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32(1987) APLIKACE MATEMATIKY No. 2, 81—95 

LOCATION OF POLYGON VERTICES ON CIRCLES 
AND ITS APPLICATION IN TRANSPORT STUDIES 

JAN CERNY, FILIP GULDAN 

(Received April 9, 1983) 

Summary. The paper deals with the problem how to locate a set of polygon vertices on given 
circles fulfilling some oriteria of "regularity" of individual and composed polygons. Specifying 
the conditions we can obtain a lot of particular versions of this general problem. Some of them 
are already solved, the others are not. 

Applications of this theory can be found in scheduling of periodically repeating processes, 
e.g. in coordination of several urban lines on a common leg, in optimization of the rhythm 
of a marshalling yard etc. 

Keywords: Polygons on circles, regularity measures, optimal location, coordination, transport, 
common leg, marshalling yard. 

Class. AMS: 90 B 35, 05 B 99 

Let us begin with two practical examples: 
First, let us suppose that in a town there are, n urban transport lines with a common 

leg (e.g. in the main street of the town). Moreover, let us suppose that there are many 
passengers which are interested to take a vehicle of only one "proper" line, but 
there are also many others, which can use a vehicle of any line (traveling in the main 
street only). 

Every passenger would prefer to have a regular flow of "his" vehicles, i.e. to have 
equal intervals between them. Unfortunately, it is usually difficult to satisfy these 
requirements in practice: if the flow of the vehicles of every line is regular, the flow 
in the common leg is generally not regular. 

If e.g. we have three lines: 
Line 1 with 6-minute intervals between vehicles, 
line 2 with 10-minute intervals between vehicles, 
line 3 with 15-minute intervals between vehicles, 
then the departures of the vehicles from the first station of the common segment 
can be: 

Line 1: 6;00, 6;06, 6;12, 6;18, 6;24, 6;30, 6;36, 6;42, . . . 
Line 2: 6;00, 6;10, 6;20, 6;30, 6;40, . . . 
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Line 3: 6;00, 6;15, 6;30, 6;45, ... 
The intervals between the vehicles on the common leg would be 

0, 0, 6, 4, 2, 3, 3, 2, 4, 6/0, 0, 6, 4, 2, . . . 
We can see that after the period of 30 minutes the sequence of intervals repeats. 
Further, it is evident that the regularity on the common segment is bad — the intervals 
change from 0 to 6 minutes. One can obviously ask whether there exists a better 
solution. Let us try to find another one: 
Line 1: 6;00, 6;06, 6;12, 6;18, 6;24, 6;30, . . . 
Line 2: 6;05, 6;15, 6;25, . . . 
Line 3: 6;04, 6;19, . . . 

The periodically repeated vector of ten intervals will now be 

4, 1, 1, 6, 3, 3, 1, 5, 1, 5, . . . 

Then the question to be answered is whether this solution is better than the previous 
one? Probably it would depend on the criterion we have chosen. One of the possible 
criteria is the following: "The smaller the minimal interval the worse the solution". 
In this case the second solution is better than the first (1 against 0). Another criterion 
says that "The smaller the maximal interval — the better the solution". In this case 
both solutions are equivalent. A very reasonable criterion is the following "The 
smaller the sum of the interval length squares, the better the solution". It is based 
on the fact, explained in detail in [1], that the average total waiting time of passengers 
is proportional to the sum of the interval length squares. Then the results are the 
following: 

0 + 0 + 36+ 16 + 4 + 9 + 9 + 4 + 16+ 36 = 1 3 0 , 

16 + 1 + l + c 36+ 9 + 9 + 1 + 2 5 + 1 + 25 = 124, 

and the second solution is again better than the first. However, it is is not the best 
one: e.g. choosing the first departures of line 1 at 6 : 00, of line 2 at 6 : 05 and of line 3 
at 6 : 07 gives the sum of squares 116. 

The second example concerns the rhythm of a marshalling yard. 
Let us suppose that in a marshalling yard there are n tracks to which the wagons 

come from the hump. In many marshalling yards these tracks are used not only 
to carry out the humping process, but also to arrange wagons into trains which then 
depart out of the station. The train-forming process has approximately the same 
duration on every track and thus the departure times in time-tables have a big 
influence on the rhythm of the work and also a little on the humping process. 

