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BAYES UNBIASED ESTIMATION IN A MODEL
WITH TWO VARIANCE COMPONENTS
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Summary. In the paper an explicit expression for the Bayes invariant quadratic unbiased
estimate of the linear function of the variance components is presented for the mixed linear
model t = Xp + ¢, E(t) = Xp, D(t) = 0,U; -+ 0,U, with the unknown variance components
in the normal case. The matrices U;, U, may be singular. Applications to two examples of the
analysis of variance are given.
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1. INTRODUCTION

Consider a mixed linear model
(1) t=Xp+¢e, E(t)=Xp, E(e') =0,U +0,U,=U(0),
where t is an N-dimensional, normally distributed random vector, X is a known
N x m matrix of rank R(X) = p, p € R™ is a vector of unknown parameters, U;,U,
are known, nonnegative definite matrices and 6 = (6,, 6,) is a vector of unknown
variance components 0 € 7,7 = {0: 0, > 0,0, = 0}. .

The problem is to estimate a linear parametric function y = f,0, + f,0, by a quad-
ratic form §(t) = t'Bt, where Be &y, , ¥y is a class of symmetric N x N matrices.

We restrict our considerations to quadratic estimates §(t) = t'Bt which

(a) are unbiased, i.e. E,(§) = y is satisfied for all 0,

(b) are invariant with respect to translations t - t — XB, i.e. §(t) = §(t — Xp),

(c) minimize the risk function

i) = 4 [ed0 - 7 e,

where P, is the prior distribution for the vector parameter 6 having second order
moments, i.e.

E(0,6,) = Jeie,. dPp=c; 20, i,j=1,2.
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Such quadratic forms are called the Bayes invariant quadratic unbiased estimates
(BIQUE).

It is well known that a quadratic estimator 9 = t'Bt is unbiased and invariant
if and only if

BX =0, tr(BU)=/f,, i=12

2. SOLUTION

Let P be an (N — p) x N-matrix satisfying P'P =1 — XX*, PP’ = I, where X*
is the Moore-Penrose inverse of the matrix X (see [5] or [2]). Consider the random
(N — p)-vector y = Pt. Since PX = 0, the model for y is

(2) y = Ps, E(Y) =0, E(YY/) =0,¥, +0,V, = V(()) s

where ¥; = PU,P", V, = PU,P'. Since {BX = 0 and B’ = B} iff {B = P'PBP'P =
= P’AP and A’ = A}, we have 9 = t'Bt = t/P’APt = y’Ay. We sce that § = t'Bt
is BIQUE for 7y in the model (1) iff B = P'AP and ¥ = y'Ay is BQUE for y in the
transformed model (2). The estimate BQUE is defined in the same way as BIQUE
only the invariance condition is dropped, which is an irrelevant restriction for the
model (2).

Since y ~ N, (0, ¥(0)), n = N — p, the risk function is

(3) 1(9) = %J.varo (y'Ay) dP, = |tr [AV(0) AV(0)] dP, =

M
‘MN

¢;jtr (AV,AV)) .

]

i i=1

Our problem is to minimize the risk function (3) uder the unbiasedness conditions

(4) tr(AV) =f;, i=1,2.
Therefore we consider the Lagrangian function
2 2 2
L(A ) =Y c;; tr (AV,AV)) — 2% Aftr (AV)) — fi],
i=1j=1 i=1

where A = (4, 4,), are Lagrangian multipliers. Using the symbol (3/0A) L(A, )
for the n x n-matrix of all partial derivatives of L(A, L) with respect to n* elements
of Ae &,, we obtain (see [4])

oL 2 2 2
— =Y Y 02T, — diagT;) — 2) A2V, — diag V) = 0,
0A i=1j=1 i=1

where T;; = V,AV; 4 VAV, and diag T is the diagonal matrix which has the same
diagonal elements as T.
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This equation can be rewritten in the form
2

2 2
(5) Y Y e, VAV, =Y AV,
1=1

i=1 j=1
The BIQUE is given by the matrix A fulfilling (4) and (5).
Since the risk function (3) is linear in € = (¢;;) we can put ¢,; = 1 without loss
of generality. Using the notation ¢y, = ¢,y = u, ¢y =u*> +v (u 20,0 = 0),
the matrix C takes the form

(© = (au )= ()uo+(07):

Let us first assume u £ 0. We use the notation

W=V +uV,, V=_J0)V,.
We have #(V) = .#(W). Here .#(V) is the vector space generated by the columns
of V. The equation (5) now has the form
(7) VAV + WAW = AV, + 1,V,.
Let W be a positive semi-definite matrix of rank R(W) = r. Let A be a constant and x
a vector such that

Vx = AWx, Wx 0.

Than 4 is called a proper eigenvalue and x a proper eigenvector of V¥ with respect
to W.

