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SUPERCONVERGENCE OF EXTERNAL APPROXIMATION
FOR TWO-POINT BOUNDARY PROBLEMS

TERESA REGINSKA

(Received August 7, 1985)

Summary. The superconvergence property of a certain external method for solving two point
boundary value problems is established. In the case when piecewise polynomial spaces are
applied, it is proved that the convergence rate of the approximate solution at the knot points
can exceed the global one.
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INTRODUCTION

Finite element approximate solutions of differential equations can possess a super-
convergence property, that is, there are some distinguished sets of points at which
the convergence rate of the solution or its gradient exceeds the global optimum.
It has been observed (cf. De Boor-Swartz [2], Douglas-Dupont [4]) that certain
collocation methods give a superconvergence of solution at the knot points of the
splines used. Moreover, superconvergence at the knots has been established by
Douglas-Dupont [5] for the Galerkin solution of the two point boundary value
problem when the approximation subspaces consist of C°-piecewise polynomials.
A superconvergence phenomenon for the gradient of the finite element approximate
solution of the second order elliptic boundary value problem was analysed e.g. by
Zlimal [9] and KfiZek-Neittaanméki [7] where extensive references concerning
this problem can be found.

The object of this paper is to establish some superconvergence properties of a certain
external method for solving two point boundary value problems using piecewise
polynomial spaces. The method considered is a generalization of the Galerkin
method.

Let us consider the problem

(1.1) —u" +bu=f on I=1]01],
u(0) = u(1) = 0.
We will assume that b = B > 0, b, fe Z*(I).
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Let us introduce two families of spaces {V,}srs {Wilicrr such that ¥, < HI(I)
and W, = £*(I). Let ¢, be the orthogonal projection of £(I) onto W, i.e.

(1.2) Yw,e W,, Yoe L(1), (v — ¢, w,) =0,

where ( , ) denotes the scalar product in Z*(I).
The following approximate problem will be considered:

(1.3) find u,eV, such that
(“IIn DI’x) + (b(/)huh’ d)lxvh) = (f9 ¢hvh) VUh € Vl, .

It is a certain kind of the external approximation of {1.1) — the solution u is ap-
proximated by the pair {d),,u,,, u,,}. The problem {1.3) is another formulation of the
partial approximation of (1.1) considered by Aubin in [1] (cf. Definition 2.1, Chap.
XI) for a special choice of prolongations. This external approximation was also
applied to solving eigenvalue problems (cf. [8]).

In Section 2 a certain generalization of the Cea lemma giving a relation between
the error bound and the approximation properties of ¥, and W, is proved. The main
result concerning the superconvergence property is presented in Section 5 for the
case when ¥, and W, are piecewise polynomial spaces. It is proved that if the solution
is sufficiently smooth then the error at the knots is bounded by the square of the
possible global estimation. In Section 4 the explicit form of ¢,v, for v, € V}, is found
for a special choice of piecewise polynomial spaces. The general case of external
approximation for higher order equations applying more than one, not sufficiently
orthogonal, projections ¢,, will be considered in the subsequent paper.

2. ERROR ESTIMATION

The following notation will be used:

F=%*xH), F, =W, xV,cF;
w: Hy - F; ou = {u,ulefF;
W V= Fy s @pvy = {¢hvh7 Uh}-

Let us introduce a bilinear form @ on F x F:
a(i, o) = (uy, vy) + (bug, v)
Vi,beF, i = {ugu}, o= {vg0}.
By the assumption b = f > 0, a is F-elliptic, i.e.
a(i, i) = i)t VaeF,
and moreover, du > 0Vu, 0 e F
a(a, o) < elalr o],

where [l = Juof + Jus
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The variational formulation of the problem (1.1) and the problem (1.3) can be
written as follows:

(2.1) a(wu, wv) = (f,v) VYveHg,
(2-2) a(wyuy, Ovy) = (f, duvw) Vo eV,

We will assume that Yo e Hy ||(1 — @) v]|o < chlv],.

