Aplikace matematiky

Jan Cerny; Filip Guldan
Location of polygon vertices on circles and its application in transport studies
Aplikace matematiky, Vol. 32 (1987), No. 2, 81-95

Persistent URL: http://dml.cz/dmlcz/104239

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104239
http://dml.cz

32 (1987) APLIKACE MATEMATIKY No. 2, 81—95

LOCATION OF POLYGON VERTICES ON CIRCLES
AND ITS APPLICATION IN TRANSPORT STUDIES

JAN CERNY, FiLiP GULDAN

(Received April 9, 1983)

Summary. The paper deals with the problem how to locate a set of polygon vertices on given
circles fulfilling some oriteria of “regularity’’ of individual and composed polygons. Specifying
the conditions we can obtain a lot of particular versions of this general problem. Some of them
are already solved, the others are not.

Applications of this theory can be found in scheduling of periodically repeating processes,
e.g. in coordination of several urban lines on a common leg, in optimization of the rhythm
of a marshalling yard etc.

Keywords: Polygons on circles, regularity measures, optimal location, coordination, transport,
common leg, marshalling yard.

Class. AMS: 90 B 35, 05 B 99

Let us begin with two practical examples:

First, let us suppose that in a town there are, n urban transport lines with a common
leg (e.g. in the main street of the town). Moreover, let us suppose that there are many
passengers which are interested to take a vehicle of only one “proper” line, but
there are also many others, which can use a vehicle of any line (traveling in the main
street only).

Every passenger would prefer to have a regular flow of “‘his” vehicles, i.e. to have
equal intervals between them. Unfortunately, it is usually difficult to satisfy these
requirements in practice: if the flow of the vehicles of every line is regular, the flow
in the common leg is generally not regular.

If e.g. we have three lines:

Line 1 with 6-minute intervals between vehicles,

line 2 with 10-minute intervals between vehicles,

line 3 with 15-minute intervals between vehicles,

then the departures of the vehicles from the first station of the common segment
can be:

Line 1: 6;00, 6;06, 6,12, 6,18, 6;24, 6,30, 6,36, 6,42, ...

Line 2: 6;00, 6;10, 6,20, 6,30, 6;40, ...
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Line 3: 6;00, 6;15, 6,30, 6;45, ...

The intervals between the vehicles on the common leg would be
0,0,6,4,2,3,3,2,4,6/0,0,6,4,2, ...

We can see that after the period of 30 minutes the sequence of intervals repeats.

Further, it is evident that the regularity on the common segment is bad — the intervals

change from 0 to 6 minutes. One can obviously ask whether there exists a better

solution. Let us try to find another one:

Line 1: 6,00, 6;06, 6;12, 6;18, 6;24, 6;30, ...

Line 2: 6,05, 6;15, 6;25, ...

Line 3: 6;04, 6;19, ...

The periodically repeated vector of ten intervals will now be

4,1,1,6,3,3,1,5,1,5,...

Then the question to be answered is whether this solution is better than the previous
one? Probably it would depend on the criterion we have chosen. One of the possible
criteria is the following: ““The smaller the minimal interval the worse the solution™.
In this case the second solution is better than the first (1 against 0). Another criterion
says that “The smaller the maximal interval — the better the solution”. In this case
both solutions are equivalent. A very reasonable criterion is the following “The
smaller the sum of the interval length squares, the better the solution”. It is based
on the fact, explained in detail in [ 1], that the average total waiting time of passengers
is proportional to the sum of the interval length squares. Then the results are the
following:

0+0+36+ 164+4+94+94+ 4+ 16+ 36 =130,

16+14+ 14+¢36+9+9+14+25+ 1+25=124,

and the second solution is again better than the first. However, it is is not the best
one: e.g. choosing the first departures of line 1 at 6 : 00, of line 2 at 6 : 05 and of line 3
at 6 : 07 gives the sum of squares 116.

The second example concerns the rhythm of a marshalling yard.