Let us suppose that from the i-th track we have mt departures of trains daily and 
let 

m = m1 + ... + mn . 
Then m values of titJ are to be determined (tUj stands for the time of departure of 
thej-th train from the i-th track). These values should satisfy two rather antagonistic 
conditions: 
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1. The flow of trains from the i-th line should be regular, i.e. 

hj + i - hj = 1440/m^ (minutes) 

This condition is desirable from the point of view of the wagon-gathering process 
on the i-th track 

2. The two nearest departures from the different tracks should be as distant as 
possible, i.e. if tl9 ..., tm are the times ttj written in their chronological order then 

min (ti+1 - tt) 
i=l,...,n 

must be as large as possible (where tn+1 = t1 + 1440). 
This condition follows from the fact that if some of the differences ti+1 — tt is 

too small, then either the station needs more employees for the marshalling of trains, 
or the i-th prepared train waits for its departure uselessly, or the (i + l)-st train is 
overdue. 

For example, let us have a station with 3 tracks for humping, with m1 = 5, m2 — 3 
and m3 = 2. Of course this example is a mere illustration, such a small station 
does not exist. 

The departures from the three tracks can be chosen as follows: 
1st track: 0(0 : 00), 288(4 : 48), 576(9 : 36), 864(14 : 24), 1152(19 : 12), 
2nd track: 240(4 : 00), 720(12 : 00), 1200(20 : 00), 
3rd track: 192(3 : 12), 912(15 : 12). 

[0] 

[1200] 

[11521 

[720] 

Fig. 1. 

This solution is sketched in Fig. 1. 
One can immediately observe that these numbers can be obtained from the second 

solution of the preceding example by multiplying the number of minutes after 
6 : 00 by 48. Thus it is natural to look a common mathematical model for the both 
practical examples. 
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1. MATHEMATICAL MODEL 

In both cases the rhythm w7as periodic with a certain period of T minutes (T = 30 
or T = 1440, respectively). Hence it is quite natural to represent the departures ltJ-
(the j-th vehicle on the i-th line or the j-th train from the i-th track) on a circle c 
of the length T. The vector ( t u , ..., tim) is represented by an m r g o n which is regular if 

The whole set 

tij+i ~ tij = T\m{ for i = 1, ..., n - 1 

[tij \j = 1, ..., n; j = 1, ..., mř.} 

is also represented by a total m-gon, m = mx + ... + mn. The representation 
of a number t by a point [*] on a circle is found as follows: an origin [0] is chosen 
on c and t is represented by a point [t] with the property that |[0] [t]j = t (where 
|[0] [ t ] | is the length of the arc [0] [t] in the positive sense). 

Thus the problem can be formulated as follows: 
On the circle with the length T with a natural coordination, for every i = 1,..., n 

find an m r gon At = {[^i], ..., [^m,]} s u c n t r i a t l r i e individual polygons Au ..., An 

and the total m-gon A = {[tiJ'] i = 1, ..., n;j = 1, ..., m j fulfil some "regularity" 
conditions. 

2,3 

Fig. 2. 

There are some practical situations, however, which need a more general model. 
Let us suppose that we have a net of three urban lines from Fig. 2. 
Line 1 goes from A through D to B and back, 
line 2 goes from A through D to C and back, 
line 3 goes from B through D to C and back. 

Let us also suppose that the intervals between the vehicles on these lines are equal 
to those from the first example. Then we again have the common period T = 30 
minutes. The essential difference is in the fact that we have three different segments 
which are common for different pairs of lines. Thus we have to consider three circles 



cu c2> c3 with 1 n e length T On c1 (for AD) we locate the vertices of a pentagon and 

a triangle, 

on c2 (for BD) we locate the vertices of a pentagon and a chord ("a 2-gon"), 

on c3 (for CD) we locate the vertices of a triangle and a chord. 
Moreover, the pentagons on ct and c2 must be congruent and turned by a given 

angle depending on the running time of line 1 vehicle from D through A to D. Analo­
gous statements must hold for the triangle on cx and c3 and the chord on c2 and c3. 

The general formulation of the problem of polygon location on circles (a PLC-
problem) can be now formulated as follows: 

Let T b e a positive real number and let cu ..., cp be circles of the length T Let 
n, mu ..., mn be positive integers. Let Kl5 ...,Kn be subsets of {1, ,.., p}. Let rt = 
= min Kh i = 1, . . . , n and let stj be a nonnegatfve real number for i = 1, ..., w 
a n d j e K , - { r j . Let sl7 e <0; T). 

