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ON A SUPERCONVERGENT FINITE ELEMENT SCHEME
FOR ELLIPTIC SYSTEMS

II. BOUNDARY CONDITIONS
OF NEWTON’S OR NEUMANN'’S TYPE

IvaAN HLAVACEK, MicHAL KRiZEK

(Received July 5, 1985)

Summary. A simple superconvergent scheme for the derivatives of finite element solution
is presented, when linear triangular elements are employed to solve second order elliptic systems
with boundary conditions of Newton’s or Neumann’s type. For bounded plane domains with
smooth boundary the local O(h3/2)-superconvergence of the derivatives in the L2-norm is proved.
The paper is a direct continuation of [2], where an analogous problem with Dirichlet’s boundary
conditions is treated.
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1. INTRODUCTION

In [2] we have studied a simple superconvergent finite element scheme for second
order elliptic systems with non-homogeneous Dirichlet boundary conditions. In this
paper we analyze the same scheme in the case of boundary conditions of Newton’s
or Neumann’s type. These types of boundary conditions, however, are very rarely
investigated in connection with a superconvergence of the finite element method —
see [5], p. 187 (and [4, 7]).

We recall | 2] the main idea of the proposed scheme. The use of linear elements
to elliptic systems yields a piecewise constant field of the first derivatives of the finite
element solution. Thus employing a suitable post-processing (based on averaging
at nodes), a new continuous piecewise linear field can be defined. We show that the
latter field improves the approximation of the first derivatives of the solution, which
are often more important than the original solution itself.

The paper is organized as follows. In Section 2, a variational formulation of a class
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of elliptic problems is given, and several lemmas for coercive case and numerical
integration are presented. In Section 3, a local O(h*'?) error estimate in the I*-norm
is proved for smooth domains. Finally, in Section 4 the same estimate is derived also
for some non-coercive cases. To the authors’ knowledge, there are no super-
convergence results for non-coercive problems in the literature.

2. SOME LEMMAS FOR COERCIVE CASE OF ELLIPTIC SECOND ORDER
SYSTEMS AND NUMERICAL INTEGRATION

Preserving the notation of [2], we assume that the functions
fe(Z(Q)", ge(Z(o)"

are given. As in [2], we introduce the operators Ny(u), i = 1, ..., %, the bilinear
form a(u, v) by means of a symmetric uniformly positive definite % x » matrix K
with the entries K;; € P(@). Moreover we define another bilinear form

M
b(u,v) = Y buw,ds,
20 Iit= 1

where b,, are bounded measurable functions on Q. For brevity, we shall use the
notation

((uv)) = a(u, v) + b(u,v).

The following weak formulation of the boundary value problem will be considered:
Find u € W such that

(21) (. v)) = (F¥)o,0 + (8 V)0 WWEW,

where W = (H'(Q))™ and (-, )y, is the scalar product in (I2(9Q))™.
Assume that:

(H 1) the system of operators {N(u)}7., is coercive on W;

(H2) b(u,u) 20 VYueW,;

(H 3) an inequality of Korn’s type holds: there exists a positive constant ¢, such that
(u,u)) = co|uf} o YueW.

Then the problem (2.1) has a unique solution.

Remark 2.1. As follows from [3], Part I, the inequality of (H 3) can be proven
from (H 1), (H 2) and the positive definiteness of K, if

ve W, Z ||Ni<v)”<2>,n + b(v, V) =0=>v=0,
=1
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There are two important possibilities when the latter condition holds:
(i) b(v,v) = 0 and some of the operators N,(v) have “absolute” terms (n,, =+ 0),
(ii) b(v,v) # 0 and all N,(v) are without “absolute” terms (n, = 0).

The first case corresponds with boundary conditions of Neumann’s type on 0,
whereas in the second case the conditions of Newton’s type are prescribed on a part

I' = 0Q of positive length, and conditions of Neumann’s type on the remainder
oQ —T.

Remark 2.2. In case of elastostatics (see [2], Example), the operators N(v) have
no absolute terms and we have the variant (ii). Then a sort of “elastic supports”
is to be prescribed on a part of 0Q — cf. [3], Part II.

