.12), (1.17), (1.20) we obtain
(1.26) {x — Aleg)v,0 —u) 20 forall veV.

Letv =u + t(w — u), te R, we V. Then we have
{x — Aleg) [u + tlw —u)],u —w) 20 forall weV.
Using the hemicontinuity of A(e,) (see (1.3)) we obtain after t — 0
{x — Aleg) u,u —w) 20 forall weV,

and hence
(1.27) x = Aleo) u,
(1.28) A(e,) u, — A(eg) u (weakly)in V*.

Using again the monotonicity of A(e,) we have
CAle,) un, u, — uy = (Ale,) u,u, —uy, n=12,..
The convergences (1.12), (1.17), the assumption (1.6) and the last inequality imply
lim inf {A(e,) u,, 4, — u) = 0

which compared with (1.24) leads to
(1.29) lim {A(e,) u,, u, — u) = 0.
n—» oo

Combining (1.28) and (1.29) we arrive at the relation

(1.30) (A(eo) u,u — vy = lim {A(e,) u,, u, — vy forall veV.

n—+w

Let v € K(e,) be an arbitrary element and let {v,} be such a sequence that
(1.31) v,>v in V, v,eK(e,), n=12,..

Using (1.30), (1.31), (1.28), (1.13) and the continuity of B(+) we arrive at
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(1.32) <A(eo) u, u — vy = lim {A(e,) 4,, u, — v,> < lim (f + B(e,), u, — v,> =

= {f + Bley), u — vy forall veK(ep)-.
Hence u is a solution of the state inequality (1.9) and
(1.33) u = u(e,), u(e,) — u(e,) (weakly)in V.
It follows from (1.8) that
J(eo) = j(eo, uley)) < liminf j(e,, u(e,)) = liminf J(e,) = inf J(e),

e€Uga

which completes the proof of (1.10) and thus of Theorem 1.1.

2. APPLICATIONS

We shall investigate some optimal control problems connected with the optimal
design of a beam and a plate with respect to a variable thickness. Henceforth we shall
denote by L,(Q) the space of all functions f: 2 - R, Q@ = R™ Lebesgue integrable
with their second power on @, and by H*(2) the Sobolev space of all functions from
L,(2) with distributive derivatives up to the order k in L,(2). H%Q) is the Hilbert
space with the scalar product

((ua U))k Z Dpqude, lpl =P1 + ... +pma
IplskJ 2
and the norm [ul|, = ((u, u))"/?.
Further, we denote
HyQ) = {ve H(Q):v =D =0 on 9Q for |p| <k —1}.
It is well known that H(Q) is the Hilbert space with the scalar product
(u,v), = Y, | D"uDPvdx
Ipl=kJ 2
and the norm |u|, = (u, u);/>. For k = 0 we have the scalar product and the norm

in Ly(Q).

I. Optimal design of a beam. Let us consider an elasto-plastic beam of a length a
with a variable thickness expressed by a function e: Q@ - R, Q = (0, a).

We set U = H*(Q) — a reflexive Banach space with a norm ||y = |*||,. Let us
introduce the set of admissible controls — thickness functions

Uy = {eeH}Q):0 < e, < ex) < ey, forall xeQ,
el = [ dor=coo )= co €0)-cu,
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e(a) = Cs, e'(a) = Cg}.

It results from the compact imbeddings H3(Q) Q H*(Q), H*(Q) C C!(Q) that the
set U,q is compact in U.

We assume the beam to be clamped at both ends and put V = Hy(Q). We further
suppose the beam to be forced to lie over an obstacle represented by a function
®: Q — R. Hence the function describing the deflection of the beam belongs to
the set

K(e) = {ve Hy(Q): v(x) = &(x) + }e(x), x e Q} .

We recall that the function v expresses the deflection of the middle line of the beam.
We assume

(2.1) deC@), q;(o)<_%’ ¢(a)<_%’

where the constants C;, Cs appear in the definition of the set U, 4. The condition (2.1)
ensures that the set K(e) is nonempty for every e € U,4. It can be easily seen that K(e)
is convex and closed. The system {K(e)} fulfils the condition (1.1). Indeed, if lim e, =

= e, in U = H*(Q), e, € U,q, then there exists a subsequence {e,,} weakly convergent
in H3(Q) to the element e, € U,y Let w, = w, w,eK(e), k= 1,2.....;weV =
= Hy(Q). We then have

wi(x) = P(x) + f'i(éi) forall xeQ
which implies, with respect to the compact imbedding H*(Q) C C(Q),
(
(2.2) w(x) = &(x) + 50».2_)‘) forall xeQ,

and hence w € K(e,).