It is necessary to find an m rgon 

AJ = {[*f,y.i]> • • •> ['i,Lm,]} °n c7 for every i = 1, ... , n . 

j e Kt such that 

(1) AtJ. are congruent for allf e Kf, 

(2) t i J s l = t,,rij l + s 0 . ( m o d T ) , 

(3) The individual polygons Atj for every admissible i,j and the total polygons 
(for 7 = 1 , . . . , p) Aj = \J Atj fulfil some "regularity" conditions. 

iJeKt 

We note that j e K{ means that the i-th polygon is located (also) on the 7-th circle; 
stj means the angle (phase) shift of the i-th polygon on the 7-th circle with respect 
to the i-th polygon on the r r t h circle. 

2. CLASSIFICATION OF PLC-PROBLEMS 

It seems to be useful to classify the PLC-problems by a symbol X\Z\ U consisting 
of three characters: 

X — a letter which characterizes the given data: the number of circles p, the number 
of polygons n and the sets K^ (i.e., X characterizes the type of the urban trans­
port net if we deal with this application); 

Z — a letter characterizing the type of the condition of the "regularity"; 

U — a letter characterizing the criterion of "regularity" used for polygons. 

2.1 The letter at the first place is connected with the possible type of the transport 
net: 

Y — expresses one circle with two polygons. It is derived from the 7-type urban net, 
which contains two lines with one common segment; 
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W — expresses one circle with more than two polygons. It is derived from the !P-type 
urban net, which contains more than two lines with just one common segment; 

<P — expresses any general type of problem, not contained in the preceding ones. 

2.2 The letter at the second place (the type of "regularity" condition) divides 
our problems into three groups: 
I — in problems of this type we strictly demand every individual polygon to be 

regular and we optimize the "regularity"of the total polygons. It is derived 
from the case when every individual line has a regular flow of vehicles; 

G — we demand every total polygon to be regular and we optimize the "regularity" 
of the individual polygons. It describes the case when (regardless of their 
numbers) the vehicles passing through every common segment form a regular 
flow; 

N — no polygon needs to be obligatorily regular, we optimize "regularity" of the 
whole system. 

2.3 The letter at the third place describes which kind of optimum we want to reach. 
The criterial functions give us, for every set of polygons {At = {[ty], j = 1, ..., mt} 
i = 1, ..., n}, the value characterizing the quality of the solution according to some 
criterion. We suppose that every polygon A{ may have a weight (importancy) ph 

the meaning of which we shall see later. 
We consider the following criteria of optimality of a system of polygons: 

Sq: ł2>E(* . J + i-f i 
î = 1 J=Ì 

•ì2 
j) 

to be minimum, 

Mi: min Pi(tІJ+1 - tij) 
ІJ 

to be maximum, 

Mx ' maxpi(tІJ+1 - tij) 
i,j 

to be minimum, 

n ki + ìПi—X 

Sw: £ Pi Z K ' u + i ~ Uj)2 + (*u + i - ttj) • l(tj ~ Kk) - (J ~ K) (Tim,)]} = 
i = l j=kt 

n ki + mt 

= Z Pi{ - T2I2 + (r /m,) Z (hj - ti^)} t 0 b e minimum , 
i = l j = ki+l 

where [lijfc.] is such a vertex of At that for every j = 1, . . . , mt we have (titki+j — 
— ti$k) ^ j . Tjm^ The existence of such kt will be proved later. 
Mw: meixp^Kti^.+j - titkt) - }T\mi + F/mf) to be minimum, 

ij 

where kt is defined as above. 
In all these cases we consider ti>mi+j = ttJ + T 
These criteria need some comments: 
1. The polygons Ax need bot be the individual ones only. At can also be a total 

polygon on some circle. Even such a case is admissible that Al9 ..., Aw_ x are individual 
m r , . . . , m^.j-gons and A„ is the total mrt-gon where mn = mx + . . . + mn-x. 
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2. In the case of urban transport lines (without oversaturation) the Sg-criterion 
expresses the total waiting time of passengers in the whole transport net during one 
period T, if p{ is the intensity of the passenger flow of the i-th line or i-th common 
segment; of the Mi-criterion (Mx-criterion) expresses the minimal (maximal, re­
spectively) interval between two vehicles on the same line or segment. In the case 
of goods transport lines (with equally freighted vehicles and balanced capacities) 
the Sw-criterion expresses the total waiting time of goods in the whole transport 
net during one period Tif pt is the intensity of the goods flow of the i-th line or the 
common segment, the Mw-criterion expresses the maximal waiting time of some 
goods in the network. 