Let us suppose that in a marshalling yard there are n tracks to which the wagons
come from the hump. In many marshalling yards these tracks are used not only
to carry out the humping process, but also to arrange wagons into trains which then
depart out of the station. The train-forming process has approximately the same
duration on every track and thus the departure times in time-tables have a big
influence on the rhythm of the work and also a little on the humping process.

Let us suppose that from the i-th track we have m; departures of trains daily and
let

m=my+ ..+ m,.
Then m values of t; ; are to be determined (¢, ; stands for the time of departure of
the j-th train from the i-th track). These values should satisfy two rather antagonistic
conditions:
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1. The flow of trains from the i-th line should be regular, i.e.
tij+1 — t;; = 1440[m; (minutes)
This condition is desirable from the point of view of the wagon-gathering process
on the i-th track

2. The two nearest departures from the different tracks should be as distant as
possible, i.e. if #;, ..., 1, are the times t;; written in their chronological order then

min  (t;4, — 1)
i=1,...,n
must be as large as possible (where t,,, = t; + 1440).

This condition follows from the fact that if some of the differences t;,, — t; is
too small, then either the station needs more employees for the marshalling of trains,
or the i-th prepared train waits for its departure uselessly, or the (i + 1)-st train is
overdue.

For example, let us have a station with 3 tracks for humping, with m,; = 5, m, = 3
and my = 2. Of course this example is a mere illustration, such a small station
does not exist.

The departures from the three tracks can be chosen as follows:

Ist track: 0{0 : 00), 288(4 : 48), 576(9 : 36), 864(14 : 24), 1152(19 : 12),
2nd track: 240(4 : 00), 720(12 : 00), 1200(20 : 00),
3rd track: 192(3 : 12), 912(15 : 12).

(0]
192]
[1200] [240]
1152] [288]
[912]
[864 \/ 5761
[720]
Fig. 1.

This solution is sketched in Fig. 1.

One can immediately observe that these numbers can be obtained from the second
solution of the preceding example by multiplying the number of minutes after

6 : 00 by 48. Thus it is natural to look a common mathematical model for the both
practical examples.
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1. MATHEMATICAL MODEL

In both cases the rhythm was periodic with a certain period of T minutes (T = 30
or T = 1440, respectively). Hence it is quite natural to represent the departures t;;
(the j-th vehicle on the i-th line or the j-th train from the i-th track) on a circle ¢
of the length T The vector (4, ..., f;,,) is represented by an m;-gon which is regular if

tije1 — ti;=Tm; for i=1,..,n—1.
The whole set
{tij‘j =1,..,nj=1, ...,mi}

is also represented by a total m-gon, m = m; + ... + m,. The representation
of a number ¢ by a point [¢] on a circle is found as follows: an origin [0] is chosen
on ¢ and 1 is represented by a point [¢] with the property that |[0] []| = t (where
|[0] [£]] is the length of the arc [0] [¢] in the positive sense).

Thus the problem can be formulated as follows:

On the circle with the length T with a natural coordination, for every i = 1, ..., n
find an m-gon A; = {[t;1], ..., [tim,]} such that the individual polygons A, ..., 4,
and the total m-gon 4 = {[t;;]i = 1,...,n;j = 1,...,m;} fulfil some “regularity”
conditions.

Fig. 2.

There are some practical situations, however, which need a more general model.
Let us suppose that we have a net of three urban lines from Fig. 2.
Line 1 goes from A through D to B and back,
line 2 goes from A through D to C and back,
line 3 goes from B through D to C and back. )
Let us also suppose that the intervals between the vehicles on these lines are equal
to those from the first example. Then we again have the common period T = 30
minutes. The essential difference is in the fact that we have three different segments
which are common for different pairs of lines. Thus we have to consider three circles
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¢y, €5, ¢3 with the length T. On ¢, (for AD) we locate the vertices of a pentagon and
a triangle,

on ¢, (for BD) we locate the vertices of a pentagon and a chord (“a 2-gon”),

on ¢; (for CD) we locate the vertices of a triangle and a chord.