Under this assumption there exists a unique solution of (2.2) for h < h, since,
by the F-ellipticity of @, a(w,v,, w,v,) = ¢|v,]| for h < hy.

Putting v = v, in (2.1) and subtracting (2.2) from (2.1) we obtain

a(wu — wyuy, wh”h) + E(wu, wu, — whvh) =(f, 0, — Puvy) -
Since wv;, — W, = {v, — ¢, 0} and f — bu = —u” (from (1.1)), we have
(2.3) alou — ouuy, O0) = (—u’, v, — Gy} Vo, €V,

The following theorem is similar to the Cea lemma for the Galerkin approximation
(cf [3], Th. 2.4.1).

Theorem 1. Let
o — Pwlo < ch|o|, VoeH'(I).

If u and uy, are solutions of (1.1) and (1.3), respectively, then there exists a constant ¢
independent of the subspaces V, and W, such that

|ou — our < Cinf u — v, + inf u — w,]o + b inf [u” — w,]o} -

vReVn wheWn WheWp
Proof. From the F-ellipticity of a it follows that for an arbitrary element y, € V,
Bllov — wu|f £ alwu — wu, ou — wu,) =
= a(ou — o, ou — w,p,) + alou — ou,, oy, — u,)) .

Thus, the application of the equality (2.3) to the second term of the right-hand side
gives
(2.4) Bllou — wu; <
< alou — our Jou = opilr + @ (1 = éi) (= w))] -

Since [[¢,] = 1, thus Vy, eV,

Jlou = owille = {Ju =yt + [u = dunif5}'"* =

< {lu = wllt + [ lu = duuflo + [u = wallof}"? =

< JSmax [[lu =y, [u — duuflo] -

Moreover, by (1.2) and by the fact that Vo € £*(I)

(1= & ol = inf o =,
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it follows that for any z, e W,
(", (1 = u) (v = )| = |(" = 24 (1 = @) (4 — u + 2 — )| <
< u” = ziflo { i“vf, I(vn = u) = wallo + inf (u — uy) = wifo} <

WheWp wheWn

< hllu” = 2o {llyw = ulls + Ju — w3,

due to the assumption of Theorem 1. Thus, since [lu — u,, < ||ou — wup,
(2.4) implies

ou — wu,|f < Clou — o)y {max (Ju = yi|. Ju — daufo) +
+ hlu” = zo} + hlu” = 2o fu — .

for some constant C. Solving this inequality and replacing the maximum of the
two norms by the sum, we obtain

lou — oufr < C{llu =yl + [lu — duuflo + hu" = z4flo +
+ [ = walls + Ju = duullo + hlu” = z,]0)* +
+ah|u” — zo [u — 1%} <

< O+ 3) [[lu = wills + [lu = duullo + hllu” = 2z,]o] -

The left-hand side does not depend on y, and z,, thus the infimum over y, € ¥, and
z, € W, of the right-hand side can be taken. Thus the theorem is established.
Now, our consideration will be restricted to the piecewise polynomial spaces.
Let h = 1/(n + 1) and let 4, (briefly 4) be the uniform partition of I:

A, ={x;=ih, i=0,..,n+ 1}, I, =(x;,X;1y).

Let P,(I;) denote the class of polynomials of degree not greater than r on the set I;.
Let

S(C°%r) ={veC(), ve?(1)i=0,..,n},
(L% r)={ve L), ve?()i=0,..,n}.
It will be assumed that
(2.5) Vi = Si(C% m) n Ho(I), W, = Si(£7,5)

and m > s = 0.
Let ve H,'', where

Hy'' = {ve £¥I):ve Y1), i=0,...,n}

with the norm

ol =;§0||u|,i”3+1 .
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Let us introduce I,v as the spline interpolant to v from S,(C° r) generated by the
knots

