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Summary. The model of periodic autoregression is generalized to the multivariate case. The
autoregressive matrices are periodic functions of time. The mean value of the process can be
a non-vanishing periodic sequence of vectors. Estimators of parameters and tests of statistical
hypotheses are based on the Bayes approach. Two main versions of the model are investigated,

one with constant variance matrices and the other with periodic variance matrices of the innova-
tion process.

Keywords: Bayes approach, estimating autoregressive matrices, matrixvariate z-distribution,
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1. INTRODUCTION

Let {¥,} be an r-dimensional white noise, i.. a series of independent random
vectors with EY, = (), Var ¥, = G, where G is a positive definite matrix. If B, ...
..., B,are r x r matrices such that

Det ("] — 2" 'B; — ... — z°B) + 0 for |z| =1,
then the relation
X,=BX,_+..+BX,_,+Y%,

determines the classical r-dimensional stationary autoregressive process {X,} with
vanishing mean. If we assume that EX, = #, then the autoregressive model can be
written in the form

X,—n=B(X,-y —n)+ ...+ B(X,_,—n) +Y,,
or equivalently
(1.1) X,=¢+BX,.1+..+BX,_,+7Y,,
where ¢E=(I-B,—...—B)y.
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In many cases it is known that a real time series {X,} has a seasonal behaviour with
a period p. This bears in mind to modify the model (1.1) in such a way that its par-
ameters would be also periodic functions with the period p. It leads to the assumption

(1~2) Xt (- 1yp+e = M +'21 UeiXos (- vyp+i—i + Yar (- vyp+is

k =1, ..., p, where u, are r-dimensional vectors and U,; are r x r matrices. Usually,
it is assumed that the variables X7, ..., X, are given and (1.2) is used for the construc-
tion of X, for ¢ > n. In this case we assume further that the sets (X;. ..., X,) and
(Y,,H, Y, .2, ) of random variables are independent.

There are two main versions of the model (1.2). In the first one it is assumed that
Var Y, ;-1)p+rx = G~ ' do not depend on k (the model with equal variance matrices),
whereas the second one allows a periodic change also here and the assumption
reads Var¥,,-1),+x = G; L k=1,...,p (the model with periodic variance
matrices). All the matrices G|, ..., G, are supposed to be positive definite. In the both
cases the model (1.2) is called the multiple periodic autoregression.

Periodic models were introduced by Gladyshev [8]. Their theoretical properties
were investigated by Jones and Brelsford [9], Pagano [11], Cleveland and Tiao [6]
and by Tiao and Grupe [13]. And&l [3] and Andgl et al. [4] proposed some methods
for a statistical analysis of the periodic autoregression. All the authors dealt only
with one-dimensional models. In the present paper we give some methods for statistical
analysis of the multiple periodic autoregressive model (1.2). We use the Bayesian
approach and generalize the results of [4]. In the one-dimensional case it was possible
to derive exact statistical tests. For » > 1 we are able to present only asymptotic
formulas.

2. PRELIMINARIES

Let A, ..., A, be square matrices. Denote Diag {4, ..., 4,,} the block-diagonal
matrix with 4, ..., 4,, on the diagonal.

Theorem 2.1. Let Q,,..., Q, be n x n symmetric positive definite matrices.
Assume p = 2 and put

H = Dlag {Ql’ Tt Qp—l} - (Ql’ AR Qp—l)l Q_I(Ql’ AR val) s

where @ = Q, + ... + Q,. Then H is a positive definite matrix.
Proof. See[3], p. 366.
The fact that a matrix A4 is positive definite will be denoted by 4 > 0. The symbol

¢ will be used for any constant. Thus the same ¢ in different formulas can represent
different constants.
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Theorem 2.2. Let ¥V = (v;), i =1,...,r; j=1,...,s, be a matrix with real
elements. Denote by I the unit matrix and introduce the density
smV)=cll+m WV |™™2 mzrs+1.
If m — oo, then

r s

tr,s,m(V) - (27[)_“!2 €Xp {_% Z z U?j} .
i=1r=1
Proof. See[1], p.238. I

Theorem 2.3. If random variables V;; (i=1,...,r;j=1,...,5) have the density
t,sm(V), then the random variable A = Tr VV' has asymptotically (as m — o)
the 2 distribution.

