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Summary. The busy period distribution of a discrete modified queue M/GI/c/w, with finitely
or infinitely many servers, and with different distribution functions of custemer service times
is derived.
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1. INTRODUCTION

During the last few years the use of discrete queueing systems with finitely or in-
finitely many servers has been increasing. The discrete systems are used as mathema-
tical models of, for example, mass servicing machines, electronic machines, transport
problems, communication channels [4], automated filmless blob-length measure-
ments in track chambers in high-energy physics [1], particle counters [2], etc.

For a modified queue we suppose that the service times and interarrival times
of all customers served during any busy period are independent random variables
with not necessarily identical distribution functions. The modified M/GI|1 queue
has been investigated by Yeo [9] and Welch [8], the modified GI/M/1 and GI|GI/1
queues by Pakes [5, 6], and GI/M|1 by Shanthikumar [7]. The modified GI/GI/co
has been studied, using the particle counter language, in [2].

The joint distribution of the busy and idle periods, for the GI/M/1 queue, has been
derived by Kalashnikov [3]. For the discrete modified counter with prolonging dead
time, the joint distribution of the dead and the iddle period has been obtained
in [2].

An important class of discrete queueing systems appears in a process of auto-
matized measurement systems when the interartival times, T,, have the geometric

distribution
(1.1) P(Tk=nh)=(1-p)p"_1, n=>1, k=1,

where 0 < p < 1, and h > 0 is a discretization step.
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For example, the measurement in track chambers in high-energy physics leads
to this model [1]. Along the particle trajectory we may observe a chain of streamers
which are described as circles having centres on a trajectory. The number of streamer
centres is a homogeneous Poisson process, and our task is to determine the blob
and gap lengths. The actual measurement is performed using the scanning apparatus,
so that the experimental data on the bloblength measurements have discrete values.
Interpreting the blob and the gap as the busy and idle periods we obtain a discrete
queueing system M[GI[/co with (1.1). Some discrete queueing models with finitely
many servers and with (1.1) may appear in communication channels [4].

In the present note we derive the busy period probability law for a discrete modi-
fied M|GI/c[oo queue for any 1 < ¢ < co. First we concentrate on the discrete
modified M/GI/c queue with finitely many servers. Then we shall continue, in more
detail, with the cases of single-server and two-server queues, and with the queue
having infinitely many servers. We note that the formulae presented are computation-
ally convenient for practical use, and the computational process can be simply
programmed for computer, too. Some remarks on computing, and on particular cases
of queues, are given in Part 5.

2. DISCRETE MODIFIED M/Gl/c/ QUEUE

Suppose that a queue is idle before the moment ¢t = 0 and let the customers
arrive at discrete instants 0 < 7, < 7, < ... < oo, which are multiples of a step
h > 0, into a queueing system with ¢ (1 £ ¢ < o) available servers, and with
a waiting room having infinitely many places (if 1 < ¢ < o). Let x, k = 1, be the
service time of the k-th customer, and let T, = 7,1 — T, k = 1, be the interarrival
time between the arrivals of the k + 1-st and the k-th customers. The busy period,
B¢, is the time interval during which at least one server is busy. The idle period, I°,
is the time interval during which no customer is served. The sum, C° = B + I°,
of the busy period and the subsequent idle period is called a cycle.

For the discrete modified queue we suppose that

(2.1) Pay=nh)=(1-p)p", n=20,
(2.2) PT,=nh)y=(1-pp"', n21, k21,
and the first busy period is produced by the sequence of service times {»xk{,;”:n. {_xk},‘f’zl

is assumed to be a sequence of independent positive random variables, independent
of the input process { T;};%, and of t,, and with the distribution laws

(2.3) Py, =nhy=h'n), nz21, k=1,

where ) hk(n) = 1, k = 1. Moreover, we suppose that any successive busy period

n=1

is resumed with the initial conditions, independently of the previous periods, so that
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the sequence of busy periods (as well as idle periods and cycles) are i.i.d. random
variables. This discrete modified queue will be denoted by ¥ = (p; hy, h,, ...).