Moreover, the pentagons on ¢; and ¢, must be congruent and turned by a given
angle depending on the running time of line 1 vehicle from D through A4 to D. Analo-
gous statements must hold for the triangle on ¢; and ¢; and the chord on ¢, and c;.

The general formulation of the problem of polygon location on circles (a PLC-
problem) can be now formulated as follows:

Let T be a positive real number and let ¢y, ..., ¢, be circles of the length T. Let
n, my, ..., m, be positive integers. Let Ky, ..., K, be subsets of {1, ..., p}. Let r; =
=minK;, i = 1,...,n and let s;; be a nonnegative real number for i = 1,...,n

and jeK; — {r;}. Let s;;€<0; T).
Tt is necessary to find an m;-gon

Ay ={[tijal - [tijm]} on ¢; forevery i=1,..,n.

Jj € K; such that

(1) A;;arecongruentforalljeK;,

(2) tij1 = tiy,1 + 8;;(mod T),

(3) The individual polygons A;; for every admissible i, j and the total polygons
(for j=1,...,p)A; = U A fulfil some “regulatity” conditions.

i;jeK

We note that j € K; means that the i-th polygon is located (also) on the j-th circle;
s;; means the angle (phase) shift of the i-th polygon on the j-th circle with respect
to the i-th polygon on the r-th circle.

2. CLASSIFICATION OF PLC-PROBLEMS

It seems to be useful to classify the PLC-problems by a symbol X |Z | U consisting
of three characters:

X — a letter which characterizes the given data: the number of circles p, the number
of polygons n and the sets K (i.e., X characterizes the type of the urban trans-
port net if we deal with this application);

Z — aletter characterizing the type of the condition of the “regularity”;
U - a letter characterizing the criterion of “regularity’ used for polygons.

2.1 The letter at the first place is connected with the possible type of the transport
net:

Y — expresses one circle with two polygons. It is derived from the Y-type urban net,
which contains two lines with one common segment;
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¥ — expresses one circle with more than two polygons. It is derived from the ¥-type
urban net, which contains more than two lines with just one common segment;

¢ — expresses any general type of problem, not contained in the preceding ones.

2.2 The letter at the second place (the type of “regularity” condition) divides
our problems into three groups:

I — in problems of this type we strictly demand every individual polygon to be
regular and we optimize the “regularity”of the total polygons. It is derived
from the case when every individual line has a regular flow of vehicles;

G — we demand every total polygon to be regular and we optimize the “regularity”
of the individual polygons. It describes the case when (regardless of their
numbers) the vehicles passing through every common segment form a regular
flow;

N — no polygon needs to be obligatorily regular, we optimize “‘regularity” of the
whole system.

2.3 The letter at the third place describes which kind of optimum we want to reach.
The criterial functions give us, for every set of polygons {A; = {[t,;],j = 1,..., m;}
i = 1,..., n}, the value characterizing the quality of the solution according to some
criterion. We suppose that every polygon A4; may have a weight (importancy) p;,
the meaning of which we shall see later.

We consider the following criteria of optimality of a system of polygons:

w;

Sq: lz p, Z(t, j+1 — t;)*  to be minimum,

Mi: min p,-(ti,j+1 — 1) to be maximum,
iJ
Mx: maxp( fij+1 — 1)) to be minimum,
n o k; +m.—1
Sw: Z Y Mtiger — 1) + (tijer — 1) [0 — tig) = (G = k) (T/m)]} =
i= Jj=ki
n ki+mi
= Z d=T*2 + (T/m) Y (t” — ty,)} to be minimum,
i= i=kit

where [1;,,] is such a vertex of A; that for every j = 1, ...,m; we have (t;;,+; —
— t;z,) 2 j . T/m,. The existence of such k; will be proved later.
Mw: maxp {[(tiges; — ti) — JT[/m; + T/m;) to be minimum,

where k is defined as above.

In all these cases we consider #;,,,+; = t;; + T.