Proof. It follows from Theorem 2.2, that V;; are asymptotically independent

N(0, 1) variables. Then A = ) Y V% has asymptotically the y, distribution. []

Theorem 2.4. Let V;; (i = 1,...,r; j = 1,...,5) have the density
ToanV)=clI+VV|™*, m=rs+1.
Assume that s = 2 and write V in a block form V = (A4, B), where A and B have s,

and s, (s1 + s, = s) columns, respectively. Then the marginal density of the
variables Vi for i =1,..,r;j=1,...,s; is T, (A)

Proof. We have
T, V) = c|I + A4’ + BB'|™™?* =
= cl(l + AA)2[I + (I + AA')" Y2 BB'(I + AA) 2] (I + AA’)”ZI'"‘/Z _
= ol A (L (14 L) BT 4+ A
The marginal density of the elements of A is given by the formula [T, , (V) dB. After
the substitution C = B'(I + AA4’)""/?, the Jacobian of which is |1 + A4'|"*'? (see
Andgl [2], p. 60), we get that the desired marginal density is ¢|I + 44'|""" ™. O

Theorem 2.5. Let Q = {X;y, ..., X1y, X225 -+ X3py ..., X} be such a set in the
r(r + 1)/2-dimensional Euclidean space R, +1y2, that the matrix

Xz(xij)9 i=15-"ar; j=1a"-7r7

with x;; = x;; for i > j is positive definite. Let D be an r x r positive definite
matrix. Then for every integer m > r there exists such a positive constant c,,
that the function f defined by

F(X11s eeos Xpy) = Cp D]~V | X[ P2 exp {1 Tr DX}
Jor (Xqqy..., X,)€Q

f(x115 --os X)) = O otherwise

is a density.
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Proof. See Cramér [7] §29.5. [
Let A = (a;;) be an m x n matrix and B = (b;;) an p x g matrix. The Kronecker
product A ® Bis an mp X ng matrix defined by

A ® B = (a;B).

Theorem 2.6. (i) 4,4, ® BB, = (4, ® B,) (4, ® B,).

(i) (A ®B)™" = A" @ B~! whenever the inverses exist.
(i) (A ® BY = 4’ @ B'.
Proof. The assertions are well known and can be directly checked (see Rao [12],
Chap. 1). O .
Let A be an m x n matrix. Denote by vec 4 the mn-component vector obtained

from A4 by stacking the columns of 4, one on top of the other, in order from left
to right. We shall use following properties of the vec operation.

Theorem 2.7. (i) vec ABC = (C’' ® A) vec B. \
(i) Tr AB = (vec B’) vec A = (vec B) vec 4'.

Proof. See Neudecker [10]. O

From here (or from the definition directly) we easily get

TrA'A = (vec ) vecd = Tr A4’ .

3. GENERAL ASSUMPTIONS AND NOTATION

We shall assume that X, ..., X, are given random vectors which are independent
of ¥, 1, ¥,12,.... Our statistical analysis is based on Xj, ..., X,, ..., Xy, where N
is large enough, since we shall deal with asymptotic distributions for N — oo. The
vectors X, for t > n are generated by the model (1.2).

Let Uy, ..., U, be nr x r matrices defined by

U =(Ugy, ..., U,)
and let
U=(U{, ..., U).
The matrix U is of the type npr x r. Analogously we introduce the pr-dimensional
vector ‘
= (uy, ..o m) .
For a given N, we put

akz[N_n:—k]+1, k=1,...,p,
p
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where [ ] is the integer part. If x,..., xy is a given realization of our process,
we denote

x) =(x,_y,..,x;_,) for t=n+1,..,N.

Further, fork = 1, ..., pandforj = 1, ..., o put

Lk i

= _. -1 =0 __ -1 0
X = O ani-k+(j‘1)p’ Xy = O an+k+(,--1)p,
j=1 Jji=1

— = o __ .0 -0
Ay = Xpsrs-1yp — %> A = Xntk+(Gi-1)p — Xk »