If veK(ey), then we put v, = v + (e, — ¢y). The elements {v,} satisfy the
conditions
v,eK(e,), limv,=r0v (strongly)in V.

m-— o
Hence the condition (1.1) holds.

Now we define the system {A(e)} of operators corresponding to the bending
of elasto-plastic beams in the same Way as it was done in [3] or in [6], Chapt. III. Let
0 € C'[0, ) be a material function fulfilling the following conditions for all ¢ € [0, o)

(2.3) 0 <9, =0 =< er,

d
(2.4) 0<vos Y. [e(&)] = ¥,
with positive constants 2o, @1, Yo, ¥1-
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We define the function

te(x)
(2.5) gx, 1) = j o(z*t)z*dz, t20
—%e(x)

and an operator A(e): V— V* by

(2.6) {(A(e)u, vy = 2J‘ glx, () uv"dx; u,veV.
2

The constant function ¢ = E/2 corresponds to the linear elasticity. Them

29x, 1) = Ti Ax), (Ale)u, vy = IEi f (x) u"s” dx .
2

Lemma 2.1. The family {A(e)}, e € U,q of operators defined by (2.5), (2.6) satisfies
the assumptions (1.2)—(1.6).

Proof. Using the Lagrange theorem and the inequalities (2.4) we obtain
(2.7) CAle)u — Ale)v,u — vy = ¢ollu — v|?,
(2.8) [A(e)u — Ale)v]| < eyfju — v| forall uw,veV,

Where Co = 2emin l//O:l cl = 2emax libly and

(2.9) o] = ( f oy dx)m L veV

is the norm in the space V.

The properties (1.2), (1.3) follow from (2.7), (2.8). The boundedness (1.4) is a con-
sequence of the upper estimates for the functions e € U,y and ¢. With respect to the
assumptions (2.1) we can take in (1.5) a function w(e) € K(e) such that w(e) e C3(2),
wie) = 0 on Q and

w(e) (x) = max |®(x)| + le,,, for xe(d,a—205), 6>0.
XEE
We see that this function w(e) = w does not depend on e. Thus we obtain (1.5)
with a function r of the form r(f) = ¢ot — ¢,|/w|, t 2 0, which completes the proof.
The load on the beam is represented by the functional

N
ooy = S [P olX,) + M, o(X,)] + J fodx, veV,
i= o

where P;, M; are given constants, X;€ 2, j = 1,..., N, and f, is integrable in the
sense of Lebesque on Q. We have f e V* due to the continuous imbedding H*(Q) =
c CI(Q).
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The operator B: U,y — V* and the cost functional j: U x ¥V — R can be chosen
in the same way as in [3]:

(2.10) (Ble),vy = —kf elx)v(x)dx, k>0, veV,
0
which represents the load caused by the own weight of the beam. Further, we set
(2.11) Jilev) = v = z|3, zeV
or
(2.12) Jja(e, v) =f eX(x) (v'(x))*dx, veV.
9]

The functional j, expresses the intensity of the normal stress in the extreme fiber
of the elastic beam. Both functionals satisfy the assumption (1.8) (see [1], Chapt. 2),
and taking into account Lemma 2.1 and Theorem 1.1 we see that there exists an
optimal thickness function e,: [O, q] — R solving the optimal design problem for
the elasto-plastic beam lying over an obstacle.

IL. Optimal design of a plate. We consider an elastic plate, whose middle surface
is a bounded region = R? with a Lipschitz boundary. Again we set U = H*(Q).
The set of admissible controls has the form '

Uy = {eeH3(Q): 0 < epin < e(x) < e, forall xeQ,

= (Pl} .
2

We assume the plate to be clamped on the boundary and put ¥ = Hj(Q). The set
of possible deflections of a plate is

K{e) = {ve HY(Q): v(x) = &(x) + L1 e(x) forall xeQ},

0
R
2 n

where the function @: Q — R representing the obstacle lying under the plate has
to satisfy the conditions

(2.13) DeC(Q), d(s) < —+y(s) forall seoQ.

It can be shown in the same way as in the case of the beam that {K(e)}, eeU, is
a system of nonempty closed convex subsets of V satisfying the assumption (1.1).
The system of operators A(e): V — V*, ee U, is defined by

(2.14)  <(A(e)u, vy = E@—Ii—aﬂfnes(x) [u1,011 + (ugq0,; + Uy,U11) +

+ 2(1 = 0) U015 + Uzyvp,] dx,

308



where
0%u

u; = , Lbj=12; E>0, 0<o<1
Ox; 0x;

The operators A(e): ¥V — V* are linear bounded and strongly monotone uniformly
with respect to e € U,q, and they satisfy the assumptions (1.2)—(1.6) as was verified
for more general nonlinear operators in [4], Lemma 1.1.