Let us consider the class €3(d) of domains and a strongly regular family of triangula-
tions M = {7}, introduced in [2], Section 2. In contrast to the case of Dirichlet
problem, however, we have to change slightly the definition of the interpolation
operator P.

3Q y %
Z_— Tc

Tk

Fig. 1.
Denote by T,, T, the parts of @ — Q,, i.e. the segments adjacent to the chords
and to the tangents, respectively (see Fig. 1). For
W, = {ve HQ) | v|r e P,(T)VTe T, v|r € Py(T,), v|r,€ P{T)VT,, T, = Q — Q,}
we put
W, = (Wh)M .
The interpolation operator P: H(Q)n C(Q) — W, will be defined as follows:
Pu=u

at all nodes x € O, and at the points y € 0Q, where y is the point of 6Q nearest to the
vertex x (see Fig. 1). .

In T,, the function Pu is defined by extension of the linear polynomial from the
adjacent triangle 7. In T,, the function Pu is the linear interpolation of u with the
nodes X, y, z (see Fig. 1). For ue W n (C(Q))™ we define

Pu = (Puy, Pu,, ..., Puy) .
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Lemma 2.1. Let Q € %(d), ue (H¥Q)),v e W,. Then
(2.2) [((u = Pu, V)| = Ch*2[ufs.0 v],0-

Proof. We shall write

e =u— Pu,
ale, v) =J‘ z Ki;N/e)N,v)dx +j Z K;;N{(e)N(v)dx.
Qp J=1 Q-0 Li=1

The first integral can be bounded by the right-hand side of (2.2), as follows by an
argument which is parallel to that of Lemma 2.1 in [2].

We have to estimate the integral over Q — Q,. For any we H"(Q) there exists
Calderon’s extension Ew € H*(R?) such that (cf. [6], Chap. 2, § 3.7) Ew|, = w and

(2.3) |EW],.p2 < C) [W)oas n21.

Let us consider an arbitrary segment T,. We may write

(2.4) < CIN{e)[o,r.

Ni()lo.r. = Cille]l,r. |

Vi,

I K;;N/e)N,v) dx
T.

Fig. 2.

Let us define the triangle T, = Aa,d,d; (see Fig. 2), where a,d; = 2a,a;,j = 2, 3.
Finally let = denote the linear interpolation operator on T. such that

nwa;) =wla), i=123.
Then Pw = nw on T, U T,, so that
|Pw = wlir, < |nEw — Ew|; 5, < Ch|Ew], q,
(see e.g. [1], p. 123) and consequently,
(2.5) | P, — s 7. < ChlEu,|y 7., m=1,..,M.
Next let us consider an arbitrary segment T,. An analogue of (2.4) holds as well.

Let us define a triangle T, with the vertices x, z, r, where xr = xz (see Fig. 3). Let ,
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be the interpolation operator on T, such that m,w coincides with w at the points
x, z, y. By the same way as previously for T,, we deduce

(2.6) [Pt — |y, r, £ |71Ethy — Euty]|y 7, £ Ch|Eu,|, 1, -

{We can easily verify that the minimal angle of T, is bounded from below by a positive

constant independent of k). We may write
r

Fig. 3,

@.7)

J ...dx J‘ ...dx| .
Te Te

The first sum can be estimated in the following way, using (2.5):

)

f ...dx
Tel) 1,

M M
< oS X WIB0f 2 5 o vl 3 2Bl o)
cm= m=

=) +y
Tc T,

f Ky NN dx

= TZ Cilefl iz v]ir. = Cl(;;"e”%,n)m [vllie-a, <

where Q, is a “strip” containing all triangles T,
Q; = {xe R*| dist (x, 0Q) < Ch} .

We employ twice the Iljin inequality with ¢ = Ch (see [2], (2.31)) first to a domain
3 — @, where @ o Q, and second to Q. Thus we obtain, using also (2.3)

|Etn)3 0, < Ch|Eu,|3 6 < Cih|u,|3 0.
Inserting this into (2.5), we arrive at the upper bound
Cah*2|uls 0 [v]:.0-

The second sum in (2.7) can be estimated in a parallel way, using (2.6) instead

of (2.5).
To deal with the boundary integral b(e, v), we first show that
(2.8) lu; = Pujllo.s0 < CHP|uj]|20, j=1,... M.