X=X+ j—, j=0,..,r—1, Xp=Xi11,0=Xit1-
Thus
(2.6) It o(x) = iziopn.(x) % (% - i)
where y(x) is the characteristic function of the interval (0, 1) and p,; € 2,(I;) satisfies

(2.7) pe(xij) = v(xy;) j=0,...,r.
From the Peano Kernel Theorem ([6], Th. 3.7.1) it follows that if p,; satisfies (2.7)
then

Io = pliasy £ e [ o0

Xi

Thus

(2.8) o — 1|7 =é;)”1) - b, ?I‘us) < ch¥ol2,,, .

Similarly the spline interpolant Jjv to v from S,(#? r) can be constructed.
Namely, let y;; = x; + j(h/(r + 1)), j = 0, ..., r be the knot points of interpolation
and let

(2.9) () =i=io %) 1 G _ ,-)

where gq,; € 2,(1)) satisfies
(2'10) q"i(yij) = v(yij) s, J=0,...,71.

Since L{v): = (v — J7v)|;, = 0 for all v e Z,(I,) where k is an arbitrary integer not
greater than r, then for v e H*"(I;) the Peano theorem ([6], th. 3.7.1) implies that

o= J5

§ Chk+ 1 ,lv(k+|),

’-(/2(11‘) .(l’z(l.-) .
Thus,
(2.11) o — Jnole = ch"“”,,”AkH
for ve HY*'(I) provided k < r.
Therefore, (2.8) and (2.11) imply that if u € H™* 1 then

in‘f ”u - v"”1 g Chm”ul’4m+1 s
(.12 inf Ju =l < e ..,

. _ in( -
nf =l £ e,
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The following estimation is a simple consequence of Theorem 1 and (2.12)
Corollary 1. If b,fe Hy 1) and V, = S,(C°, m)n Hy and W, = (£, s)
for m > s = 0, then
ou — wu,)o < ch** .

Convergence and error estimates of the external approximation of an elliptic
operator were also considered by Aubin ([1], Th. 2.2. Chap. XI). The general
results were obtained in another way.

3. SUPERCONVERGENCE AT THE KNOTS

Let G(t, x) be the Green function of the operator —u" with the boundary con-
ditions u{0) = u(1) = 0.

Thus ;

L,

(t—fx 0=x
1-xt =

Git, x) = {

A
IIAIA

and

(u',G(1,") = — Jolu”(x) G(t, x) dx = u{t).

Let 6(x) = G(x;, x), where x; = ih, 0 < i < n + 1.

Then b € V, because, as was mentioned above, we consider now the case of the
piecewise polynomial subspaces V, and W, given by (2.5) for m = 1. The equation
(2.3) for v, = b takes the form

(ll - “h) (x[) = (—M”, b — ¢Ixﬁ) + (b(u - (»bhuh)o ¢hﬁ) .

If s = [ then D e S, (L% s)and & = ¢,0. Thus
(blu — ol if s>

(3.1) (u ~ u) (Xi)l < {I\b\u d),,u,,), U)‘A if s/% lA o
\(b(u — Pptty)s qihv)] + [u”, o — gb,,u)‘ if s=0.

The trick presented above was used by Douglas-Dupont [5] for establishing a super-
convergence result for the Galerkin method.

Lemma 1. Let u and u,, be the solutions of (1.1) and (1.3), respectively. If b, f e
e H} " '(I) and V; and W, are given by (2.5) then there exists a constant ¢ independent
of h such that
ch®s™) if s<m -1,

](u — e bﬁ)‘ = {chz"‘“1 if s=m-—1.
If moreover b, f€ HY(I) then for s = m — 1,
l(u — uy, bD)| < ch®™.
Proof. Let us introduce an auxiliary problem

(3.2) find yeHy, alov,wp) = (v,bd) VveH,.
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By the F-ellipticity pf @, there exists a unique solution of (32) If beH) (v =
= m — 1, m), then bb € H} and y € H*? and by (2.7) and (2.9),

