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ON THE RATE OF APPROXIMATION
IN THE RANDOM SUM CLT FOR DEPENDENT VARIABLES
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[P E]

Summary. Capital ‘O’ and lower-case ‘‘0>’ approximations of the expected value of a class
of smooth functions (f € C"(R)) of the normalized random partial sums of dependent random
variables by the expectation of the corresponding functions of Gaussian random variables are
established. The same types of approximation are also obtained for dependent random vectors.
This generalizes and improves previous results of the author (1980) and Rychlik and Szynal
(1979).
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1. INTRODUCTION

Let {X,,n = 1} be a sequence of random variables defined on a probability
space (@, &, P). Denote by N a positive integer-valued random variable which has
a distribution function dependent on a parameter A(A > 0), i.e. P[N = n] = p,,
where p, = p,(A), n =1,2,... are functions of 1. We assume that, for every 4,

the random variables N, X, X,, ... are independent. Let us put S, = Y X;. Recently,
1

several papers have appeared which are devoted to the study of the limit distribution
of Sy. The first result of this type has been established by Robbins (1948). He gave,
in the case of independent and identically distributed random variables X,, n = 1, 2, ..
sufficient conditions for the relation
(1.0) lim P[Sy — ESy < x {/Var Sy] = &(x).

A= o0
to hold, where @{x) is the standard normal distribution function. Equivalent to
(1.0) is
(1.1) lim J 1(x) dF () = j £(x) doi)

A= JR R
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for each fe Cy(R) where F,(x)= P[Sy — ESy < x/VarS,] and Cj(R) =
= {fe CxR): fP e CyR), 1 £ j < r}, ||f]| = sup|f(x)|, and Cx(R) denotes the

class of bounded uniformly continuous functions defined on R. By the same method
some generalizations of Robbins’ result have been obtained by Mamatov and
Nematov (1971), Rychlik and Szynal (1973), and Sirazhdinov and Orazov (1966).
The dependent case was treated by Rychlik and Rychlik (1980).

A rate of convergence of (1.1) was established by Rychlik and Szynal (1979). We
have generalized Rychlik’s and Szynal’s results to the dependent case and to random
vectors. Our results are generalizations of the result given by Basu (1980) and Butzer
et al. (1975). The novelty of the present paper lies in the fact that it uses elementary
techniques.

Throughout the paper, the relations of equality or inequality stated between
random variables or random vectors are to be understood to hold only almost
surely. (I(+) denotes the indicator of the set within the brackets. Let there exist
a sequence of o-algebras #, <« #, < ... ¢ F, < ¥ and let X, be &, measurable
for all n = 1. We denote the conditional expectation with respect to & ,_; by E,_,
and the conditional distribution function with respect to %, _, by F;-(+). Throughout
the paper the random variable N and the random sequence {X,,} are independent
and the X,’s form a sequence of martingale differences with respect to the sequence
of g-algebras &,.

2. “CAPITAL O APPROXIMATION

Assume

(2.1) EXy | Fioy) =0, k=1,2,..,n.
Denote N

o0 = B y(X5), M= Zlaf', Bri = EX,[",

N n

v = flxl’ 42(x). T =3 hus Vi =Xoi.

Let
v(i) = | X" d[F{(xV,) — &(xV,[a)] = 0,

(2.2)

w(f; ) = sup |f(x + h) — f(x)], e > 0. If w(f, &) < ke*, where 0 < ¢ < 1 and k
|h| e :

is a positive constant, then we write f € Lip (oz, k).

Theorem 2.1. Let {X,,} be a sequence of random variables satisfying (2.1) and
(2,2) for 2 <i<r and Py < o0 (1 £k = n) for some positive integer r = 3.
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Then for any f € Cy"'(R),
L) — [ ) aot)
< 29k E{MTrw(fC0 MUY (T + TR)}(r — 1)
If, in addition, f*~Y e Lip (2, k), 0 < a < 1, then
LAl ~ | 109) aa(o)

< 4Ky, Max {E(Ty/M"™ 1) ; E(TF M "D} (r — 1)) .
Proof. Asin Basu [1980], denote
Ze =V, (X, 4+ ...+ X)) + (041 Yy + oo+ 0,Y,) V! for
k=1,2,...,n,
where { Y, } are i.i.d. N(0, 1) r.vs, independent of N and {X,}. Then

ELA(S\/M)] — j £(x) do(x)] =
~ |E nlelr(si 5 of) - [ s aeto) =

n

Ms

Dn Z":]E ’ E*[f(Zk + Xer;_l) - f(Zk + O-k)]kl/vn_l)j” .

I

n=1

The rest of the proof follows from Theorem 1 of Basu [1980].
Let 0] = o> = E(X] | #,) = EX], #F, = {9, Q}.