As the perpendicular load we take the functional

vy =Y P;o(X)) +Jfo”dX, veV,
j=1 Q

where P; are given constants, X;€ Q,j = 1,..., N ; f, € L,(Q). We can again include
the own weight of the plate represented by the operator

{B(e), v) = —kj e(x)v(x)dx, eeUy, veV.

Q

As the cost functional we can choose j; defined in (2.11), or

Jja(e, v) = '[ e(x) S[v,v] dx, eeUy, veV,
2
where
S[v, v] = (v}, + 03,) (1 = 0 + 6%) + vy,0,,(—1 + 40 — 02) + 3(1 — 0)?v3,,

which corresponds to the minimization of the intensity of the shear stress at the
extreme fibers of the plate.

As all the assumptions from Part 1 are fulfilled (see [4], III, Chapt. 1) there exists
at least one optimal thickness-function of the plate with respect to the cost functionals

jiorjs.
3. OPTIMAL DESIGN OF A PLATE DEFORMED BY SHEAR FORCES

In the next problem we do not directly apply Theorem 1.1. We shall use the result
about the dependence of the deflection of the plate on the form of the obstacle.
It enables us to weaken the assumptions on the admissible set U,,.

Again we consider a plate with a middle surface Q. We assume that its vertical
displacement is influenced by an obstacle. The boundary of the plate is supposed
to be sufficiently smooth.

The set of admissible thickness-functions (controls) has the form

(2.15) Uy = {ee C®(Q): 0 < epin < (x) < € 0n 2,
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e
0x;

3

£C;,, i=12; ae.on Q, fe(x)dxzch
0

e(s) = ¢(s) on 0Q,¢¢ C(@Q)} R

where C;, C,, C; are given constants, ¢ is a given function and C®'(Q) is the set
of all functions Lipschitz-continuous on Q. The derivatives de/0x; exist almost
everywhere on Q. Due to the Ascoli-Arzela theorem the set U,4 is compact in the
Banach space U = C(Q) of all continuous functions e: @ — R with the norm

(2.16) _ lelv = max [e(x)|, eeU.

xef

We suppose that the boundary of the plate is not deformed and we set
V= HyQ).

Assume again an obstacle lying under the plate, analytically described by a function
@ € H'(Q) n C(Q) fulfilling the condition

(2.17) d(s) + 1 o(s) <0 forall sedQ,

where the function ¢ is defined in (2.15).
Now we introduce the system of sets {K(e)}, e € U,q:

(2.18) K(e) = {ve Viv(x) = &(x) + }e(x) ae.on Q}.
K(e) is nonempty for every e € U,q due to the assumption (2.17). Indeed, we have
weK(e), w=max{0,® +e2} (see[5],1I, Chapt.5).

It can be easily seen that K(e) is convex and closed in V.

We assume that the desk is deformed only by tangential stresses. If f, eLz(Q)
represents the perpendicular load acting at the upper plane of the desk, then the

deflection
= u(e) € K(e)
is a solution of the variational inequality

(2.19) J.ne(x) [Vu(x). V(v — u) (x) dx] = JL) é (fo(x) — ke(x)) (v — u) (x) dx

forall veK(e),

which corresponds to the state inequality (1.7), where the operators A(e), B and the
functional f are of the form
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(2.20) (A(e) u, vy = f e(x) (Vu . Vo) dx,

(2.21) {(B(e),v) = — %_f e(x) v(x) dx,

Q

(2.22) vy = laj fo(x)v(x)dx forall u,veV, eeUy.
2

The positive constant G is the shear modulus of elasticity.

Let us consider the cost functional of the form
(2.23) jle,w) = |w =z} + colle|}, eeUy, weV,

where z; € H'(Q), ¢, = 0 and ||+ | is the norm in H'(2Q).

In order to establish the existence of an optimal thickness-function we have to
verify
(2.24) e, > e, in U= u(e,)— ue,) (weakly)in V.

Then there exists an optimal control e, € U,4, because the cost functional j: U,4 X
x ¥V — R is weakly lower semicontinuous with respect to ee U,y =« H(Q), we V
and every sequence of elements of U,y contains a subsequence weakly convergent
in H'(Q) and strongly convergent in U = C(Q).

We shall proceed in a similar way as in [2], Chapt. 3.7. First we recall an important
result of F. Murat in [9]:

Lemma 2.2. Let V = Hy(Q). If {g,} = V* is a sequence such that g, = O (in the
distributional sense) and g, —~ g (weakly) in V*, then g,— g (strongly) in
W-Q) = (W'P(Q)) for all ¢ <2, 1]p + 1/g = 1.