The proof of (2.8) is based on the following relation

f w?ds < C(éf [Vw|?dx + 5“J w? dx).
R s ws
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This inequality holds for any function we H'(Q) and for an internal “boundary
strip” w, = Q, the width & of which is small enough (see [5], p. 24).
If we enlarge w; onto the whole domain Q and substitute

6=h, w=e,
we obtain

(29) le;l5.00 < Clhlejfi o + ™" |ef]3.0) -
On the other hand, we have
(2.10) lelo.e = Ch?="ujl20. g =0,1.

This estimate is standard on Q,. We can verify it on Q — ,, using an argument
parallel to the derivation of (2.5), (2.6), and the inequality (2.3) for n = 2.
Inserting (2.10) into (2.9), we are led to (2.8). On the basis of (2.8) we may write

(2.11) [b(u — Pu, v)| = Umiilbji(“j — Pu)v; ds| =

M M
= C_ZIH”J' = Pujfo,00 [0illo,00 < C11*? 21”“1”2,0 loifls.0 =
ih,j= ij=

< Ch*2|u]l 0 V)10

Combining (2.11) with the previous estimates for a(e, v), we obtain the assertion
(2.2) of the lemma. [ ]

Lemma 2.2. Let Q € 6*(d), f € H¥(Q) and v e W,. Let us define the approximation

(f’ U)?;-Qh
by the centroid rule on the triangulation 7, of Q,. Then
(2-12) |(f, U)o,rz - (f, U)?)‘,Q,,l = Chz”f”z,g “0”1,9
holds for h small enough.
Proof. It is readily seen that
K
219 0o - (el s SIE0ON + [ e,
= = 3°h

where E, denotes the local error on a triangle 7. Lemma 2.2 of [2] yields the upper
bound of (2.12) for the sum of local errors and it remains to estimate only the last
term in (2.13). We have

I, = I fodx| = |f]o.a-ax []0.2-a, -
Q-9

Since Q — Q, is contained in a boundary strip Q° of the width Ch?, we may apply
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the Iljin inequality ([2], (2.31)) with ¢ = Ch? both to f and to v. Thus we obtain

I < | f]1.av]1.0
for sufficiently small h. | |

E_ A‘/B\ g

Ak Lk

Fig. 4.

Lemma 2.3. Let Q € 43(d). Assume that g € [*(0Q) is piecewise from C?, where

the corresponding partition
I

is consistent with every 7, €M, and v € W,. Using local &-coordinate (see Fig. 4)
for the parametric representation of the arc segments, we define

(214 (0.9 = 3100 + 3 [ 00,
where ) .
L(w) = Lw(L[]2),
3 = 9(&) (1 + (@))'?, v = v]ag,

@2 [0, 1] = R is a function, the graph of which coincides with the arc segment
4B (see Fig. 4). The first and second sum in (2.14) corresponds to the arc segments
adjacent to the chords and tangents, respectively. Then

(2.15) (9, ©)o,00 — (9 0)5,00| < Ch3'? l‘fixl lgllccrs [0]1.-

Proof. Let us consider the local error

Ey(w) = ﬂ“w(g) d& — I(w)

Transforming the interval S, = [0, [,] onto the unit interval ¢ = [0, 1] by means
of the mapping
£ =&,
and introducing the functions
ML) = w(l£),

E(w) = J:w dz — w(1)2),
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we derive easily

(2.16) |E(w)] = [b E(®)] < h|E(®)] .

Using the Bramble-Hilbert lemma (see [1], Theorem 4.1.3), we arrive at the estimate
(2.17) [E(W)| £ C|w|,,, -

Since

(19 90 = Bloks..

combining (2.16)—(2.18), we obtain
|E(w)| £ CR*|w|, 5, VYweH¥S,).