T, zjilAij;cj , G ZijlAz?jALj > Sk :'izklAl?jAl?; )
U.=s,'C., 0=(0),..,U0), R =T,- 0;S,0,,
R=R, +...+R,, vo=pu — X + Uiy, v= (Vll’--'sv;y’
=% — 0x, a=(, .. 0),
4 = [l — o %) (S, + X0 %) ' %], a=q;+...+q,.
Let Var ¥, ;1)1 = G; '. Then the conditional density of the vectors X, , 4, ...
ey Xy, given Xy = x, .., X, = x,and U, Gy, ..., G, p, is

(3.1) f(Xpsts oo Xy | g5 s X,y U, Gy, ooy Gy, p) = (2m) 7N TMI2 %

14
x |Gl|n/2 lela"/z exp {—% Zl Zl[xn+k+<j—1)p S
k=1 j=

- Z Ukixn+k-'r(j—1)p—i]l Gk[xn+k+(j—l)p - M — 21 Ukixn+k+(j*l)pvi]} .
i=1 i=
Let us remark that in the case G; = ... = G, = G we have
(32) |G| . |G| = |G| N2
First of all, it is necessary to simplify the formula (3.1).
Theorem 3.1. The conditional density f can be equivalently expressed by the

Jormula

f(Fusts oo Xy | %40 s %, U, Gy, oo, Gy p) = (2m) 77V TD2

)4
X lGll"“/2 |G exp (=1 Y Tr G.D,},
k=1
where
D, = (U, — U) S(U. — O) + oy, + Ry
Proof. We have

n
% = Xn+k+(j-1)p — Mk — Z Ukixn+k+(j—1)p~i =
i=1

_ _ _ 1.0 _ _ _ r 40
= Xyeir(-vp — M = UXaipi oy = Ay — v — Uy .
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From here we get
3% Age
Z %Gz = Tr sz, % =
j=1 j=1

= Tr G(T, — U/C, — C,U, + US, U, + wvv}) = Tr G.D, . O

4. MODEL WITH EQUAL VARIANCE MATRICES

In this Section we assume that G, = ... = G, = G.

Theorem 4.1. Let the elements of U, G and p be random variables with a prior
density which is proportional to \Gl_”2 if G is positive definite and zero otherwise.

Let U, G and p be independent of X,, ..., X,. If N> n + 1, then the posterior
density of U, G and p, given x = (x'l, e Xy), s

p
- ,Goplx)=c - -3 e} -
(4.1) 9(U, G, p|x) = c|G|V """ exp{—1TrGY D]
k=1

Proof. The assertion follows from Theorem 3.1 and from (3.2) using the Bayes
theorem. [J

.

Theorem 4.2. The marginal posterior densities of G, U and p are given by the
formulas

(1) gl(Gl x) — chI(N—‘"—p—npr—1)/2 exp {_% Tr GR}
for G > 0and zero otherwise;
P - ~ o
(if) 92(Ulx) = ¢|R + Zl(Uk — 0 S(U, — 0|z
k=
14
(iii) gs(n| x) = c|R + Zlqk(”k — i) (e — ﬁk)ll—(N—n—npr+r)/2 )
k=

Proof. (i) Density (4.1) is
(4.2) 9(U, G, p| x) = c|G|"""""?exp {—1 Tr GR —

P ~
~3TrGY (U, — ) S(U, — 0} x
k=1

P
x exp {—1 ) om — X + Uixy) Gm — X + UED)} -
k=1 .
The simultaneous posterior density of U and G is

hy(U, G| x) = [g(U, G, p| x)dp.
Make the substitution

ye=G"w — %+ U, k=1,...,p.
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The Jacobian is |G| ~”/* and thus
(4.3) hy(U, G| x) = ¢|G|¥ "7~ D exp {—1 Tr GR} x

P
x exp{—1Try G'*(U, — U) S(U, — 0,)G"?}.
k=1
From here we get

9:(G|x) = [h(U, G|x)dU.
We substitute

Mk:Gl/Z(Uk_ ﬁk)/a /{:1,...,[7,

with the Jacobian |G| ™7/ and this gives the formula for the posterior density of G
introduced in the theorem.