These criteria need some comments: :

1. The polygons 4; need bot be the individual ones only. 4; can also be a total
polygon on some circle. Even such a case is admissible that 4, ..., 4, are individual
M-, ..., m,_,-gons and A, is the total m,-gon where m, = m; + ... + m,_;.
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2. In the case of urban transport lines (without oversaturation) the Sg-criterion
expresses the total waiting time of passengers in the whole transport net during one
period T, if p; is the intensity of the passenger flow of the i-th line or i-th common
segment; of the Mi-criterion (Mx-criterion) expresses the minimal (maximal, re-
spectively) interval between two vehicles on the same line or segment. In the case
of goods transport lines (with equally freighted vehicles and balanced capacities)
the Sw-criterion expresses the total waiting time of goods in the whole transport
net during one period T'if p; is the intensity of the goods flow of the i-th line or the
common segment, the Mw-criterion expresses the maximal waiting time of some
goods in the network.

3. The existence of k; ensues from thr following lemma:

Lemma 1. Let ¢ be a circle with a length T and let By, ..., B, be different points
on ¢ such that for every i = 1,...,m — 1 the oriented arc B; B;+ does not contain
any other B;, and for every i =1, ..., m let us have B, = B; for every h = 1.
Then there exist ke {1, ..., m} such that for every i = 1, ..., m we have

|B.Bi+i| = iT|m .
Proof. Indirectly: Let us suppose that

for B, there exists j, such that |BB;,;| < j T[m,

for By,; there exists j, such that |Bl+j‘B1+j1+j2| <Jj,;Tm,
(1) :

for Byij +..+; there exists j, such that

‘Bl+j1+...+j,,Bl+--~+jn+1‘ < Jus1T[m .
Because of the finiteness of the set {By, ..., B,} there exist such 7, s that
B1+...+j, = Bl+..,+j,,+...+_,-s

and hence

s=-1

(2) Z |BI+"‘+jr+"'+jiB1+"‘+jr+"'+.il'+ji+|l = (jr+1 + ... +js) T/m .

On the other hand, (1) implies that the sum on the left hand side (2) must be smaller
than the right hand side which contradicts (2).
The lemma is proved.

3. REVIEW OF THE PROBLEMS SOLVED

3.1 Problems of the +|G|- type

The solutions of these problems are known only for the cases of the Y|G|- type.
It is interesting that there exists a solution which is optimal for all five criterial
functions mentioned above, but the proofs of optimality differ in the individual
cases. The solution is independent of the optimizing coefficients p;; the common
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solution is optimal for all couples (s, p»). In these case of the Y|G|- type the general
PLC-problem can be reduced in the following way:

We have a regular (m; + m,)-gon A on the circle ¢ and we have to determine
which vertices will belong to the m;-gon 4 and which to the m,-gon A4, (or, in other
words, we have to determine the sequence consisting only of m; numbers one and
m, numbers two which defines the order of vertices of the polygons A, and A4,
in the common (m, + m,)-gon). By the symbols h[a] and f[a] we shall denote
the integer functions or a real number a which satisfy the inequalities

flal £ a<fla] + 1,
hla] — 1 < a £ h[a].

The coordinates of the total (m; + m,)-gon A = {[t,], i =1,...,m = m; + m,}

on the circle ¢ satisfy the condition t; = i. T/(m; + m,) fori =1,...,m — 1 and
t,, = T = 0. Now we determine the vertices of the m,-gon 4, = {[#,;],i = 1,2, ...
oo ml} in the following way. For all i = 1,2,...,m; — 1let

(3) ty; = hli(my + my)my] T[(my + m,)

and let t,,, = T=0.
Then it is not difficult to prove that forallj = 1,2, ..., m,

(4) trjer = fLimy + my)[my] T|(my + my) + tay

must hold in A, (see [5]), where t,, = T|(my + m,).

In the next part we shall prove that this system A, A,, A is the optimal solution
of the problem Y|G|- for all five criterial functions.

We shall use the following lemma.

Lemma 2. Let A, A,, A be the polygons defined above, satisfying the conditions
(3) and (4).