Let us consider an arc segment adjacent to a chord. We have

(2.19) |E(gv)| < Ch32|gv], s, -

Using g € CX(T';), ¢ € C¥(S,), and the definition of v, we can prove that
d2
ag 99| = Clale = 0% + Vo)),

(where ||g|c: = max ||gcer,) so that
1gisI

e
(2.20) |§v]3 5. < Cllglé| (v* + | Vo|?)dE.
From (2.19)
Ky Ky
(2.21) (g, 2)0.00 — (g, v)5.00] = |k;Ek(gu)| < ChS/zk;]g‘v[z,sk

follows. Since the number K, of all arc segments is bounded by Ch™!, we have
according to (2.20) that

Ky K1
(2.22) X |g0l2.5, < CHTYVA( Y |g0f3 )" <
k=1 k=1
Ky Pl avz 1/2
< Cih™ 29| (Z'[ (02 + |— )dé) .
k=1J ¢ o¢
It is easy to find that
Ky |
(2.23) Y j v® d¢ gJ v?ds < Clo|? o
k=1J0 2
and
| gv |2 W -1 < pp-1]2
(2.24) % dé = % I £ o]} 7, k(mes T)™* < Ch™Y|o|} 1,
0

(where T, is the adjacent triangle), using the strong regularity of the family 9 of
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triangulations. Inserting (2.23), (2.24) into (2.22) and then in (2.21), we come to the
following estimate

(6. Yo.n = (3 0ol = CHgllolf 0 + 1™l )" <

< G2 max lgllc2rs lo]1.a - =

The discrete problem will be defined as follows:
Find u, € W,” such that

(2.25) (s vi)) = (. Va)o,00 + (8- Vi)o0n YVAE W, ,

where the terms on the right-hand side are defined as the sums over m = 1,..., M,
of the approximations introduced in Lemma 2.2 and Lemma 2.3, respectively,
W, = P(Wn (C(Q)M) = W,

Theorem 2.1. Let Q belong to the class ¢3(d). Let ue(H3Q))™ and u,e W,
be the solution of (2.1) and (2.25), respectively, where f € (H*(Q))", g is piecewise
from C2. Then

Jon = Pl € CHJuls + [fla + max Jeleery)
holds for h small enough. o

Proof. If we put

v,=u,— PueW,,
and use the inequality of Korn’s type (H 3), we may write
collvalt.e = ((un = Pu, vi)) < |((u = Pu, vp))| + [((wy — u,va))| =
< |((u = Pu, v)| + |(F. vi)o.0n — (Fs Vido.al + |(8> V)5 .00 — (& Vio,aa| -
Applying Lemma 2.i to the i-th term of the right-hand side, we obtain

cof| Vil 1.0 = CH¥*(||u]l5.0 + |f]2.0 + 1??;, lgllcacr) - .

3. AVERAGED GRADIENT AND SUPERCONVERGENCE

Let us introduce the averaged gradient G,(v;,) for the j-th component of v, € W,
according to (3.1) of [2]. Since the definition of Pv on @ coincides with that of [2]
(see Section 2), Theorem 3.1 of [2] holds again. Preserving the notation du/dx
for the matrix of “exact” gradients and %(u,) for the matrix of averaged gradients,
we are led to the main theorem.
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Theorem 3.1. Let the assumptions of Theorem 2.1 be fulfilled. Then

9
(3.1) =
0,0+

— -9 /u
0x o)
holds for sufficiently small h.

< O [ufso -+ [fle max [elee,)

Proof is parallel to that of Theorem 4.1 of [2].

Remark 3.1. The extension to the global O{h%?)-superconvergence can be shown
as in Corollary 4.1 of [2].

Remark 3.2. Let Q have a polygonal boundary which consists of line segments
parallel with one of three different directions and the ratio of the lengths of any
two parallel sides is rational. Then we can put

Ty=Ty, Q=Q,=0Q,
and prove (3.1), which represents also a global superconvergence estimate (i.e. up
to the boundary). Note that the arguments of Remark 2.2 of [2], leading to the
“improvement” of the rate h*'? to h® for polygonal domains and ue(H*Q))",
cannot be employed here.