(ii) The density g,(U| x) can be derived from (4.3) by help of Theorem 2.5.
(iii) From (4.2) and from Theorem 2.5 we get that the simultaneous posterior

density of U and p is
ho(U, p| x) = ¢|R +é:1[°‘k(ﬂk - %+ UR) (b — % + UF) +
+ (U, = O S(U, - |- "-+0r2,
For this part of the proof we denote
We=U - U, v.o=p— %+ O = pm— b,
(4.4) UF = O, — (S, + 0 @5) ! 5.
Wi = oS, + i) o = O, — U
Then we have
oy — % + UE) (1 — % + UEY) + (U — 0) S(U, — O) =
= (v, + W;x}) (v, + W(x}) + W, SW; =
= (W, + W5 (S, + axix)) (W + W) + quo, =
= (Uk - Uk#), (Sk + akigig')(Uk - Uk#) + Qk(ﬂk - ﬁk) (A"k - ﬁk)’
and thus
U] ) = R + 3 {0 = U7 (S + wls) (U~ U8 +

+ Qk(ﬂk - ﬁk) (I‘k - ﬁk)/}l_(N—“H)/z .
Now, we make the transformation
(Uk - Uty (S, + O‘kf(k)gg/)l/z =0, k=1,..,p,

and then we use Theorem 2.4. This leads to the formula for g5(u | x). O

Obviously, g,(G | x) is the density of the Wishart distribution W,(N —n — p —
—r —npr,R7").

69



We come to the main point of this Section, which is the problem of estimating
parameters and testing statistical hypotheses. The modus of the posterior distribution
can serve as a point estimator of the parameters. It is given in the next theorem.

Theorem 4.4. The modus of the posterior distribution is U= U, p = fi and
G=G=(N-n—-1)R"

Proof. From (4.2) we obtain the posterior density of U, G and p
94U, G, u| x) = c|G|V """V exp { =1 Tr GR} x

14
x exp {—+Tr sz1(Uk -0y s(u, - 0) -

p
—3Y alm — B — UE) Glm — % — UE)} .
k=1
It is clear that

94U, G, u| x) £ 94(0, G, | x) = ¢|G|¥ """V exp {—1 Tr GR}

for every G > 0. The function g,(U, G, fi| x) reaches its maximum for G = G,
which can be proved by the same method as Theorem 12 in [1], p. 241. O

Theorem 4.5. The posterior distribution of the random variable
ldy=(N—n—p+rTr R‘lkil(Uk - 0) S(U, — 0)
is asymptotically the x2,..
Proof. From Theorem 4.2 (iii) we derive
95(U| x) = c|[I + iR‘”Z( U, — O S(U, — G R™12|~(N=nmreniz,
Put o
Po=(N—n—-p+r)?RVYU-0)S”, k=1,..,p,
P=(P,..,P).
The Jacobian of this transformation is a constant, and since
P,P{ +...+ PP, = PP,
we get the posterior density of P in the form
hy(P|x) = |l + (N —n— p+ r)"t Pp|~(N-npiniz,
Theorem 2.3 implies that the asymptotic ciistribution of Tr PP’ is the y%,.. However,

4 14 ~
TrPP' =TrYy PP, =TrY(N—n—p+r)R (U, — U) x

k=1 k=1

p
x (U, -~ O)R Y =(N—n—p+)TrR Y (U, — O S(U, - 0). 00
k=1
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Theorem 4.6. The posterior distribution of the random variable

14
Ay = (N —n—npr+r)y qlm - ) Ry — i)
k=1
is asymptotically the y3,.

Proof. Let m = N — n — npr + r. The density gs(# | x) is

P
gs(n l x) = CII + Y aR (e — ) (e — B R_llzlﬂmlz .
k=1
Define
t, = (mg)'"*R " *p. — i), k=1,...,p, T=(t;,...,1,).

Then the posterior density of T is
p
h4(Tl x) = C‘I + m~1 Z tkt]:l—m/Z — ClI + m~1TT/‘vm/2 )
k=1

From Theorem 2.3 we have that Tr TT’ has asymptotically the Xf,, distribution.
Further we obtain

2 »
TrIT' =TrI'T :k;tétk = meI‘Ik(!‘k — ) R — By). O

Theorems 4.5 and 4.6 can be used for testing that U and p have given values (e.g.
as tests of quality of a simulation, because in such a case U and p are known). If
Ay or A, exceed critical values of the corresponding x* distributions, we reject the
hypotheses that U or u are the true values. However, it is more important to know
if U, and g, really depend on k. If not, we can come back to the classical autoregressive
process. Procedure for the decision whether the data should be described by the
classical or by the periodic model, are based on the two following theorems.