Then there exist such integers iy, jo; 1 £ ig < my; 1 = jo < my that ty; — ty;, =
= T|(my; + my) and for all i =1, ..., my,

tigrr = ti + fLi(my + ma)[m ] T(my + m,)
holds (where t1,, +1 = ty; + T), while for all j = 1, ..., m,,
tajors = t2jo + BLi(my + ma)[my] . Tf(my + m,)

holds (where tym,+; = t2; + T).
The proof of this lemma is rather lengthy and can be found in [5].
In the sequel we shall suppose that

Ay = {[t11], .-+> [tim, ]} is an arbitrary ms-gon on ¢ and
Ay = {[t31], ..., [tom,]} is an arbitrary m,-gon on ¢ such
that 47 and A} together form a regular (m; + m,)-gon 4.
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1. The proof of optimality in the problem Y|G| Sq is based on Lemma 3 which
is not difficult to prove by elementary means of mathematical analysis.

Lemma 3. Let us have integers h, p, m (0 < p < m) and two integer sequences
{a;}1, and {b}7_, such that

ay=day...=a,=h; a,,,=a,,,=...=a,=h+1

and
Ya;=Yb. Then Y aj <) b;.
i i=1 i=1
As foralli = 1, ..., mg we have either

tiivr — tu = h[(my + my)[m,] T)(my + m,)
or
tiigg — 1 = (h[(ml + mz)/ml] - 1) T/(m1 + m,)
(where 1,41 = t1g + T), and for all j = 1, ..., m, we have either
trje1 — ta; = fl(my + my)[m,] T)(my + m,)
or
iy — ta; = (f[(my + my)my] + 1) T)(my + my)
(wWhere f3,,+5 = 1,5 + T), we have by Lemma 3
mi my+my

2
3> b 1(tij+1 =ty +3p Y [T/(my + my)] <
. =2

my +m3

1
2 mi

lpi.zl(t§j+1 — 1)+ dp Zl [T/(my + my)]
=1 j= ji=

N

which was to be proved.

2. In order to solve the problem Y|G| Mi we shall use an indirect proof. Let
1, A3, A’ be a better solution of the problem Y|G| Mi than A,, 4,, A. Then either
foralli = 1, ..., m, the inequality

pi(th,ie1 — 11) - I]l'lirl pil(tijer — tiy) = po fL(my + my)fm . T/(m, + my,)
j=1,..,my
must hold or for alli = 1, ..., m, we have

Pa(thivr — t5) > 1;nin Pataji1 — ta;) = pa fL(my + my)my] Tf(my + my) .
j=

,,,,, ma

As (t1;,1 — t1;) and (3,44 — t3;) are integer multiples of T/(m, + m,), we have
either

thivr — 1 2 (f[(my + my)fm] + 1) T)(my + m,)
or

thivr — 1o 2 (f[(my + my)my] + 1) T)(my + m,) .
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Hence either

my
T=7Y (i, — t1) 2 my(f[(my + my)m,] + 1) T[(my + m,) > T
i=1
or

my

T= Z (thivr — t3;) = my(f[(my + my)[my] + 1) T[(my + m,) > T.

This is a contradiction which proves the assertion.

3. The proof of optimality in the case of the problem Y[GI Mx is very similar
to the previous one.

4. The optimality in the problem Y|G| Sw and Y|G| Mw will be proved together.
Let us have A7, A5, A" as before. Then by Lemma 1 there exist t1,, and 1}, such that
foralli=1,...,m; and forallj = 1, ..., m,,