Corollary 2.1. Let {X,, n = 1} be a stationary ergodic sequence of random
variables satisfying (2.1), (2,2), and B, = EIXII' < oo for r = 3. Then for any
fecy'(B),

ErisulNe) - [ 79 a0t =

< 4,0t By, + 1) EINCTO (70T 0T INTIR (r — 1)1

If
feVelip(a, k), 0<asl,
then

|EF(Sy//No) — J' F(x) d0(x)| < 4y (B, + 1) o ENC IO,

Proof. Since (1/n) ¥, — ¢ a.s., the rest follows from Basu [1980].
In the next theorem the conditions of Theorem 2.1 are weakened, i.e. we restrict
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ourselves to the existence of moments of lower orders. Let the absolute pseudo-
moment of order r be v, = [|x|" |d(F}(x) — ®y,(x))| where ®y, is the d.f. of 6, Y,.

Theorem 2.2. Let {X,} be a sequence of r. vs. satisfying (2.1) and (2.2) for
2<isr—1)and By, ,5< 0 0<d<1 (1 Zk<n) for some positive
integer r = 3. Then for f€ Cy~'(R) and f"~ " € Lip (9, k),

IE[ F(SuIM)] — f 1) ot

=

N
< 2E(M' (Y, Max (v P v (e — 1) <
k=1

N
S2f(r = DVEMUTTT Y v s}
k=1
Proof. The proof is the same as that of Theorem 2.1 except for the following
facts (cf. Sakalauskas [1977]):
Jlsrr s b1 —onl @y s 0 v n s
< 2Max (v """ v,

and
1

(r=1)

e Mf b w0, M) (R = @) (69)]
(r=1)

S Cllr = 0w [l (7 = ) (09)] <
< C/(r — 1)! M~ Vir—1465
where y is such that |y — 7] £ M™!|x].

|(F — @y, (dx)] <

M0 e - 7 0)

3. “LOWER CASE 0" APPROXIMATION

Theorem 3.1. Let {X,, n = 1} be a sequence of random variables such that (2.1)
and (2.2) hold for some r = 2,(2 £ i < r), and Ev,, < 0.
If Ti /M = O(E{T{/M"}) as.as A— o,
(3.1) lim E( max o [M?) = 0

Ao 1ZKEN
and, for every ¢ > 0,

(3.2) lim E <T;’k=ZN:1 flxl>eM|x|'dFk(x)> =0,

A=
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then, for any f € Ci(R),

|E[f<s~/M>] - jf(x> aa(x)

= o(E{Ty/M"}) as A- o

and also
N
oE(Y. v, ,JM")) as 1 - .
k=1

Remark. Rychlik and Szynal [1979] calls the condition (3.2) the generalized
random Lindeberg condition of order r, and the condition (3.1) the random Feller
condition.

Proof. By the same method as used in the preceding theorems and by the consider-
ation of Rychlik and Szynal [1979, Theorem 6], Theorem 3.1 follows.

4. RANDOM VECTORS

Let R” = {x: x = (x, ..., x")} be the p-dimensional Euclidean space with the
P P
scalar product (x, y) = Y xy®and the norm |x|| = () xV?)"/?, and let X{, X, ...
. .

i=

i=1
.»X,, ... be a sequence of (F, = F,c...c F,< F)F, — measurable
p-dimensional random vectors.
Assume
(4.1) E(X,|Fi-y) =0 for k=2 and EX,)=0.

The trace of a matrix X is denoted by tr X.

Denote by %, = E,_;(X,X;), the p X p random matrices, and by By = tr X,
k=1,2,...,n, the random variables.

Let {Y,} be a sequence of independent p-variate normal random vectors with
p-variate normal distribution G(x) having a mean vector O and a covariance matrix I,
and let Y;’S be independent of X; S and the random variables N = N(7).

If fe C(R"), h e R, ¢ > 0, then the mod'lus of continuity is defined by w(f; ¢) =
= sup |f(x + h) — f(x)|. The function fe C(R?) satisfies a Lipschitz condition

Al <e

(we write f € Lip o, if w(f; &) = O(¢7)).

Let C'(RP?) be the space of all functions bounded and uniformly continuous together
with all derivatives up to and including those of rth order. In the following we
need Taylor’s formula. If f e C'(R") then we have the so-called Taylor’s formula

Fe+ B = £(x) + £6) () + 12" () (B + ... + % FOx + 0h) (hY

where 0 < 0 < 1, (h)" = (h, h, ..., h). The norm of the function f € C(RP?) is defined
by 7] = sup [ ()] i

The modulus of continuity satisfies the inequality w(f; ie) < (1 + 1) w(f; &) for
A > 0 (for a proof see Sakalauskas [1977]).
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N n N
Define y, = f’lx”’dG(x), Bk = E”xk”, Ty =Y B Vi=Dtr 2, M? = Y tr 3,
k=1 1 1

Denote the conditional coordinate pseudomoments of order j by
Wi = % (g d[F(V) - GE/BY)),
Ji=p

[VES TN T

ret o tr=j

and the absolute pseudomoments of order » by
o = [ IR — 69
RP

Let

R, = [erstsyfan] - [ st dcio

Theorem 4.1. Let {X,} satisfy (4.1) and suppose that for an integer r = 3,
(4.2) w()=0, 1=jsr—1, k=1,2,...,n,
(4.3) Ver<o0, k=1,2,..,n,
and f e C""Y(R?). Then
R, < 2E{M* "w(f~1; M")kgjlmax P v (e = 1)

If, moreover, we assume that f*~ D eLipa, 0 < a < 1, then
N
R, = 0(E{M'™""*% max (v{7 """, v.)} -
k=1

Proof. Define Z,, =V, ' (X, + ... + X4—y) + (Bex(Visy + ... + BY) Vi L.
The rest of the proof is the same as for Theorem 2.1 and hence is omitted.