(3.3) o = 5]y = ch™, by — Fsby|e < ehmnettw
Put v = u — u, Since u — u, € Hy thus (3.2) implies that
(u — uy, b0) = G(w(u — u,), oY) =
= d(wu — oy, O — y)) + a(wu, — wou,, of) +
+ a(ou — wuy, 0y — w,y) + alou — wu,, o)
for arbitrary y € Hy. Let y = I3 (cf. (2.6)). Thus
a(wu — oy, oY — I3Y)) < o /(2) [ou — o) v - ), .
Next, since uwy, — ou, = {¢u, — u,, 0}, by (1.2) for w, = J5bys, we have
a(wyuy, — oy, ) = (P, — uy, by — J5bY) <
< N — wllo - by — T5by|

0>

and moreover,
a(ou — o, oy — o) = (blu — du,), v — duy) =
< cllou — oy I — ¢l -
Finally, (2.3) and (1.2) imply
a(ou — o, o) = (W', ¢y — y) = (u' — Fu', gy — y) <
< ur = o e — dult]lo -

Thus, (3.3), (2.9) and Corollary 1 yield
\(“ — uy, bﬁ)| < c{h(s+1)m + hmin(s+1,v)[“¢huh _ “h”o + ”I;w _ ¢);.]Z'!//”o]}

if fe H). Now, it remains to observe that

“uh - (tbh“lzuo = “uh - “”0 + Hu - (Ishuﬂo + ”d’h(” - “h)”o
and
sy — ¢ulillo < 1 — Wllo + W — dwbllo + [dl¥ — I20)]o
yield
fun — b0 < [W*t + Ju = puufo] < [ + [lu — Fufo] < e
and

”I'jl// - dh,lZ'lPHo = C[hmﬂ + ”‘// - ‘/)h‘r/’no] = C[h'nH + ”lﬁ - IZ’/’“O] <ottt
and the lemma is proved.

Theorem 2. Let u and u, be the solutions of (1.1) and (1.3), respectively. If b, f €
€ H'j“‘ and V, and W, are given by (2.5) then for x; = ih,i =1,...,n,
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ch?6*D if s <m -1,
Julxi) = )] < {chz"“1 if s=m-—1.
If moreover b, f € H then for s = m — 1,
' lu(x;) — uy(x;)| < ch®".
Proof. Let us observe that
|(b(u = buws), dud)| < cllu — duunllo [0 = Tidfo + [(b(u — ), D)
and
|(b(u — Puuy), 0)] = |[(u — Puu, bd) + (u — w,, Gbd — bd) + (u — uy, bd)| <
< 50 — Jxplo [l — Sulo + I — walo] + (1 = . ).
Thus, due to Lemma 1, Corollary 1 and the estimate (2.11) it follows that
|(b(u _ ¢huh)’ d)hﬁ)l < s+ DminGs+ Lm=1)
Now, the theorem follows from (3.1) and the estimate
|(w", 0 = ¢u0)] = |

0 if s>0,
<<h if s=0 and b,fe L),
h* if s=0 and b, feH)I).

” S "
u” — Ju'|

oo = 7ol <

A comparison of the convergence properties of the external method (1.3) and the
corresponding Galerkin method is presented in the next remark.