For a given queue %° = (p; hy, h,,...) it is convenient to consider a sequence
of discrete modified queues, {%;},, where 9§ = (p; Iy, hyyq, ...), k = 1. Define,
for any %, the corresponding busy periods, By, idle periods, Iy, and cycles Cj, res-
pectively. For simplicity we put h = 1.

Due to the known properties of the geometric input process, the idle periods
have the geometric distribution law with the same parameter p, that is, for P;(n) =
= PI; = n) we have

(24) Plen)y=(1—=p)p" ', n=1, k

v

1.

Moreover, the busy and idle periods are independent random variables.
Denote by A an event that the busy period begins from ¢ = 0. Due to (2.1), we
have P(4) = 1 — p. We define p,(j) = P(x; = j, A) for k, j = 1. Therefore

(2.5) i) = mli) (1 = p),
and forj = 0 we put %
(2:6) p0)=p, k=1.

I

We denote the conditional probability in question, P(Bf = n | 4), by Pg(n), and

the joint distribution, P{B{ = n, A), by PP n). Clearly
(2.7) PSn) = PPEn)[(1—p), n=1, k=1.
Let Wi(n,j) = P(B = n, § =j, A, n21,1<j<n, k1. Then

(2.8) PPn) =Y Win,j), n=1, k=1.
j=1

Now let n = 1 and 1 £ ¢ < oo be given (the queue with infinitely many servers
will be treated in Part 4). For any i, 1 £i < n A ¢, where x A y = min(x, ),
and forany 1 £ j, £ n, 0= j,<n—s+ 1(2 <5 <), we define 4§ (n; jy, ..., ji)
as the conditional probability of By = n under the condition that, forany 1 < s < i,
at the time ¢ = s either a customer arrives and his service time is j; (if j; = 1) or no
customer arrives (if j; = 0). Hence

(2.9) Wiln, j) = plj) Afn;j), 12j<n, n21, k21,
andif 1 £i £ n A ¢ then
(2'10) Ai("éjp -~-7ji) = Z pk+i/ji+1) Agin; i, --~aji:ji+1)~

Ji+1=0
Using the properties of the conditional probability and the independence of the
dead time of the idle period we can prove the following relationships for A4f (n; ji, ...
e Ji)t
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(2.11) {A'i(l; .
PP{(1) = Wi(1,1) = p(1) p.
Let n > 2 and suppose that we know all 45 (m; jy, ..., j,) for any 1

1 £ m < n, k 2 1. Then the process of evaluating A (n; jy, ..., j;), 1
will be algorithmically) divided into five steps.

SvEmAc,
<iZn

A c,

(I) Existence of “gaps”: There is an integer u, 2 < u < i, with j, = 0, such that
max (jy,j, + 1,..., ju—1 + # — 2) < u. Then
(2.12) Ai(nsjys - ji) = 0.

In the following let there be no “gaps”.

(IT) Existence of “busy periods stuck together”: There is an integer u, 2 < u < i,

such that max (jy, j, + 1, ..., ju—y + 4 — 2) = u — 1. Then
(2.13) AL 1 cn0)) = a1 -t = 4+ L o)

where (ug) denotes the number of zeros in {jy, ..., j,}.
Now, let there be no “busy periods stuck together”.

(III) Existence of “zeros”: There are two possible cases. First, we suppose that there
isanintegeru,2 < u < i,with(j; = 2)j, 2 1,...,j,-4 = 1,and j, = 0. Then

(214) Ali(n;jb -“aju—la 03ju+1’ '-~’ji) =
A;+(u)1‘[\n;jl - 13 '“sju—l - 13ju+19 "-’ji)”

where (u}) denotes the number of “ones” in {jy, ..., j,}-

SCCOnd, let (jl g 2) j2, ...,ji..l ; 1, ji = 0. Then
(2.15) A;(n;jl, ""ji—l’ 0) = Az+(i)ly(n - l;jl - 1, ""ji—l - 1) .