The inequality g, = 0 in V* means

(2.25) {9, &> =0 forall £eCP(Q), ¢=20 on Q;

W'?(Q) denotes the space of all functions from the space L,(Q), p = 1, whose all
distributive derivatives of the first order belong to L,(Q). We have W'*(Q) = H'(Q).

Lemma 2.3. Let u(e) € K(e) be a (unique) solution of the inequality (2.19), e € U,q.
Then the relation (2.24) holds.

Proof. Let lime, = e, (strongly) in U, ¢,€ U,q, n =0, 1,2, ...
n—o
It results from the form of the set U, 4 that
(2.26) e, —~ e, (weakly)in W'P(Q) forevery p=1.

Let us denote u, = u(e,), n =0, 1,2,.... We recall that the elements u, are the
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solutions of the variational inequalities

(2:27) (A, v —u,y 2 f + Buv~u,) forall veK(e,),
where we have denoted A, = A(e,), B, = B(e,), n = 0, 1, .... In the same way as
in Part 1 we can prove boundedness

(2.28) )y =€, n=1,2,..

Hence there exists a subsequence of {u,, e,} (still denoted by {#,, €,}) such that
(2.29) u, ~u (weakly)in V,

(2.30) u, > u (strongly) in Ly(Q),

(2.31) e, =3 ¢o (uniformly)in C(Q)=U,

(2.32) e, — ¢y (weakly)in W'?(Q) forall p21,

(2.33) A, - Ay in L(V, V¥),

where L(V, V'*) is the normed space of all linear bounded operators from Vinto V*.

As u, € K(e,), we have the inequalities
u, > P+ le, ae.on Q, n=1,2,...,
and the relations (2.30), (2.31) imply u = & + }e, a.e. on @ and hence
uekKep).
Let us rewrite the inequality (2.27) in the form
(2.34) Ay ~f = B,,v —u,» 20 forall veK(e,).
Taking v = u, + &, & 2 0, £ € CP(Q) we obtain
(2.35) (A, —f = BY20 in V*, n=12,..
Using the forms (2.20), (2.21) and the limits (2.29), (2.30), (2.31), (2.33) we arrive at
(2.36) Ay — f — B, —~ Agu — f — B, (weakly)in V*.
Applying now Lemma 2.2 we obtain
(2.37) A, —f — B, > Agu — f — B, (strongly)in W™4Q), g <2.
Setting v = w + }(es — eo) in (2.34) for any w € K(e,) we have the relations
Aoy, W) = (Ao — A,) tyy WD + (A, w) = ({dg — A4,) ty, W) +
+ Aty 4 + {f + B,,w — u,) — 3{A,u, — f — B, e, — €3> .
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Using the relations (2.29), (2.32), (2.33), (2.37) and the weak lower semicontinuity:

<A0u> “> < lim inf <A0um un> )

n—+co

we arrive at the inequality
(Ao, wy = {Agu, u) + {f + By, w — u) forall weK(ey)

and hence u = u(e,) and the relation (2.24) is verified. This proves the existence
of the optimal thickness-function e, € U,4 for the Optimal design problem with the
cost functional (2.23) an the state inequality (2.19).
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Sahrn

ULOHY OPTIMALNEHO RIADENIA PRE VARIACNE NEROVNICE
S RIADENIAMI V KOEFICIENTOCH A V JEDNOSTRANNYCH VAZBACH

IGor Bock, JAN LoviSEk

Je Studovana tloha optimélneho riadenia variaénou nerovnicou s riadeniami v koeficientoch
operatora nerovnice, v pravej strane a v konvexnej mnozine moZnych stavov. Dokazuje sa
existencia optimalneho riadenia. RieSené su Glohy optimalneho navrhovania pruZne-plastického
nosnika a pruznej dosky s prekazkou a premennou hribkou ako kontrolnou premennou.
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Pesome

3AJAYU OIITUMAJIBHOI'O VIIPABJIEHMA BAPMALIMOHHBIMI
HEPABEHCTBAMMU C VIIPABJIEHUAMM B KOQOOUIIMEHTAX
1 B OJHOCTOPOHHUX OI'PAHMYEHUAX

IGor Bock, JAN LoviSEx

B pa60Te HCClIeA0oBaHa 3aavya ONTHMAJIBHOIO YIPABJICHHUS BapHAIMMOHHBIM HEPABCHCTBOM

C ympaBieHHWSIMH B KoehdHUHAEHTaX OIepaTopa HEPAaBEHCTBA, B (PABOl YAaCTH M B BBEIOYKIOM
MHOECTBE BO3MOXHBIX COCTOSHYIA.
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