(thxvi — ) 2 i T/my = i(my + my)my . T|(my + mj),

(thprj — o) = J T[my = j(my + my)/m, . T)(my + my)
holds. As we know that

B — Uiy = ki TJ(my + my) and ., ; — ty, = ky; T/(my + my)
(where ky; and k,; are suitable positive integers), the inequalities
kyi = hli(m, + my)fm;] and kyj = h[j(m; + m;)[m,]
necessarily hold. In addition, we know that for alli = 1, ..., my,
Lim+i — timg = ty; = h[i(my + my)[m] . T[(my + my) = i Tm,

holds, and for all j = 1, ..., m,,

tajors = tajo = hLi(my + my)lmy] Tf(my + my) Z j Tm,
holds. )
This implies that

my
pl{—TZ/Z + (T/ml).zl(tlmﬁi - tlmx)} =

< =2+ (TOm) 3 (s = 1)

and
m2
pa{=T?[2 + (T/mz)_Zl(tsz- — bjo)} S
o=
< po{ = T?2 + (T|my) Zl(t'Zkz%j — 1)} >
=

which proves the optimality of the system A, 4,, 4 in the problem Y|G| Sw. The
above argument also yields that
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max pl{(tlml+i = tym,) — iT/ml + T/m1} =

i=1,..,ms

< .mlax Pt 4i — ty,) — i T/my + Tmy}
1= Jng
and
max Pz{(72j0+j - lzjo) —J T/mz + T/mz} =

=1,..,m2

~

< max Pz{(’ékﬁj - t;kz) —jTjm, + T/mz}

j=1.mz

hold, which proves the optimality of the system Ay, 4, A in the problem Y|G| Mw.

3.2 Problems of the +|I|* type

The solutions of these problems are known only for the cases of the Y|I | and
-[1| Mi types. In the case of the Y|I| type the general PLC-problem can be reduced
in the following way:

We have a regular my-gon Ay = {[t;], ..., [t1n,]} and a regular m,-gon 4, =
= {[tat], .-, [t2m,]} on the circle ¢, which together form the (m; + m,)-gon 4 =
= [t4, ..., [tm, +m,]- and we have to determine only the angle (phase) shift between
Ay and A,. The solution is independent of the optimizing coefficients p;, because
we optimize only the “‘regularity” of the total (m, + mz)-gon A. For the sake of
simplicity we shall look only for such solutions which satisfy ¢,; = 0,

thy = min (f,; — ty;) = a

i,J
t2i2ty1y

which can be proved to be equivalent to 0 < #,y < T/n[my, m,] where n[m,, m,]
is the least common multiple of m, and m,.
Then t,; = (i — 1) T/m; for all i=1,...,my, and t,; =0+ (j — 1) T/m,

forallj = 1,..., m,.
Let my = m.my,

m, =m.m,,
where m} and m} satisfy

n[my, my] = my.mj.

Then by Euclid there exist integers by, b, such that

0<b, <mj,

0<b, <m)
and in addition,
1 =bym, — bym;
holds. Hence we have

T|n[m,, m,] — o = T|(mimym) — o = b, T|(mm}) —
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— b, T|(mm}) — o = by Tfmy — (b, Tmy + o) =ty 1 — tp,44
and by [5, Theorem 5] we conclude

tipe1 = lapyer = MiN 1 = by (forj=1,...my i=1,..,m +1
]
tri—t2;>0

where 1,, ., = T).
1. In order to solve the problem YII Sq we have to find a real number «, 0 < a <
< T[n[m,, m, ] minimizing the expression

my+my

(2)'S, (s = 1

As the coordinates ¢; depend only on «, we have

my+m>

(P[2) X (tje1 — ;)" = ro0® + 1ot + 15
Jj=1

where the coefficients 7y, 7y, 7, can be easily found for every particular m; and m,.
So we obtain the solution of the problem Y]Il Sq by finding the minimum of the
real function rea*> + ry@ + r, on the interval <0, T/n[my, m,]).

2. To solve the problem Y|I|Mi we have to determine such a(0 < a <
< T[n[m,, m,]) that p min (¢;,, — ¢;) is maximal. The above considerations

yleld j=1,my+my
min (t;,; — 1) = min |t;; — t;;| =
J=1my+m;y i=1,.., my+1
J=1,..,mz

= min { min t,; — t;;5 min t,; — t,;} =
i,j i,j
t2j2t1; tii>t2j

= min {a; T/n[m, m,] — o} .

This minimum will be maximal if and only if o = T/(2. n[m, m,]), which deter-
mines the optimal solution.