4. NON-COERCIVE CASES

In the present section we shall consider a class of boundary value problems, where
the hypothesis (H 3) fails to hold. All the other assumptions will be preserved.
Moreover, let b(u, v) = b(v, u). We introduce the subspace

P ={ve W|él”N,-(v)”§,Q + b(v,v) = 0},

and assume that
2+ (0}, 2c (P )"

Let us choose a system of linear continuous functionals p;e W', i = 1, ..., r, such
that

x r
(4.1) veW, Y IN®M)|5a+ blv,v) + Y pi(v)=0=v=0.

i=1 i=1

Example 4.1. In the case of the Poisson equation with Neumann’s boundary
conditions, we set M = 1,% =2, b(u,v) =0, Ny(v) = dv[ox;, i =1,2. Then
? = P,(Q) and we may choose

pi(v) =J. vds,

where I' = @ is an arc segment of positive length.
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Example 4.2. Let M = 2, x = 3, b(u, v) =0, N ;(V) be identified with the strain
components of two-dimensional elasticity — cf. Example of [2], Section 2. Here

P = {(41,‘12) ! q, = a, — bx,, g, = a, + bxy, ay, azabGR} .

We can choose r = 3,

piv) =Iv,-ds, i=1,2,
r

pa(v) = j (%105 — x,04) ds,
r

(cf. [3], Part I1, the traction boundary value problem). u
Henceforth let us restrict ourselves to the set of functionals p; € (LA(I'))™) = W/,
and let us introduce the following subspace

V,={ve W|.:21pi2(v) = 0}.

Then an inequality of Korn’s type holds in V,, i.e. a constant ¢, > 0 exists such that
(42) (0, 0) = colut Vuey,

(see [3], Part I, Remark 3). The subspace V, coincides with the orthogonal comple-
ment of # in W, equipped with the following scalar product

(1 ¥)y = 3 (N0, N + b ¥) + 3 pi0) pi9)

We define the problem:

Find u € V, such that
(4.3) (u,v)) =(F, V)00 + (8 V)o,00 VVEV,.
The solution exists if and only if
(4'4) (f’ q)o,n + (g, q)o,aQ =0 Vq eEP

(see [3], Part I, Theorem 2.2 and Remark 4). Note that (4.3) is equivalent with the
same definition, where the test functions are taken from the whole space W instead
of V,, provided the condition (4.4) is fulfilled.

By virtue of (4.2), there exists a unique solution of the problem (4.3).

Passing to the finite element approximations, we shall suppose that I" is a fixed
straight line segment consistent with every  , € 9. Let us define a modified inter-
polation

P,:V,n (CQ)" > W,n YV,
by means of the relation
P,u = Pu 4+ Qu,
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where u € V, 0 (C(2))™, P denotes the interpolation operator introduced in Section 2
and Qu is a suitable “correction”. On the basis of the orthogonal decomposition

W=V,o2,

we conclude that a unique Qu € 2 exists such that P,ueV, In fact, —Qu equals
to the orthogonal projection of Pu onto 2,

Lemma 4.1. Let ue (H*(Q)™ n V,. Then
(4.5) HQUHI,Q = Chz”"”s,m

Proof. By definition, we have forany i = 1, ..., r

0= p‘.{PPU) = pi(P") + Pi(Q")

and
pi{u) =0.

Consequently, we may write
(4.6) |p(Qu)| = |pi(Pu)| = |pi(Pu — u)| < C||Pu — ul, .
The trace theorem yields that u|. € (H*(T))™ and it is well-known that
(4.7) 1Pu; — wiflor < CR*Jujlor, j=1,...,M.
Combining (4.6), (4.7) and the inequality

ujl2.r = Clu]s0,
we get

(4.8) |pi(Qu)|

On the other hand, the norm

IIA

Ch*||u;,q.

Ivlw = (v, V)i

is equivalent with the norm of (H'(Q))" (see [3], Part I, Theorem 2.3). Thus we have

elQul .0 = [Quly = (% 7H(Qu)" = CHJu] . .