3. The existence of kt ensues from thr following lemma: 

Lemma 1. Let c be a circle with a length T and let Bl9 ..., Bm be different points 
on c such that for every i = 1, ..., m — 1 the oriented arc Bi Bi+1 does not contain 
any other By, and for every i = 1, ... , m let us have Bi+hm == Bt for every h j*> 1. 
Then there exist ke {I, ..., m} such that for every i = 1 , . . . , m we have 

\BkBk+i\ ^iTJm. 

Proof. Indirectly: Let us suppose that 

f for Bi there exists j 1 such that | B i B i + J | < JiT/m , 

( i) 

for B1+ji there exists j 2 such that |B i+^#1+^+^1 < j2Tjm 

for B1+jl + ...+j there exists j„+i such that 
\Bi+j1 + ...+jnBi + ...+jn + i\ < jn+iTjm . 

Because of the finiteness of the set {Bu ..., Bm] there exist such r, s that 

# l + ...+JV " Bl + ~-+jr+-+js 
and hence 

(2) Z|51 + . . .+IV+...+yA + ...+iV+...+1«+1«+il =C/r+i + ••• +Js)Tlm. 
i = r 

On the other hand, (1) implies that the sum on the left hand side (2) must be smaller 
than the right hand side which contradicts (2). 

The lemma is proved. 

3. REVIEW OF THE PROBLEMS SOLVED 

3.1 Problems of the -|G|- type 

The solutions of these problems are known only for the cases of the Y\G\* type. 
It is interesting that there exists a solution which is optimal for all five criterial 
functions mentioned above, but the proofs of optimality differ in the individual 
cases. The solution is independent of the optimizing coefficients pt; the common 
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solution is optimal for all couples (pl9 p2). In these case of the Y\G\ • type the general 
PLC-problem can be reduced in the following way: 

We have a regular (mx + m2)-gon A on the circle c and we have to determine 
which vertices will belong to the m^gon At and which to the m2-gon A2 (or, in other 
words, we have to determine the sequence consisting only of m1 numbers one and 
m2 numbers two which defines the order of vertices of the polygons A1 and A2 

in the common (mx + m2)-gon). By the symbols h\a\ and f\a\ we shall denote 
the integer functions or a real number a which satisfy the inequalities 

f\a\ ^a< f\a\ + 1 , 

h\a\ - 1 < a S h\a\ . 

The coordinates of the total (m1 + m2)-gon A = {[fj, i = 1,..., m = m1 + m2} 
on the circle c satisfy the condition tt = i . T\(m1 + m2) for i = 1,..., m — 1 and 
tm = TEE 0. Now we determine the vertices of the m^gon A1 = {[*lr], i = 1, 2, . . . 
..., mx} in the following way. For all i = 1, 2,. . . , /% — 1 let 

(3) tu = h\i(mt + miJ/Wi] T / ^ i + m2) 

and let tlmi = T~ 0. 
Then it is not difficult to prove that for all jf = 1, 2, . . . , m2 

(4) t2j+1 =f\j(m1 + m2)/m2] r/(m! + m2) + *21 

must hold in A2 (see [5]), where l21 = T\(m1 + m2). 
In the next part we shall prove that this system Al9 A2, A is the optimal solution 

of the problem Y\G\* for all five criterial functions. 
We shall use the following lemma. 

Lemma 2. Let Au A29 A be the polygons defined above, satisfying the conditions 
(3) and (4). 

Then there exist such integers i09j0'9 1 S io = mi\ 1 =.. Jo = m2 *&#* *ii0 ~ *2j0
 = 

= T^mi + m2) and for all i = 1, ..., m1? 

'iio+i = hio +flKmi + ^2)/mi] T\(m1 + m2) 

h0/ds (where tlmi + 1 = tlt + T), while for all j = 1, ..., m2, 

2̂Jo+J = hj0 +
 h[Kmi + w2)/m2] . Tl(m1 + m2) 

h0/ds (where t2m2+j = f2j. + T). 
The proof of this lemma is rather lengthy and can be found in [5]. 
In the sequel we shall suppose that 

A'i = {[*ii]> •••> ['imj} is an arbitrary m rgon on c and 
A[2 = {[*21]> • ••, [*2m2]} 1s an arbitrary m2-gon on c such 
that A[ and A2 together form a regular (mx + m2)-gon A'. 