3. When solving the problem Y]I]Mx we have two possibilities. If m, + m,,
then it is trivial that the solution is every system consisting of a regular m;-gon A,
and of a regular m,-gon A,, which together from the (m; + m,)-gon A.

If m, = m, then the optimal solution is such a system of polygons A4;, 4,, 4
that also A is regular, i.e.

tyy — tyg = T|(my + m,).

4. Now we shall study the problems Y[I| Sw and Y[I| Mw. In this part we shall
use an integer function c(i,j) such that t.; ;) = t; ;, where I j) is the coordinate
of the ¢(i, j)-th vertex in A and 1, ; is the coordinate of the j-th vertex in A;. Looking
for the optimal solution of these problems we shall see that if 0 < o« < T/[m(m, +
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+ m,)] then following [5], for all j = 1,...,m; + m, we have t; — t, = (j — 2).
. T|(my + m,)(t, = t,; = o) and moreover, for all i = 1, ..., m, we have tei,iy —
— 15 2 (1, i) = 2) T(my + my) + T|[mi(m; + m,)] — . 1 T)(mi(m; + m,)) <
<a < T[n[my, my] then t; — t.qp,+1) 2 [J — (1, by + 1)] T(m; + m,) holds
forallj = 1,..., my + m,, while

ey = teip+n 2 [6(2,]) — (1, by + D] T[(my + my) + o — T)(my(my + my))

holds for all j = 1, ..., m,. It follows that the value of the criterial function Sw is

my+my

p{—T?*2 + [T|(m, + mz)]:z1 (tjer — )} =

= Swy + pla — T[[mi(my + m,)]|d,

where d is either m; or m, and Sw, is the value of the criterial function with o« =
= T|im{(m,; + m,)). This shows that the optimal solution of the problem Y|I| Sw
will be obtained if t,; = a = T|(m(m; + m,)) holds.

From the preceding consideration it also follows that the value of the criterial
function Mw is

pmax [(t,o; — 1) — j T/(my + my) + T|(my + m;)] =
Mg + plec = Tf(mi(m, + m2)).
and this shows, that the optimal solution of the problem Y|I | Mw is obtained if
tyy = o = T[(mi(my + m,)).

5. The last problem which we will mention in this paper is |I| Di and its gen-
eralization qSlI | Mi. The whole algorithm of the solution is rather complicated, so
we will show only its substantial steps. The principal idea is to divide all possible
systems of polygons into groups so that one group contains all such systems that
the individual (regular) polygons form the same sequence of vertices in the total
polygon. Then the algorithm consists of two parts:

a) the first is to find all “groups”,

b) the second is to find the optimal solution
from the systems which belong to the same “group”. The best solution of the problem
is then chosen from all the solutions which were the best ones from the individual
“groups”. This algorithm was presented and proved in [6] and [7].

In [3] and [4] we can find a ““pseudooptimal” algorithm for the y|I| Mi-problem.
This algorithm is of great practical importance but it gives the optimal solution
only in one class of problems (for small values n).

Let us have to locate an m,-gon, ..., mg-gon on the circle ¢. Let n = n[my, ..., m,]
be the least common multiple of m, ..., m,. The set of regular n-gons {Bj,j =1,...,p}
on ¢ is said to be covered (partially covered) by the regular m-gon Ay, ..., m;-gon
A if
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(1) every vertex of every A, is a vertex of some B;

(2) every vertex of every B; is a vertex of exactly (not more than) one polygon A;.

The pseudo-optimal algorithm in [3], [4] consists in finding the minimum p
for the given my, ..., m; such that the regular n[m;, ..., m,]-gons By, ..., B, on ¢
are partially covered by a regular m,-gon A, ..., a regular m-gon A,. Then By, ..., B,
form a regular (p . n)-gon B.

Example. Let us have a marshalling yard with s = 9 tracks, for which m; = 6,
m, =my =my =ms =4, mg =3, m; = mg = Mg = 2.