In the following let there be no ‘““zeros”.

(IV) Let 1 £ i £ n £ c. Here we may assume without loss of generality that
(*) iZiht1lz...zj+i-1.

Indeed, if there is an integer u, 1 < u < ¢ A n,such that u — 1 + j, < u + j,4 1,
then

(2.16)  Af(nsjy, ..nji) = A;+6(ju)(n;j1’ v duetodurs F Liju = Lijurzs oo di) s

where §'x) = 0 if x + 1, §/x) = 1 otherwise. Applying finitely many times this
argument we get (*).

Therefore, let (*) hold. Assume that the ordered i-tuple (jy, j, + L ..o ji + i — 1)
there are s “‘stairs”, that is, there exist s indices ty, ..., t; € {1, ..., i} such that t, = 1
and

Joo= o = Jrmr F by = 2> Aty — L= = H e = 2>

'>jlz+t2_1=o--=j11—1+t1—2>jt1+t1—"1=...=j,'+i_1.
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It is convenient to put f;+1 = n. Define recursively 7° = 0, t° = 1! + ¢,,, — ¢

for 1 £ v < 5. Then
(2.17) A(ns s ’jl) = pAli+6(j,~)(n = Ljy = L= 1)+

Jji—1

A;M(i.)ﬂ(” -L;j, -1, e Ji— 1)Zm+,~(u) +
u=1

v

s ty+1—ty
+ ZI Zl I’I«-H(":v‘l + u) A;+¢5(j,-)+l(n —Liji— L.y — 1,
v=1 u=

jlu -1+ u;jtv+1 - 1, ...,j,- - ])

(V) In the following we shall deal with the case 1 < i < ¢ < n. For our aim it is
sufficient to consider only the case when i = ¢. Indeed, if 1 £ i < ¢, then using
(2.10) (¢ — i)-times we get the case i = c.

Denote, for Ag(n; jy, ..., J.),

J=min{j,j, + 1,....j. +¢—1},
s=min{t:j, +t—1=j}.

First, we suppose that j > ¢. Hence j,,...,j, = 2, and the ¢ + 1-st customer
finds all servers busy, so that he may be served only if the service of the s-th customer

is finished. Therefore

(2.18) A5 s oo je) = AR = Ljy = 1, eenje = 1) +
n—-j
+ Zpk+c(u)Alf+l(n - 1,]1 - 1: ~-~ajs-—1 - ],js -1 + uajs-i»l - ]s ---,jc - 1)
u=1

Second, let j < ¢. The previous four steps guarantee j; = 2, j,, ..., j. = 1. Hence,
the ¢ + 1-st customer finds at least one server idle, consequently, he may be served
immediately after his arrival. Therefore

(2.19) A3 iy o) = A Wn = LJy = Lo — 1,
n—c¢

c— S5+ 1,j5+1 - 19 ~-',jc - 1) + Zpk+C(u) A;+s‘+1 .
u=1

.(I’l - 1,]1 -1, .. =1 — Le— s+ ujss1 — L..je— 1)5

where s* denotes the number of “ones” in the set {ji, . Je} — {1 - osJs}
All five steps prove the following theorem. -

Theorem 1. The busy period probability law of the discrete modified queue
9 = (p; by s 1» .-, k=1, for any 1 £ ¢ < oo, is given by formula (2.7),

where PPZ(n) is algorithmically calculated from (2.8) through (2.19).
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Corollary 1.1. The probability law of the cycle Pg<(i) = P\Cj = i) of the discrete
modified queue 9; = (p; hy, iy, ..), k2 1,1 < ¢ < o0, is given by

(2.20) Pi(i) = X Pin) Pee(m),

n+m=i
nmz=1

where Pi<(m) is calculated by (2.4).
Some practical remarks on the actual computation of A§(n;jy,....J:), 1 =i
< n A ¢, will be given in Part 5.