1. The proof of optimality in the problem Y|G| Sq is based on Lemma 3 which 
is not difficult to prove by elementary means of mathematical analysis. 

Lemma 3, Let us have integers h, p, m (0 < p :g m) and two integer sequences 

{at}?=i and {bjf=1 such that 

at = a2 . . . = ap = h ; ap+1 = ap+2 = . . . = am = h + 1 

and 
?n m m wi 

Z «, = ! * , . Then Y^ = Zbj. 
i-1 i = 1 . i = 1 i = 1 

As for all i = 1, ..., ms we have either 

' n + i ~ tu = n\_(mi + m2)\m^\ T\(m1 + m2) 
or 

tn+i ~ hi = (A[(wt + m ^ / m j - 1) T ^ + m2) 

(where llmi + 1 = l11 + T), and for all j = 1, ..., m2 we have either 

'2./+1 ~ hj =fl(m1 + m2)lm2~\ T\(ml + m2) 
or 

'27+1 ~ hj = ( / [ (mi + m2)\m2"\ + 1) r /(mx + m2) 

(where l2m2 + 1 = l21 + F), we have by Lemma 3 

2 mi m i + m 2 

i S l ' i K ' y + x - ttj): + iP Z [ r / K + m2)]
! g 

i = i j = i j = i 

2 mj m i + m 2 

i lP iZWy+i ~ '</)' + ip I [ r / K + w2)]« 
i = l 7 = 1 7 = 1 

which was to be proved. 

2. In order to solve the problem Y|C| Mi we shall use an indirect proof. Let 
A[, A2, A' be a better solution of the problem YJG| Mi than Al9 A2, A. Then either 
for all i = 1 , . . . , mt the inequality 

Pi(t'i,i+i ~ *u) > m i n Pi(hj+i - hj) = Pif[(mi + m^lm,] . T\(mt + m2) 
7 = 1 , . . . ,mi 

must hold or for all i = 1 , . . . , m2 we have 

1*2(4-+I - t2l) > min p2(t2j+1 - t2j) = p2/[(m1 + rn^rn^ T\(mi + m2) . 
7 = l , . . . , m 2 

As ( r l f + 1 — ?i(-) and (t2i+l — l2/) are integer multiples of T\(ml + m2), we have 
either 

tu+i ~ tf
u ^ (f[(mx + m^rn,] + 1) T\(mt + m2) 

or 

t2i+i - t'n = (f[(mx + m2)/m2] + 1) T\(nH + m2) . 
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Hence either 
mi 

T = K ' i . + i - t'lt) i£ m^ffttn, + m2)\mi\ + 1) 7/(171, + m2) > T 

or 
m2 

T= SO2.+1 - ti.) ^ tw2(/[(m, + m2)/m2] + 1) T/(m, + m2) > T. 
f = l 

This is a contradiction which proves the assertion. 

3. The proof of optimality in the case of the problem Y\G\ MX is very similar 
to the previous one. 

4. The optimality in the problem Y|G| Sw and Y|G| Mw will be proved together. 
Let us have A[, A2, A! as before. Then by Lemma 1 there exist tf

lkl and t2/C2 such that 
for all i = 1, ..., m1 and for all j = 1, ... , m2, 

('1*1 +1 ~ 'ifci) = * T / m i = *(mi + m 2 ) / m i • Tj(ml + mi) > 

(t'lki+j ~ f2k2) = 3 Tlm2 = j ( m i + m2j/™2 • Tl(mx + m2) 

holds. As we know that 

t'lki + i - t'ikx = fcii T / ( m i + m2) and t2k2+j - t2k2 = k2i T\{m1 + m2) 

(where kH and k2j- are suitable positive integers), the inequalities 

ku ;> /^[/(wi! + m 2 ) / m j and k2j = ^ ' ( m j + m^jm^ 

necessarily hold. In addition, we know that for all i = 1, ..., m l 5 

'imi + i ™ 'im- = hi = k[X m i + m 2 j / m i ] . ^ ( m t + m2) ̂  * T/wi! 