Theorem 4.7. Denote
H = Diag {qq, .... dp-1} — 4 (a1 -+ dp=1) (1> -+ 4p=1) »
Ay =m —p,— (b —p,) for k=1,...,p—1, A, =p, — f,,
4= (44,...,4,_,).
Then the posterior distribution of the random variable
n,=(N—n—npr+r—1)TrR '4HA
is asymptotically the x,_,,,.

Proof. The matrix H is positive definite according to Theorem 2.1. Put m =
= N — n — npr + r. From Theorem 4.3 (iii) after the transformation (p,, ..., p,) >
- (44, ..., Ap) we get the posterior density of 4* = (Al, v Ap) in the form
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p—1
hs(4* l x) = clR + q,4,4, + Z a4, + Ap) (Ak + Ap),l_mlz =
k=1
p—1 p—1
= cR + a(4, + a7 L ad) (4, + a7 L ad) +
k=1 =

p—1 p—1 p—1 2
+ Z A4, — q7 ! Z qkAkz qujl 2.
k=1 k=1 j=1
Put
6, =R "4, k=1,..,p, & =(6,...,0,), 6= (C Y
The posterior density of 6* is

p—1 p—1
he(0% | x) = o|I + q(3, + a7 Y a:d,) (3, + q“kzlqkék)’ + M|,
k=1 =
where
r—1 p—1 p—1
M = Z‘Ik‘sk‘s;; -q! Z‘Ij‘stQk&;c = 0HJ' .
k=1 j=1 k=1 .
The density
ho(8 | x) = [he(6* | x) dd,
can be calculated using the substitution
r—1
w=20,+q ') q.
k=1
We get similarly as in the proof of Theorem 2.4
hi(8|x) = c[|I+ qww + M|™™?dw =
=c|ll + M|™2 [T+ (I+ M) ww'(I + M)" """ dw.

After the substitution v = (I + M)~'/> w, the Jacobian of which is |I + M|'?,
we get

ho(8 | x) = c|I + M|™™2*1/2 [|T + vo'|"™2 dv = c|I + M|~ ™"~ V/? =

(m _ 1)1/2 SHY2 12 5'(m _ 1)1/2 (m-1)/2

m— 1

=c|I+

From Theorem 2.2 we get that the random variable (m — 1) Tr §H4' has asymptotic-
ally the x7,_,,, distribution. Because

(m — 1) Tr 6H& = (m — 1) Tr R"V2AHA'R™Y? = (m — 1) Tr R™'4HA'

the assertion is proved. []

Theorem 4.7 can be used for testing the hypothesis that p; = ... = p,. We put

4, = p, — f, and if n, exceeds the critical value x(zp_l),(oc), we reject the hypothesis
on a level which is asymptotically equal to o.
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Theorem 4.8. Put
S=8+..+5S5,,

J = Diag {Sy, ... 8,1} — (S, So=1) STH(S1, ..n S,m 1) .
r,=u,-U,—(0,-0,) for k=1,...,p—1,
r,=uv,-0,, r=(..r,.).
Then the posterior distribution of the random variable
ny=(N—=n—p+r—nr)TrR'TJI"

is asymptotically the x5, ;..

Proof is analogous to that of the previous theorem. From Theorem 2.1 we know

that J is positive definite. Put
r«=(ry,...,r)), m=N—-—n—p+r.

The posterior density of U is given in Theorem 4.2 (iii). It follows from here that I'*

has the posterior density

p—1
ho(I* | x) = |R + TS,T, + 3 ([ = T,) S(F = T,)| ™" =
k=1

p—1 p—1
=R + (T, - s*‘,‘;skrk)' S(r,— s AZZIS"F") +

p—1

p—1 p—1
+ YOS T, — (Y. SI) S(Y. ST ™.
k=1 k=1 k=1
Put
yk=FkR—1l2’ Y*Z(Y;a»)’,’,), ')72(7'1»’?,/,—1)
Then the posterior density of y* is
r—1 p—1
o | ) = clT + (3 = $7T Sin) S, = S7UT Sen) + M|
k= k=1
where
p—1 p—1 p—1
M = Z VSV — ( Z Sk?’k)l S_l( Z Sr&’k) =y
k=1 k=1 k=1
The posterior density of y can be calculated from

hlo('Y | x) = fh‘)(y* | x) dy, .
After the substitution

p—1
W=7y, — S“‘k_zlsky,‘.