I\

3. DISCRETE MODIFIED SINGLE SERVER AND TWO-SERVER QUEUES

Here we concentrate on the discrete modified single server 4. = (p; hy, hyy 1, o)
k = 1. In this case it is clear that it is necessary to evaluate only 4,(n; j), for any
1 <j < nandany k = 1. Consequently, formulae (2.13) and (2.18) have simpler
forms. Summarizing this we have, for PP;(n) and A;(n;j), k = 1, the following
recursive relationships:

(3.1) {A;(“ D=r

PPi(1) =pd1)p.

If n = 2, then

(3.2) Ai(n; 1) = PPl (n — 1).
If2<j<n—1,then
n—j
(3.3) Ag(m:j) = pAg(n — 1;j = 1) + Y pli) Ak o{n — L;j + i = 1),
i=1

(3.4) Ap(n; n) = pA(n — Lyn — 1) = p".
Hence, forany n = 1, we have
(3.5) PP(n) = Y plj) Al(n: ) s
j=1
(36) Pi(n) = PPi(n)[(1 - p).

Theorem 2. The busy period probability law of the discrete modified single
server queue 9, = (p; hy, hyry,...), k = 1, is given by (3.6), where PP,(n) and
Ag(n; j) are calculated from (3.1) through (3.5).

For the discrete modified queue with two servers, 4 = (p; hy, By ) k21,
the general formulae from Part 2 reduce to the following form:

[4 1) = p,
(PPL(1) = pil1) s

(3.7)
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A7(2;1) = PPE, (1),
(3.8) A4(2;2) = p* + PP, (1),

PPY2) = p(1) A2(2; 1) + p(2) 43(2;2) ;

I

(3.9) {Af(2; 1,0)=0, A%2;1,1)=p,

A}(2;2,0) =p, Ai(2;2,1)=p.

Now let n = 2. Then

Ai(n;1,0) = 0,
(3.10) ';( ) 2 ; ,
Ai(n; 1,0) = Aiin — 150), 1Sisn-—1
If2 < j £ n, then
(3.11) A}(n;j,0) = AZ(n — 1;j — 1).
For 1 < i £ n — 1, there are two possible cases.
First, let i + 1 £ j, then B
(3.12) Af(n; j, i) = pAgs(n — L;j — 1,i— 1) +

n—i—1

+ Z Pk+2(“)Alf+1(” -Lj-Li-1+ u),
u=1
where 6(x) = 1 if x = 1, 6/x) = 0 otherwise.
Second, let i + 1 > j, then
(3.13) Ai(n3J, i) = pARisg-nin — 130,j — 2) +

n—j

+ Y peedu) ALy (n = i j— 2+ u).
u=1

Hence, for any n = 2, we have

n n-—1

(3']4) PPI%(”) =j;1 i;opk(j) Pk+1(i) Ai(n;ja i) ,
and finally
(3.15) Pi(n) = PPi(n)[(1 — p),

which proves the following theorem.

Theorem 3. The busy period probability law of the discrete modified two-server
queue %} = (p;hy, hyyy,...), k = 1, is given by (3.15) where we use formulae
(3.7) through (3.14).
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4. DISCRETE MODIFIED M/GI/c QUEUE

The method developed in Part 2 for the discrete modified queue M|/GI/c/o0, where
1 < ¢ < oo, may be used for the discrete modified queue with infinitely many
servers. Obviously here we do not need the waiting room because any customer
finds at least one idle server. In the following we shall see that in order to determine
P2(n) = P(BY = n| A) it is necessary to evaluate only A4°(n; j), forany 1 < j < n.
Therefore step (IV) and formula (2.17) have simpler form, and we obtain the follow-
ing formulae, for 42 = (p; hy, hyry, -..), k2 12