Lemma 1. Let R(N'V) = R(N'VN), N = W Z(W*) = [#4(W)]*), let Q be
the matrix of W-ortogonal proper eigenvectors of V with respect to W and let D,
be the corresponding diagonal matrix of proper eigenvalues. Then the transforma-

tion
T-@N) (% )

where U is a unitary matrix such that U'N'VNU is diagonal provides the simultane-
ous reduction of V and W to

(D, O o (1. O
TVT_-<O Dz)" TWT_<OO>,

where D, is the diagonal matrix of the eigenvalues of N'VN.

For proof'see [ 5], p. 126.

We have #(V) < .#(W) which implies N'VN = N’V = O and we can take
U=1I,, By Lemma 1 there exists a regular transformation matrix T = (Q, N)
that provides the simultaneous reduction to

D, O I. O
VT — 1 ’ _ r
- (g o) ™= (50):
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If we denote R = (R, R,) = (T™')’, we can write RjQ = Q'R; =1, and therefore

V= (Dl °> R = R,D,R},

W = R<" °> R = R,R| .

Now (7) has the form

I, o o) D, O D, O\ .,
: ' r ' ’ =,V v,.
R(o o)RAR<O O)R +R<o o)RAR<O O)R MV + ALY,

Denoting

Z.,Z
Z = RAR = }1 12>
(Zl?_ ZZZ

we get
Z,+DZ /D = Al(lr — 1/\/(0) Dl) + Ay 1/\/(0) D,,

and therefore

1 _
Z, = lz[/h('r— \/iol> + Azwa‘J('r"‘ D)™' +
v

1
i+ D)t a1, - LD )+2—D
+ 3+ ) [1( 70 1> 2\/1) 1]

and Z,,, Z,, can be arbitrary. Hence
A=R"1ZR™ ' = QZ,,Q + NZ,Q' + QZ,N" + NZ,,N".
It is easy to verify that
W™ =QQ',
(W+VYWV)" =[R(l, + DY) R{]™ = QI + D}) Q'

and therefore

QZ,,Q =1 W~ [Al (w - \—’/‘— v) YR v](w +VWV)T +
v

Ju
1 vy~ _ Yy /IZ—I—V]W‘,
+ HW + YWTV) [,11<w v )+ 7

Hence
A= 3V, + uVy)” (4V) + AVo) [V +uVy + oY, (Vy + uVy)™ Vo]™ +

+ 3V, + uV, + oVy(Vy + uVy)” Vo7 (A Yy + Vs) (Vy + uV,)” +
+ NZ{,Q + QZ;,N" + NZ,,N’,
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where A, and 1, satisfy the unbiasedness conditions (4). Since NW = Oand .#(V,) <
< MW), M(V,) < J4(W), the value of the risk function (3) does not depend
on the choise of the matrices Z,,, Z,, and we can take them equal to O. So far we
have considered the prior distribution with u # 0.

Now let u = 0. Since 0, = 0, we have P(0, = 0) = 1 which implies v = 0. The
equation (7) has the form

VAV, = L,V + 2.V,
A necessary and sufficient condition for this equation to have a solution for all
real 1,7, is .#(V,) = .#(V,), in which case the general solution is
A=YV VI + LVIV,VD + H—-V VHY V]

where H is an arbitrary matrix (see Theorem 2.3.2 in [5]). ,

The value of the risk function (3) does not depend on the choice of the matrix H and
we can take H = O.

The value of the risk function (3) is invariant for any choice of the g-inverses
in the expressions for A (see Lemma 2.4.4 in [5]) and we can use the Moore-Penrose
inverses. N

We have established the following theorem.

Theorem 1. For all u = 0 let #(V,) = (Y, + uV,).
(i) A BQUE for the parametric function y = f10, + f,0, in the model (2) exists

if and only if
1) ﬂ<tr (MV)), tr (M2V1)>
B tr (MV,), tr (M,V,))’
M, = {(W'VK" + K'VWT), i=1,2,,

W=V, +uV,, K=W+oVW*V,.
(ii) The BQUE is given by

where

7 =y'Ay = LiyMyy + Ay'Myy,
where Ay, A, satisfy the conditions
(8) Aptr (MV) + Ay tr (MLV) = f, .
Aotr (MVy) + A, tr (M,Y,) = f,
Corollary 1. If W is a positive definite matrix and V,V, = V,V,, than we get
A= M + 2,M, with M; = V(W? + oV3)™1 i =12

Proof. Let V,V, = V,V, and let W be a positive definite matrix. Then for i = 1,2
we have W(YW™! — WTIV)W = WV, — VW = O which implies VW™ ! =
= W™V, Hence M, = {(VW™'K™! + VKTIW™') = V(W2 4 yV)~ L

124



Remark 1. The limit case ¢;; = 0 requires separate treatment. Alternatively
it may be viewed as the limit case of (6) as v tends to infinity.