we have
hyo(v | ) = ¢ [|T+ wSw' + M~"2| dw =

=c[l+ M|™"? [T + (I + M)"? wS'28"2y/(I + M)~ 2| ™"/ dw .
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The next substitution is » = (I + M)~"/> wS"/? and it has the Jacobian |S]|™"? x
x |I + M|"?. Thus

hlo('}" | x) = cl[ + Ml—(m~nr)/2 _
I+ (m — nr) 2y H 22 (i — )2 |~ nemo2

m — nr

=

Using Theorem 2.3 we come to the conclusion that the posterior distribution of
Tr(m — nr) yJy' is asymptotically the y;,_ ). Since

Tr(m — nr) 3By = (m — nr) Tr RV2LIPRV? =

=(m — nr) TrR™'TIT",
the proofis finished. ]
A test of the hypothesis U; = ... = U, can be based on Theorem 4.8. Under
the hypothesis we have I', = U, — U,. If iy 2 x2,- 1,2(%), we reject the hypothesis.

%

5. MODEL WITH PERIODIC VARIANCE MATRICES

This case is described in Theorem 3.1. Some proofs are analogous to those given’
in Section 4, and so we shall sketch them only. On the other side, the model with
periodic variance matrices leads also to new mathematical problems, which will be
analyzed in detail.

Theorem 5.1. Let the prior density of G, U and p be proportional to |Gy|™"/? ...
... |G,|7Y"* for positive definite matrices G, independently of X, ..., X, and let
the prior density be zero otherwise. Then the posterior density of U, G and p is
for positive definite matrices G, given by the formula

»
g(U, G, | x) = cIT |G| D exp {—1 Tr G.D},
k=1

where the matrices D, are introduced in Theorem 3.1.

Proof follows immediately from the Bayes theorem and from Theorem 3.1. []

Theorem 5.2. The marginal posterior densities of G, U and p are given by the
formulas

14 .
@ 91(G | x) = c I |G|*727 2 exp { —4 Tr GR}
k=1
for positive definite Gy, ..., G, and zero otherwise;
’ ~
(if) 9:(U| %) = ¢ LR, + (U, — O 8(U, — Op)|"Ctr=r2
k=1
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14
(iii) ga(r| %) = ckE’Rk + e — ) (e — )|
Proof. (i) Since
P
(5.1) g{U, G, u|x)=cII|G|™ " ?exp{—1Tr GR, —
k=1

-3 Tr G(U, — Ak), S U, — 0k) — Jou(my — % + U;‘ff,?)' Glm — % + U,:f,?)} s
the density
hi\U, G| x) = [g(U, G, p|x)dp

can be calculated using the substitution
v =G (m — %+ Ux)), k=1,....p.

The Jacobian is |Gy|™"/*...|G,|™'/?, and thus
p
(5.2) hy(U, G| x) = ¢TI |G|™ P exp {—1 Tr GR,} x
k=1

x exp{—+Tr G(U, — 0,) S(U, — U,)}.
Obviously, g,(G| x) = [hy(U, G| x) dU. We come to the result putting
M, =G'*(U,-0), k=1,...,p,

p
the Jacobian of which is IT |G,|™"2.
k=1

(ii) The density g,(U | x) follows from (5.2) and from Theorem 2.5.
(iii) The density h,(U, u|x) = [g(U, G, p| x) dG can be calculated from (5.1)
using Theorem 2.5. The resulit is

p
ho(U, | x) = Ckr_Ille + (U= O) (U - U) +
+ o — % + URE) (e - % + Uéflg)lr(akﬂ)/z =
p
= cI|R, + (U, — UFY (S, + u% %) (U — Uf) +
k=1
+ Qk(l‘k - ﬁk) (l‘k - ﬁk)’l‘m“)/z >
where U are defined in (4.4). Put

Q.= (U, = Uy (S, + ouxox))/?, k=1,..,p.

The corresponding Jacobian is

=~

IS, + o, ®0EY|1V2 .

k=1

]
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If we denote briefly Q = (@, ,.., Q,)', then the posterior density of Q and p is
hy(Q, | x) = cn R, + @uOi + aulmn — A) (e — A |~
We use Theorem 2.4 for calculating g3 (1 l x) and the proof is finished. ]
Theorem 5.3. The modus of the posterior distribution is U= U, p = i and
G, = G, = (o4 — 2 — nr)R;".