In the next theorem the conditions of Theorem 4.1 are weakened, i.e. we restrict
ourselves to the existence of moments of lower orders.

Theorem 4.2. Let {X,} satisfy (4.1), and for an integer r = 3 suppose that
(4.4) w()=0, 2<j<r—1, k=1,2,....n,
Vir—14a <0, O<a<l1l, k=12,...,n,

and
feC Y R?), frVYelipa.

Then
N .
Rn é 2("/(r—l)! E{Ml—r_akzlvk,r—l-!-a} .

Proof. This theorem can be proved by the same method as used in Theorem 2.2
and hence the proof is omitted.
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Let us state a ”lower case 0” approximation theorem for random vectors without
proof.

Theorem 4.3. Let {X,, n > 1} be a sequence of random vectors satisfying (4.1)
and suppose that for an integer r = 2, v{(j) = 0, 1 <jsr,k=12,...,n and
(4.3) hold.

If Ty/M" = 0(E{T}/M"}) a.s. for A — o,

Lim E( max B}/M?) = 0

iso  1SkEN
and, for every ¢ > 0,

(45) LmE(ry S [ I ane) <o,

A= ©
then for any f € C'(R?),
N
R, = o(E{Ty[M"}) = o(E( ) v.,)/JM") as A— 0.
K=1

Now B} = B> = Tr X, is a.s. a cobstant if #, = {¢, Q}, and by the ergodic
theorem, (1/n) ¥, - B* a.s.

Corollary 4.2. Let {X,,n = 1} be a stationary ergodic sequence of random
vectors satisfying (4.1),

(4.6) v(j) = zk Sp(x,:; o XUA[FT(xV,) = G(xVo/BY)]) =0, ry + ... + 1=

for2 <j<r—1,1<k<n,and

Vimotra = J x|~ [d(FA(x) — Gx))| < 0 for rZ 3.
RP
Then for f€ C""*(RP) and f*~ " eLip a,

IE[f(SN/\/NB)] - Jmf(x) dG(x)] =0 ((EN(3—r—aJ/2) .

Corollary 4.3. Let {X,,n 2= 1} be a stationary ergodic sequence of random
vectors satisfying (4.1), w(j) =0 for 2<j<r, 1<k=<n and v,, < 0 for
r=2IfN2 owask—> ooand N"C™2/2 = O(EN~C"2[2), as. as A > oo, then for
any f € C'(R?),

El(sulvE) |- | s(s) a6t

Corollary 4.4. Let {X,, n = 1} be a sequence of random vectors satisfying (4.1)
and (4.5) with r = 2. Then ‘

Sl.lp |P[Sy < xM] — G(x)| = o(1) as A— .

= O0(E{N"¢"2/2}) as A— .

Concluding Remark. Generalization to infinite dimensional spaces is straight-
forward and will be treated elsewhere.
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Souhrn
O RADU APROXIMACE V CENTRALNI LIMITNi VETE
A. K. BAsu

Autor odvozuje aproximace typu O a o stfedni hodnoty tfidy hladkych funkei (f€ C"(R))
normovanych nahodnych &astecnych soudtli zavislych nadhodnych proménnych pomoci stfedni
hodnoty odpovidajicich funkci Gaussovych nahodnych proménnych. TentyZ typ aproximace
je odvozen také pro zavislé nahodné vektory. Tim jsou zobecnény a zlepSeny dfivéjSi vysledky
autora (1980) a Rychlika a Szynala (1979).

Pesrome

O TIOPAIKE AIIIIPOKCUMALIMU B LIEHTPAJIbHOM IPEJEJIBHON
TEOPEME

A. K. Basu

ABTOD BBIBOAMT ammpokcuMauuu Tuna O M 0 CPeqHero 3HadyeHusi Kjiacca INIANKUX (GyHKimi
(f€ C"(R)) HOPMHPOBAHHBIX CIYyYaMHBIX YACTHYHBIX CYMM 3aBUCHUMBIX CIIyYaiHBIX HEPEMEHHbIX
OPH OOMOIUA CPEIHEro 3HAYEHHs] COOTBETCTBYIOIMX (yHkumit Iaycca CiayyalHBIX IEPEMEHHBIX.
OTOT Xe THO anmpOKCHMAIMHA BBIBEIEH TAaKXe IJIsi 3aBUCUMBIX CIIy4ailHBIX BEKTOPOB. DTUM 0600-
LOEHBI M YJTy4IISHBI NpeXH#e pe3ynbTaThl aBTopa (1980) u Prixmuka n Iunana (1979).

Author’s address: Prof. A. K. Basu, Department of Statistics, Calcutta University, 35, Bally-
gunge Circular Road, Calcutta-700019, India.
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