Next we shall verify an analogue of Lemma 2.1 for the modified interpolation
operator P,. In fact,
e=u—Pu=u—Pu—Qu,

((e,v)) = ((u = Pu, v)) + ((Qu, v)).

The term with u — Pu has been estimated in Lemma 2.1. Using Lemma 4.1, we may
write

(@u )] 5 AlQulua [¥lva+ 3 [Qulaso Ifose) <

< Ci||Qu|1 g [¥]1,0 = Coh*u]s0 |¥]1.a-
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Altogether, Lemma 2.1 holds for the modified operator P,, too.
Let us define the discrete problem:
Find u, e W;” n V, such that

(4~9) ((uhs Vh)) = (f’ Vh)g,n,. + (g, "h):,m YW, eW, nYV,.

On the basis of the inequality (4.2), we can prove easily an analogue of Theorem
2.1 for the modified operator P,.

Next we apply the same averaging technique as before. The main Theorem 3.1
can be proven with a slight change in the argument, as follows.

Since G, is linear, we have

G(Ppu;) = G(Puj) + G,(Qu;), j=1,..,.M,
(4.10)  |lgrad u; — GyPyu))]o,0, < [grad u; — Gy(Pu,)]o,0,r + [|GH(Qu))]o.00 -
On the other hand, the definition (3.1) of [2] yields
G,(Qu;) = grad Qu; in Q,
since Qu; € P{(Q). Using Lemma 4.1, we obtain

(4.11) G Qu))o,0ne = [Qujll1,0 < Ch*|u]l50.

Combining (4.10), (4.11) and the argument used in the proof of Theorem 4.1 of [2],
we are led to the assertion (3.1) of Theorem 3.1.
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Souhrn

O JEDNOM SUPERKONVERGENTNIM SCHEMATU
V METODE KONECNYCH PRVKU PRO ELIPTICKE SYSTEMY

II. OKRAJOVE PODMINKY NEWTONOVA NEBO NEUMANNOVA TYPU
Ivan HLAVACEK, MicHAL KRiZEK

V &lanku se predklada jednoduché supzrkonvergentni schéma pro derivace linearnich troj-
uhelnikovych elementi, které jsou pouZity k FeSeni eliptickych systémua 2. fadu s okrajovymi
podminkami Newtonova nebo Neumannova typu. Pro omezené rovinné oblasti s hladkou
hranici je dokazana lokalni superkonvergence derivaci v L? — normd ¥adu 0(h3/2). Clanek je
pfimym pokradovanim prace [2], ktera pojednava o podobném problému s Dirichletovymi
okrajovymi podminkami.

Pesome

OB O/THOM CYIEPCXOASWENCSA CXEME METOIA KOHEYHBIX DJIEMEHTOB
A SJUTUTIITUYECKUX CUCTEM

II. TPAHUYHBIE YCJIOBUS TUITIA HBIOTOHA M HEVIMAHA
IvAN HLAVACEK, MICHAL KRiZEK

B cratee mpeajiaracrCs npocrad ¢xema ¢ CynepcxoauMOCThIO VIS MNPOU3BOAHBIX KOHCYHO-
3JJEMEHTHOTO PEUICHHS] MOCTPOSHHOIO C TIOMOUIBIO JIMHEWHBIX TPEYTrONBbHBIX 3JIEMEHTOB, MCIOJIb-
3yeMBIX IJIsi PCIUCHMS O3JIMITHYECKUX CUCTEM 2-TO MOPsiAKa C IPAHMYHBIMH YCIOBMSIMH TUNA
Herotona nimu Heiimana. [Ins orpaHMYeHHBIX IUIOCKMX OOJIACTEN € IiIaZIKOi IpaHULeil qoka3aHa
JIOKaJTbHAS CyNepCXOAWMOCTb TIPOU3BOIHBIX B L? — HOpMeE TNOpsAaKa 0(h3/ 2). Cratbsi sABIsSICTCA
MPSMBIM TIPOJOJIKEeHHeM paboThl [2], KoTOpas mocBsiigeHa MoOOoGHOK MpobyieMe ¢ rPpaHWYHBIMM
ycnoBusiMu J{upuxJie.
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