holds, and for all j = 1 , . . . , m2, 

t2j0+j - 2̂jo = hD(mi + m 2) /^2] r / (m! + m2) = j T/m2 

holds. 
This implies that 

mi 

Pl{-T2j2 + (T /m , )X( t i m i + i - hmi)} ^ 
i=l 

mt 

£Pl{-T
2l2 + (T(mi)SZ(t'lkl + i-t'Ul)} 

i=- l 

and 
m2 

p2{-T2/2 + ( T / m 2 ) 2 : ( t 2 2 „ + 2 - - t 2 y o ) } ^ 
1=1 

m2 

^ p 2 { - T 2 / 2 + ( T / m 2 ) £ ( t 2 / t 2 + i - r 2 t 2 ) } , 
1-=! 

which proves the optimality of the system Av A2, A in the problem Y|G| Sw. The 
above argument also yields that 
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max pt{(tlmi + i - tlmi) - i T\mx + T\mx} ^ 
i = 1 ,...,mi 

g max p1{{tlkl + i - t'lki) - i T\mi + T/mj} 
i = 1 ,m\ 

and 
max p2{(t2j0+j - r2/0) - I T\m2 + F/m2} ^ 

j f = 1 , . . . . W ! 2 

^ max p2{(t242+,- - f ^ ) - y T/m2 + T/m2} 

hold, which proves the optimality of the system Ai9 A2 A in the problem Y|C| Mw. 

3.2 Problems of the •|I|* type 

The solutions of these problems are known only for the cases of the Y|I| • and 
• |I| Mi types. In the case of the Y|I| • type the general PLC-problem can be reduced 
in the following way: 

We have a regular m1-gon A1 = { [ tn] , ..., [^imj} and a regular m2-gon A2 = 
= {[^2ik]» ••> [*2m2]} o n t n e c i r c l e £> which together form the (mx + m2)-gon A = 
= \tl9 ..., [ t m i + w J , and we have to determine only the angle (phase) shift between 
Ax and A2. The solution is independent of the optimizing coefficients pi9 because 
we optimize only the "regularity" of the total (m1 + m2)-gon A. For the sake of 
simplicity we shall look only for such solutions which satisfy txl = 0, 

t21 = min (t2i - tls) = a 
ij 

tn^tij 

which can be proved to be equivalent to 0 ^ t21 < T\n\mu m2] where n\ml9 m2] 
is the least common multiple of m1 and m2. 

Then tlt = (i - 1) Tjm1 for all i = 1 , . . . . ml9 and t2j = a + (j — 1) T\m2 

for al l j = 1, ..., m2. 

Let m1 = m . m[ , 

m2 = m . m'2 9 

where mi and m2 satisfy 

n\m'l9 m2] = mi . m2 . 

Then by Euclid there exist integers bl9 b2 such that 

0 < bx < mi , 

0 < b2 < m2 

and in addition, 
1 = bxm2 — b2mi 

holds. Hence we have 

T]n\ml9 m2] — a = T\(m[m2m) — a = b1 T/(mmi) — 
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- b2 T\(mm'2) - a = b1 T\m± - (b2 T\m2 + a) = tlbi + 1 - t2b2 + 1 

and by [5, Theorem 5] we conclude 

= min txi — t2j (for j = 1, ..., m2 i = 1, ..., mx + 1 Ѓ 2 Ь 2 + 1 

tii-t2j>0 

where tm i + 1 = T) . 

1. In order to solve the problem Y|I Sq we have to find a real number a, 0 :g a < 

< T\n\mu m 2 ] minimizing the expression 

mi +m2 

(W2) l ( 0 + i - ' J ) : -
1 = i 

As the coordinates tt depend only on a, we have 

m i +r??2 

OP/2) E ( 0 + I - o): = r o a 2 + r i a + r2 
7 = 1 

where the coefficients r 0, r 1 ? r 2 can be easily found for every particular m1 and m 2 . 

So we obtain the solution of the problem YJIj Sq by finding the minimum of the 

real function r 0 a 2 + rta + r2 on the interval <0, T\n\mu m 2 ]). 