(4.1) Pe(n) = PPZn)f(l —p), nzl,
(4.2) PPE(n) = g: Wen,j), n=1;
(4.3) w(n, j) = p(j) A2 (ns ) lsjsn, nzl;

(4.4) {A" i =2,

PP(1) = We(1, 1) =p(l)p.
Let n = 2. Then
(4.5) AR(n; 1) = PPR(n — 1),

and, for any 2 < j < n, we have
j-1
(4.6)  AR(n;j) = pAP(n — L;j — 1) + AZ(n — 1;j — )Y peiyli) +
i=1
n—1
+ Y Wa(n —1,i)
i=]

(here, as usual, the sum over the empty set is defined as 0). This proves the following
theorem.

Theorem 4. The busy period probability law of the discrete modified queue
92 = (p; e, hysys ...)s k = 1, is given by (4.1), where PPY(n) is evaluated from
(4.2) through (4.6).

We note that the cycle probability law of the discrete modified queque ?k =

= (p; Iy Misy, -..), k = 1, is given by (2.20), where we put ¢ = oo.

Theorem 4 generalizes the analogous result from [2] concerning the discrete
modified queque ¥° = (p; hy, by, ...), where hy = h, = ...

5. CONCLUSION

We see that the actual computation of the busy period probability law is relatively
simple in the case when we have either only few servers (for example, ¢ = 1, 2)
or infinitely many servers. In the other cases the result of Theorem 1 may be simply
programmed for a computer. Here we note only that the following relationships
hold.
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Ifi£i<n<c< oo,then

(51) Alcc(n;jb"'aji):Az+](n;j]7--':ji)s
(52) Aqns j) = A (ns j) = AZ(n3 ),
(53) in) = Pi"(n) = PP(n),

and this enables us to simplify the computation for a queue with a large number,
of available servers.

If h,(j) (k = 1) are non-zero only for few integers j, then the calculation is simple,
too. Indeed, it suffices to evaluate, for example, for Wi(n, j), only Wg(n, j) with
h(j) > 0. Analogously we proceed with the other quantities Ag(n; jy, ..., j;).

We say that a discrete modified queue ¥° = (p; hy, hy,...), 1 £ ¢ £ oo, is of
order m, if h, = h,,; = .... If m = 1, then we obtain the usual (non-modified)
queue, and in this case all the above formulae do not depend on the subscripts k.

If m > 1, then the computation of the busy period probability laws for the queues
G =(p; e Mewys..)y 1 Sk <m, 1 <¢= o0, may be organized so that first
of all we calculate all necessary expressions for k = m, then we continue for k =
=m-—1,.... k=1
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Stahrn

O DISKRETNOM MODIFIKOVANOM SYSTEME HROMADNEJ OBSLUHY
TYPU M/GI/c|

ANATOLI) DVURECENSKIJ
Pre diskrétny modifikovany systém hromadnej obsluby typu M/GI[c[/c0 s kone&nym alebo

nekoneénym poctom obslih, ale s rdznymu funkciami rozdelenia obslth zdkaznikov, odvadza sa
rozdelenie dizky periody obsadenosti.
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Pe3ome
O JUCKPETHOM MOIU®UILIMPOBAHHOWN M/GI/c[coc OUYEPEIU
ANATOLIY DVURECENSKIJ

s quckpeTHOM MoaubuumpoBanHOil cuctembl M/Gl/c/o0 ¢ KOHEYHBIM MM OECKOHEYHBIM
YHCJIOM OOCIIY)XKMBAIOMIUX KAHAJIOB M C Pa3sHbIMU (YHKUMSIMH pa3ieeHHil BpeMeH OOCITYKUBaHHUSA
BBIBOJUTCSI pacnpeesieHie JIMHbI NePUOIA 3aHATOCTH.
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