Proof is the same at that of Theorem 4.4. [

Theorem 5.4. Random variables
Ay = (o +r = ) TrR (U, — O S(U, — T)

for k =1, ..., p are independent and each of them has asymptotically the 3%,
distribution. The variable

%
Ap=Aus+ ..o+ Ay,

has asymptotically the y},.,. distribution.

Proof is the same as that of Theorem 4.5. (]

Theorem 5.5. Random variables

Ay = (% + 7 — nr) g — ) R (e — i)

fork =1,...,pareindependent and each of them has asymptotically the xf,, distribu-
tion. The variable

Ay =2dyq + o+ Ay
has asymptotically the xﬁz, distribution.
Proof is the same as that of Theorem 4.6. [

Theorem 5.6. If U, =

... = U,, then the asymptotic posterior distribution
of the variable

1
M= (m +r = 1)TeR; (O, — O) 80, — 0,) +
1

k=
p—1 . . ) P
© (3 r = Ve [RT(G — O SIY TS G+ 7 = 1)(8, @ BT x
K= k=1
p—1 ~ ~
X {k;(ak +r—1)vec[R N0, — U,) S.]}
is the xﬁ(p_l),z.

76



Proof. From Theorem 5.2 (iii) we have that

4 -~
93(U| x) = ¢TI |I + R V(U — O,) S(U, — O RV 7m0z,
k=1

It is clear that Uj,

..., U, are conditionally, given x, independent. Introduce the
random matrices

Vi= (o +r—D)"2RVU - T) S, k=1,.

. D -
Denote

v, =vecV,, A, = (g +r— D)2 Q@R 1),
u,=vecU,, i, =vecU,, F = AA, F=F +..+F,,
J = Diag {F,,....,F,_} — (Fy,....,F,_ ) F"'(Fy,...,F,_,).

Using Theorem 2.7 we have v, = A,(u, — &,). According to Theorem 2.2, v, has
asymptotically N{0, I) distribution. Then u, — i, has asymptotically N(0, F;")

distribution. The density of the asymptotic prosterior distribution of the vector
u=(uy,.. . u) is

p
cexp{—+Y (u, — a,) Fflu, — a,)} .
k=1

Let

A, = (u, —u,) — (4, —a,), k=1,..,p—1, Ad,=u,—i

A% = (A, . A) , A=(4, .., 4,_).

The asymptotic posterior distribution of A* has the density

P

p—1
h(d* ) = cexp [<A[AF,4, + T (4 + 4,) Fidy + 4,)]} =
k=
p—1 p—1
= cexp {—3[(4, — F*lkzlpkak)' F(d, — F7'Y F4,) +
e = k=1

p—1 p—1 p—1
+ ZAI:FRAA' - (2 FkAk)l F_l( Z FkAk)]} :
k=1 k=1 k=1
From here we obtain the marginal asymptotic posterior density
p—1 p—1 'p‘l
hi(4|x)=cexp{—3 Y AiFd, — (Y FA) F (Y F4)]} =
k=1 k=1 k=1

= cexp{—14'J4} .
Then the variable
A5 =A4'J4

has the asymptotic posterior distribution x,z,(,,_l)rz. If Uy =...=U, then 4, =
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=i, — 4, for k=1,...,p — 1. In this case
. p—1 p—1 p—1
% =¥ (8 = ) Bl — 4) = [ A, — a)] LT R — )]
= k= =
In the next formulas we use Theorem 2.7. Since

Ad, — a,) = (o + r — D)2 [(S* @ Ry /) (vec U] — vec U})] =

= (o + 7 — 1)"2 vecR;Y}(O, — U,) S},
we have

(@, — a,) F{#, — i,) =
= (o +r—1)TrR; (O, — O,y S0, — O)R "> =
= (otk +r - 1) TrRk‘l(U'k — ﬁp)' Sk(ﬁk - Op)'
Further we get
Flii, — d,) = (o + r — 1) (S} @ R, '*) (S} @ R, ?) vec (O, — 0,) =
= (o + 7 —1)(S, @ R ") vec (U, — U,) =
= (o + r — 1) vec[R; (O, — U,) S]

and
P P P o
F=YF =) 44, =Y (4 +r—1)(S7 @RS @R ') =

k=1 k=1 k=1

14
=2 +r=D(S@RrR"). O
k=1
Theorem 5.6 can be used for testing the hypothesis U, =...= U, If

Ay Z App—1ye(@), We reject the hypothesis.