2. To solve the problem Y|I| Mi we have to determine such a(0 < a < 

< T\n\mum2\) that p min (tj+1 — tj) is maximal. The above considerations 
yield J-Lm1+m2 

min (tj+1 - tj) = min \t2j - tu\ = 
J=l,mi+m2 i = l , . , . , m i + l 

j=l,...,m2 

= min { min t2j — tli; min txi — t2 /} = 
i,J i ,I 

t2j>,tll t U > t 2 j 

= min {a; T\n\ml9 m 2 ] — a} . 

This minimum will be maximal if and only if a = 7/(2 . n\mu m 2 ]), which deter­

mines the optimal solution. 

3. When solving the problem Y|I| Mx we have two possibilities. If m1 + m 2 , 

then it is trivial that the solution is every system consisting of a regular m^gon A1 

and of a regular m2-gon A2, which together from the (m1 + m2)-gon A. 

If m1 = m2 then the optimal solution is such a system of polygons Au A2, A 

that also A is regular, i.e. 

hi - hi = T\(m± + m2). 

4. Now we shall study the problems Y\l\ Sw and Y\l\ Mw. In this part we shall 

use an integer function c(i,j) such that tc(iJ) = titj, where tc(iJ) is the coordinate 

of the c(i,j)"th vertex in A and ttJ is the coordinate of the j-th vertex in At. Looking 

for the optimal solution of these problems we shall see that if 0 < a < Tj^m'^mi + 
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+ m2)] then following [5], for all j = 1, ..., m1 + m2 we have tj ~ t2= (j - 2) . 
. T\(m1 + m2) (t2 = t21 = a) and moreover, for all i = 1, ..., m1 we have tc(1J) -
- t2 = (c(l, i) - 2) T\{mx + m2) + T ^ m ^ m , + m2)] - a. If T\(mf

1(m1 + m2)) < 
< a < T\n\mu m2] then t, - rc(i,&1 + i) ^ [j - e(l, bx + 1)] T\(mx + m2) holds 
for all I = 1, ..., m1 + m2, while 

^(2j) ~ 'e(i,z>1 + n = K 2 , j) - c(l, bx + 1)] T/(m! + m2) + a - T\(mt
1(m1 + m2)) 

holds for all 7 = 1, ... , m2. It follows that the value of the criterial function Sw is 

m 1 + m 2 

p{-T2/2 + \T\(mx + m2)] J (t,+/c - tk)} = 
7 = 1 

= Sw0 + p/a - T/fm^mi + m2)] | d , 

where d is either m t or m2 and Sw0 is the value of the criterial function with a = 
= T\{m'1(m1 + m2)). This shows that the optimal solution of the problem Y|I| Sw 
will be obtained if t21 = a = T\(m1(m1 + m2)) holds. 

From the preceding consideration it also follows that the value of the criterial 
function Mw is 

p max \(tk+j - tk) - j T\(m1 + m2) + T\(m1 + m2)] = 

Mw0 + p/a - T\(m'1(m1 + m2))| , 

and this shows, that the optimal solution of the problem Y|I| Mw is obtained if 

t21 = a = T^mKm, + m2)) . 

5. The last problem which we will mention in this paper is i/J|I| Di and its gen­
eralization 4>\l\ ML The whole algorithm of the solution is rather complicated, so 
we will show only its substantial steps. The principal idea is to divide all possible 
systems of polygons into groups so that one group contains all such systems that 
the individual (regular) polygons form the same sequence of vertices in the total 
polygon. Then the algorithm consists of two parts: 

a) the first is to find all "groups", 
b) the second is to find the optimal solution 

from the systems which belong to the same "group". The best solution of the problem 
is then chosen from all the solutions which were the best ones from the individual 
"groups" . This algorithm was presented and proved in [6] and [7] . 

In [3] and [4] we can find a "pseudooptimal" algorithm for the ^|I| Mi-problem. 
This algorithm is of great practical importance but it gives the optimal solution 
only in one class of problems (for small values n). 

Let us have to locate an rr^-gon, ..., ms-gon on the circle c. Let n = n\ml9 ..., m j 
be the least common multiple of m1 , . . . ,m s . The set of regular ti-gons {Bj, j = 1, . . . ,P} 
on c is said to be covered (partially covered) by the regular m^gon Al9 ..., ms-gon 
Asif 
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(1) every vertex of every Atis a vertex of some By, 

(2) every vertex of every By is a vertex of exactly (not more than) one polygon At. 