Remark 2. Using the spectral decomposition, Gnot and Kleffe [1] have derived
explicit expressions for BQUE of y = f,0; -+ f,0, in the case ¥V, = I. Their results are
P =y Ay, AT =27 4 LV, I =14 2uV, + (u? + v) V3, where 1
and 1, satisfy the conditions

ptr (7Y + A tr (27V,) = £y,
At (7)) + At (2T = 5.

It is easy to verify that our estimate § is equal to y~ in the case ¥, = I.

Remark 3. In particular if v = 0 we get the local best estimate y’Ay at the point
(04, 0,) = (1, u) with
A= WV W'+ LWV, W,
where 2 and 4, satisfy the conditions
Ittt (VWY WH) 4 A tr (VIWTV,WH) = f
Atr (ViWHIVLWE) + 2, tr (V,WHVLWY) = f,

and therefore this BQUE is equal to MINQUE (see [3]) in the case that W is regular.
We shall now rewrite Theorem 1 for the model (1) Since for every matrix Ae &y
we have
P'(PAP)* P = (MAM)" ,
where M = P'P = | — XX, we get the following theorem.

Theorem 2. For all u 2 0 let .4(U,) < #(U, + uU,).
(i) A BIQUE for the parametric function y = f10, + f,0, in the model (1)
exists if and only if

A tr (MN,;MU,), tr (MN,MU,)\,
f2) =7 \tr (MN MU,), tr (MN,MU,)

where
N; = {(MW*M)* U(MK*M)" + (MK*M)* U(MW*M)*], =12,
Wi = U, +ulU,, K*= W* 4+ U,W**U,
(i) The BIQUE is given by
t'‘Bt = L, MN Mt + 1, MN,Mt

where 4, A, satisfy the conditions
2y tr (MN;MU)) + 1, tr (MN,MU)) = f, ,
Ay tr (MN;MU,) + 4, tr (MN,MU,) = f, .
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3. EXAMPLES

Example 1. Let us take the one-way classification model
Vi =o; + higl-j, Lj=12,...,n.

Here o; and ¢;; are assumed to be independent random samples from two normal
populations with zero means and variances 6, and 6,, respectively, h,, h,, ..., h, € R!
are known. Suppose the vector of observations is written in the lexicographic order as

— ’
y - (yllv ooy Vino y213 B y2n’ y319 LR ynn) ’
and in the same way
!
€= (Ny&11s e NiBim MaBogs oems Moo MaBaps oovs Mog) -

Then we have a model
y = Da + &
with
D = 9(1,), cov (Y) =0,V +6,¥,, V, = @(hizln) , Vo=92()),

where 1, = (1, ..., 1), @ = (o, ..., ), J, is the n x n matrix with all entries equal
to one and ’

len o o

o O ... kG,
for any n x n-matrix G,
We have ViV, = V,V. If u + 0 or .#(V,) = .#(V,), according to Theorem 1
and Corollary 1 the BQUE of y = f,0, + f,0,is § = y’Ay, where

A= 1M +I,M,,
M =V (W2 10V, M, = V(W2 + oV}t
In our case we get

W= 2{ni(l, + ul,)}, W?>+oV: =21, + ¢:))) .

(W2 -+ UV%)_] =9 {]7F4<',, - gﬁ]n)}
;

u; =ulhi, ¢;=2u, + nu} + nohi*, w, =1+ nd,,

Ml =9 {hi_z <In - ﬂjlz)} s M2 =9 {h;4i ]n} .
w; o;

where

so that



The equations (8) for A, 1, have now the form

n h——2
lnz - +?2nz = f1,
;

i i=1 W;
n h—Z n h__z
1"2 _— lzn z =f2 .
i=1 ; =1 W;
If
d=3% 3 *1 [(w, - ¢) h;“n — hi_zhj'z] + 0
i=1j=1 0,0

the last equations have a unique solution
b 13 B2 -2
Ay =4 *n—Z h; (flnhi _fz),

b= 2 = ¥ (o= 9) 1 — ]

nd i1 w;

and the BIQUE for y has the form

§ =¥ Z Z hi 2y} +

i=1j=1

+ - Z Z {fol(w; = ¢;) hi* + h;zhfz(j),-] — fi[nh;*h7 2, + h;2hi*]} ;)ﬁw-yi ,
i@j

i=1j=1

where
{ 1 %
\9) Vie = — Z Yij -
nj=1
The simplest case occurs if hy = h, = ... = h, = 1. Then

fin AR fz fi<
?_112(11— 1) .211:2 —1;21};l

and so we see that in this case BIQUE does not depend on the prior distribution.
If v tends to infinity it can be checked that