It remains to solve the problem how to test if the process is generated by a model
with periodic variance matrices or by a model with constant variance matrices.
From Theorem 5.2 (i) we can see that, given x, the random matrices Gy, ..., G

p
are independent and the density of G| is

C!Rkl(m;—nr+r~l)/2 le\(uk—nr—Z)/Z exp {_%_ Tr Rka} )
This means that

G, ~ Wl —(n—1)r—1L,R"], k=1,..,p,
where W, m, V) is a Wishart distribution with the density
cp| 2 | x| D2 exp {(—3 Tr V' X}

for r x r positive definite matrices X.
Let us remark that if X, ..., Xy is a sample from N,(u, V), then

N

A=Y (X, - X)(X; - X) ~ WIN - 1,¥)

i=1
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(see Rao [12], Chap. 8b(1V)). If there are p independent samples such that kth
sample is from N,{p,, V) and its size is N, we can calculate matrices 4, ..., 4, and
A, ~ WIN, — 1,¥,). Anderson [5] describes a procedure based on Ay,..., 4,
for testing the hypothesis ¥; = ... = V,. The same procedure can be used also

in our case to test G; = ... = G,. Denote

me=o—nr—1, ng=n;+...+n,=N—n—phnr—1),

Vy =R

14 14
—ng/2 I lelnk/Z , W1 — Vlnl(')no/l I nk—mk/Z ,
k=1 k=1

, 1 1 2r2 + 3r — 1
=¥p—1)rr+1), o=1-(Y+ = o=
S=¥p =D+ ), e <an no)6(r+1)(p—l)

o= et =06+ (3 - )~ -0 -]

kMo
For a given z put

0z) = P{af = 2z} + o[ P{xjes < 2} — Py} < 2}].
Then

P{—oIn W, <z} = Q(z) + O(ng?).

If O(—¢In W) = 1 — o, we reject the hypothesis G; = ... = G, on a level which
is approximately equal to o.
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Souhrn
O MNOHOROZMERNE PERIODICKE AUTOREGRESI
JiRi ANDEL

Model periodické autoregrese je v tomto ¢lanku zobecnén na mnohorozmérny ptipad. Auto-
regresni matice jsou periodickymi funkcemi Casu. Stredni hodnota procesu muZe byt nenulovou
periodickou posloupnosti vektorii. Odhady parametru a testy statistickych hypotéz jsou zaloZeny
na bayesovském pristupu. Jsou vySetfovany dv& hlavni varianty modelu. Jedna se tyka pripadu,
kdy inovaéni proces ma konstantni varianéni matice, druhd ptipousti moZnost periodickych
variancnich matic.

Pe3rome .
O MHOTI'OMEPHOI ITEPUOJUYECKOM ABTOPEIPECCUN
JIki ANDEL
B crathe gaetcs 06001eHne MOAENH NIEPUOIHYECKOR aBTOPErPECCHM HA MHOTOMEPHbIM CITyqai.
ManHHbl aBTOPETPECCUH ABJIAIOTCA TICPUOJUYCCKUMHU (‘byHKL[VIﬂMPl BPEMEHH. Cpeuuee 3HAYCHUC
npouecca BbipaxaeTcs B BUALC nepMO,ElHHECKOP‘I TOCICA0BATCIIBHOCTHU BEKTOPOB. OLlCHKP[ napameTpoB
H NPOBEPKU IUIIOTE3 OCHOBAHBI HA ITPHUHIIUIIC Baeca. I/I3yqalo'rc51 MOJE/IU C NMOCTOSAHHBIMU U-C e~

PHOOMYECKUMU KOBAPUALIMOHHBIMU MaTpuUaMHu 6enoro myma.

Author’s address: Prof. RNDr. Jifi Andél, DrSc., matematicko-fyzikalni fakulta Univerzity
Karlovy, Sokolovska 83, 186 00 Praha 8.
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