Obviously, p = 3:
The regular 12-gon B, is partially covered by A4, As,
the regular 12-gon B, is partially covered by 45, A4, Ag, Ao,
the regular 12-gon Bj is covered by 4, = A; = A,.

Then B; U B, U B, form a regular 36-gon B with the distance of vertices 1440/36 =
= 40 minutes. Thus the departures are as follows:
Track No 1: 0-00, 4-00, 8-00, 12-00, 16-00, 20-00;
track No 2: 1-20, 7-20, 13-20, 19-20; .
track No 3: 3-20, 9-20, 15-20, 21-20;
track No 4: 5-20, 11-20, 17-20, 23-20;
track No 5: 0-40, 6-40, 12-40, 18-40;
track No 6: 2-:00, 10-00, 18-00;
track No 7: 2-40, 14-40;
track No 8: 4:40, 16-40;
track No 9: 8-40, 20-40.
The covering problem of n-gons is related to that of arithmetical sequences in number
theory — let us imagine the circle ¢ with B; rolling on a straight line. Moreover,
these two problems are connected with cuts of trees in the graph theory and with the
theory of prefix codes in information theory. What an admirable example of relations
between four absolutely different branches of mathematics.

3.3 Problems of the *N- type

As concerns this part of the general problem only one result has been proved.
In [1] and [2] an algorithm was shown which yields an optimal solution of the
YN Sq problem. All other problems, which are more difficult, together with the
not mentioned cases of *|I|- and |G| types are under investigation and they are
still waiting for the solution.
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ROZMIESTNOVANIE VRCHOLOV MNOHOUHOLNIKOV NA KRUZNICIACH
A JEHO APLIKACIA V DOPRAVE

JAN CERNY, FILIP GULDAN

Clanok nadvizuje na staf [7], ktora opisovala problém rozmiestnenia pravidelnych mnoho-
uholnikov na kruZnici. Tato Gloha sa teraz zovSeobeciiuje na pripad,,skoro pravidelnych’ mnoho-
uholnikov na jednej alebo viacerych kruZniciach. Opisuje sa klasifikacia Specidlnych pripadov
takychto Gloh podla réznych kritérii pravidelnosti individudlnych resp. zloZenych mnoho-
uholnikov, podla ich po&tu a podla toho, &iide o jednu alebo viac kruZnic. Pre niekolko Special-
nych aloh sa uréuji optimalne rieSenia.

Pesiome

PASMENIEHME BEPIIMH MHOT'OYI'OJIBHUKOB HA OKPYXXHOCTBAX
" ET'O ITPUJIOXKEHUE K TPAHCIOPTY

JAN CERNY, FILIP GULDAN

B cratpe paccMaTpuBaeTcs npobiieMa pacnpeesieHrst BEPIUMH MHOTOYrOJIbHMKOB HAa JAaHHbIX
OKPYKHOCTSIX, MCIIOJIHSISE HEKOTOPbIE KPUTEPHS ,,PErYIISIPHOCTH ® MHIWBUIYATBHbIX ¥ KOMIUIEKCHBIX
MHOTOYTOJIbHUKOB. YTOYHEHHEM YCJIOBHIL MONY4YaeTcsi PSI 4YacThIX CJydyaeB OOLLEH MpOOSIeMbi.
HexoTopble 13 HuX yKE PELLCHBT, JPYTUE eLle HeT.

TIpuoxkeHns 3TOM TEOpHM B INOATOTOBKE PACHHMCAHUNA IIEPHOIMYECKM TMOBTOPSIOUIWXCS NPO-
1IECCOB, HAINp. B KOOPAMHALMHU HECKOJIbKMX JIMHMI TOPOICKOrO TPAHCHOPTA Ha OOLIEM MyTH WM
B onTUMHM3anuu pudmMa COPTUPOBOYHOM JKEJIE3HOTOPOKHOM CTAHLIUM.
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011 86 Zilina; RNDr. Filip Guldan, CSc., Ustav aplikovanej kybernetiky, Hanulova 5a, 844 16
Bratislava.
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