. N ] n n 5

lim = o U = o) Y, Y

v 3 — 1)

Z[fZ(n_ L +thl 2])71 § oo

“M=

= i

n
where h> = Y h} .
i<

Example 2. We consider the model

V=0 + B, Lj= 1,2,...,n,
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where «; and f8; are assumed to be independent with zero means and variances 0, and

0,, respectively.
Using the same method as in Example 1, we get the model

y = (lﬂ®1n)a + (1n®,n)ﬁ’
cov <Y) = Olvl + 02V2 = 01(’!1 ®.’n) + 02(.’n ® ’n) >

where the sign ® stands for the Kronecker product of matrices.
To get BIQUE for y = f,0, + f,0, by Theorem 1 we must check the Moore-

Penrose inverse of the singular matrices
W: Vl + uv = (’n ®]n) + u(.’n® ’n)’
K= W+ oV,W*V, .

We get
vl _Lrut+u)
W= [ en s nen -0y 6],
=(n®j/1)+* +U(.In® ) ( )(.In®.’n)
P 1 )
w1+ u) —uv + (4 +0) 5
py @ 1,,)] :

where

0=(1+u)(w +u+0v)—-0v=ul(l +u)+0],
1 =W+ VK+ 1 [ ®jn) _<1 _E)(jn®jn)j];
nd o

1 u(l + 2u)

. + +
M_Z - W VzK = n}m [nx(]n ® ,n) -

The system (8) has now the form

21<n—1+§>+/12u/5=f1,

e L BT

u? 4+ v 1]

(J,®1)].

Py

[S7R I~

and the solution is

Ay =25 = fiy[nd — u(l + 2u)] — fagu,
Ay =25 = fop[(n — 1) + u] — fidu,

|
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where
- ur +v v = 1
(n — 1) (né — 2u?) ’ (n — 1) (n6 — 2u?) ’
so that BIQUE is

9=y (@AM, + 5M,) y =
= {fﬂ//[né — u(l + 2u)] — f,u} {Zn: y2 — <1 _ g) nyz} +

u(1 —(’;— 2u) ny_z_} _

+ {fz‘//[(n - 1) o+ u] — fllﬁu} {g":lylzj -
_ ?{[uzm T 2u) — [15 — u(l + 20)] (6 — w]fs + [u(5 — u) (u? + 0) —
= [(n = 1)6 + ulu(l + 2u)] £} ¥ + ¥{[ns — u(l + 2u)] f, —
— u(u® + v) fz}iglyﬁ +Y{[(n = 1) 6 + u]fy - ufl}gly?j,

where y; is given by (9) and
1

1" n n
Y-j='“1_;1y'ij, y.. = 2_2 .Zyij'

B
i
-
-,
i
A

If v > o we get

.. nfi+ nf, — " ki

oo n—1 n(n — 1)i=1 j=1
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Souhrn

BAYESOVSKE NEVYCHYLENE ODHADY V MODELU
S DVEMA VARIANCNIMI KOEFICIENTY

V ¢lanku je odvozen explicitni vzorec pro Bayesiiv invariantni kvadraticky nevychyleny odhad
linearni funkce varianCnich koeficient v linedrnim smiSeném modelu t = Xg - ¢, E(t) = X,

129



D(t) = 6,U, + 0,U, s dvéma neznamymi variannimi koeficienty 6, a 6, v normalnim pfipads.
Na rozdil od [1] je uvaZovana obecn&jsi situace, kdy ani jedna z matic U;, U, nemusi byt jed-
notkova a ob& mohou byt singularni. V zavéru jsou odvozené vysledky aplikovany na dva
ptriklady z analyzy rozptylu.

Pesome

HECMEIIEHHA S OLIEHKA BAWECA B MOJIEJIX C IBYMbA
JUCITIEPCUOHHBIMU KOMIIOHEHTAMU

JAROSLAV STUCHLY

B 3T0#t cTaThe NPUBOAMTCS BHIPAXKECHUE MJIsi MHBAPUAHTHOW KBAAPATUYECKOH HECMEIIECHHON
ouenkn Baifeca JUHEHHON GYHKIHU MapaMETPOB KOBAPHALMOHHON MAaTpUIBl B Cllyyae JIMHEMHOM
monem t = X + ¢, E(t) = X, D(t) = 6,U, + 0,U,. Ilpennonaraercs HOpMaJbHOE pacpesere-
HHE BEKTOpa t ¥ BOOOIIE BRIPOXKIEHRHOCTH MaTpu Uy n U,.

CraThs 3aKaHYMBACTCS ABYMbS NMPUMEpPaMH NPHMEHEHHS M3JI0KEHHON TEOPUM K AMCIEPCHOHHO-
My aHajm3y.
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