The pseudo-optimal algorithm in [3], [4] consists in finding the minimum p 
for the given mu ..., ms such that the regular n[mu ..., m5]-gons Bu ...,Bp on c 
are partially covered by a regular m^gon Au ..., a regular ms-gon As. Then Bu ..., Bp 

form a regular (p . n)-gon B. 

Example . Let us have a marshalling yard with s = 9 tracks, for which m1 = 6, 
m2 = m3 = m4 = m5 = 4, m6 = 3, m7 = m8 = m9 = 2. 

Obviously, p = 3: 
The regular 12-gon Bt is partially covered by Au A6, 

the regular 12-gon B2 is partially covered by As, A7, A8, A9, 
the regular 12-gon B3 is covered by A2 = A3 = A4. 

Then B±(J B2\J B3 form a regular 36-gon B with the distance of vertices 1440/36 = 
= 40 minutes. Thus the departures are as follows: 
Track No 1: 0-00, 4-00, 8-00, 12-00, 16-00, 20-00; 
track No 2: 1-20, 7-20, 13-20, 19-20; 
track No 3: 3-20, 9-20, 15-20, 21-20; 
track No 4: 5-20, 11-20, 17-20, 23-20; 
track No 5: 0-40, 6-40, 12-40, 18-40; 
track No 6: 2-00, 10-00, 18-00; 
track No 7: 2-40, 14-40; 
track No 8: 4-40, 16-40; 
track No 9: 8-40, 20-40. 

The covering problem of n-gons is related to that of arithmetical sequences in number 
theory — let us imagine the circle c with Bx rolling on a straight line. Moreover, 
these two problems are connected with cuts of trees in the graph theory and with the 
theory of prefix codes in information theory. What an admirable example of relations 
between four absolutely different branches of mathematics. 

3.3 Problems of the *Nm type 

As concerns this part of the general problem only one result has been proved. 
In [1] and [2] an algorithm was shown which yields an optimal solution of the 
YN Sq problem. All other problems, which are more difficult, together with the 
not mentioned cases of *|I|- and *\G\* types are under investigation and they are 
still waiting for the solution. 
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Súhrn 

ROZMIESTŇOVANIE VRCHOLOV MNOHOUHOLNÍKOV NA KRUŽNICIACH 
A JEHO APLIKÁCIA V DOPRAVĚ 

JÁN ČERNÝ, FILIP GULDAN 

Článok nadvázuje na stať [7], ktorá opisovala problém rozmiestnenia pravidelných mnoho-
uholníkov na kružnici. Táto úloha sa teraz zcwšeobecňuje na případ ,,skoro pravidelných" mnoho-
uholníkov na jednej alebo viacerých kružniciach. Opisuje sa klasifikácia špeciálnych prípadov 
takýchto úloh podlá róznych kritérií pravidelnosti individuálnych resp. zložených mnoho-
uholníkov, podlá ich počtu a podía toho, či ide o jednu alebo viac kružnic Pre niekolko špeciál­
nych úloh sa určujú optimálně riešenia. 

Pe3ioMe 

PA3MEII1EHHE BEPfflHH MHOFOyrOJIBHHKOB HA OKPy^HOCTBJIX 
M E r O nPHJIO^CEHME K TPAHCnOPTV 

JÁN ČERNÝ, FILIP GULDAN 

B craTbe paccMaTpHBaercH npo6jieMa pacnpeflejieHHH BepniHH MHoroyrojibHHKOB Ha ^anHbix 
OKpy>KHOCT51X, HCnOJIHKH HCKOTOpbie KpHTepHH „perVJTflpHOCTH" HHflHBHflyaJIbHKrX H KOMIUieKCHBJX 

MHoroyrojibHHKOB. yTOHHeHHeM ycnoBHH nojiynaeTCH p#/i nacTbix cjiynaeB o6meH npoÓJieMM. 
HeKOTOpbie H3 HHX yace pemeHbi, /rpyrne eme HeT. 

npHJio5KeHH5i 3TOH TeopHH B no/jroTOBKe pacnncaHHH nepHOflHHecKM noBTopíHOHiHxcH npo-
neccoB, Hanp. B Koop^HHanHH HecKOJibKHX JTHBMÍÍ ropo/rcKoro TpaHcnopTa Ha oónieM nyTH HJIH 
B OnTHMHSaHHH pH(j)Ma COpTHpOBOTOOH aCeJie3HOrOp05KHOH CTaHHHH. 
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