Remark 1. Let z, be the Galerkin approximate solution to u generated by
V, = S,(C°% m) n Hy(I) and let u, be the solution of the external approximation
equation (1.3) generated by the same V, and W, = S,(#>, m — 1). Then |u — u,,
is of the same order (0(h™)) as |u — z,/|, and moreover, for x; = ih, i =1,...,n

2m—1 : Hm—l
\u(xi) _ uh(xi)l < ch if b,feHy™ ",
ch®™ if b,feH™,
while
lu(x;) — zi(x))] < ch®™ if b, feHy .
It is easy to see that the same result can be obtained if the nonselfadjoint equation
ueHy: (u',v') + (au, v') + (bu,v) = (f,v) VveHg
is approximated by ‘
u, €V (“;., U;x) + (ad’h”hs U;',) + (bd)huh’ ¢hvh) = (f, ¢hvh) Vo, eV,
where V,, W, and ¢, are defined as before.
Moreover, the method can be extended to the case of higher order differential
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equations. For example, let us consider the problem
ueHy, (u®,v®) + (bu,v) = (f,v) YveHs,
and the approximate equation
up € Vit (u, o) + (bpi, uon) = (f, duvs) Yon€ Vi

where V, = S,(C*" ', k + r) n Hi and ¢, is the orthogonal projection of £ onto
W, = S,(£?, 5). Then it can be proved that

lu — wy|i < efinf|lu — v,y + inf Ju — wy|o + h* inf ||f — bu — w,]o .
vheVn whreW wheWy
In the case r = k — 1, the superconvergence at the knot points x; = ih,i = 1,...,n
can be established under the condition of sufficient regularity of the solution. For
the proof of that property, the function 9(x) = G(x,, x) is applied, where G(t, x)
is the Green function of the problem(—1)* y® = f, ye H§. If r = k — 1 then
eV,
4. THE FINITE DIMENSIONAL PROBLEM

In this section only the spaces V, and W, given by (2.5) for s = m — 1 will be
considered.

In order to obtain a matrix equation implied by (1.3) one needs an explicit form
of ¢, for v, € S,(C°, m).

Let x; be the knot points considered above.

Let {x;;}7_, be the uniform partition of the subinterval [x;, x;,]: x;; = x; +
+ (jlmyh,j=0,...,m — 1 and x;,, = X;410> Xo0 = 0, Xy = 1.

Let [} denote the k-th Lagrange interpolate polynomial on the m + 1 knots
0 = X005 Xq1» -+e> Xoms 1.€.°

l?(x) = (x — xoo) (x — xok—1) (x — X0k+1) (x — x0m)

(ka - xoo) (x0k — Xok- 1) (ka — Xok+ 1) (x0k - xOm) .

Similarly, let I"~' be the k-th Lagrange interpolate polynomial on the m knots
X005 +-+> Xom—1- If m = 0 we put I3 = 1. Then, for arbitrary v, € V}, and w, e W,

0x) = 3, 3 o) B = ) 2 (’-,j - ,-)

v=0

M=

m—1
S g I (x — ih) 1 <f - i).
n=0 h

Let a, = {ocvj ';';01 be a solution of the matrix equation

wi(x) =i

]

0

Ahav = bv
where
Ay = {(l':_l’ l?_l)fz(o.h)}':,;io
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and
b, = {(l'v"’ l?_l)zl(o,h)}?:ol .

Since A4, is the Gramm matrix of a linearly independent set of functions on [0, k],
A, ' exists and a, = A4, 'b,. Let

m—1
q(x) = Y a,; 77! (x) for xe[0,h].
j=o0

It is easy to see that g,(x) = ¢,I5 since

n h
J q,(x) I77'(x) =j I(x)Ir~}(x)dx for j=0,...,m—1.
0 0

Thus, due to the linearity of ¢,, we have Vv, € V,
n m ) X .
(4.1) duox) = 3 3 oilx) b [1':(x — ih) X(Z - ,)] -

i=0 v=0

T3 o) ) [ — i) (’-; - i> .

1
Jj=0 v=0

n
=AZ
i=0

As examples, the cases m = 1 and m = 2 will be considered. If m = 1 then 4, = h
by = by = h/2. Thus ay = a; = % and

b [ io(v(x,-) I8(x — h) + o(xes ) Ii(x — ih) XG _ ,>] -

i=
n

= 2 3(0lx) + o(xiei) 1 ()?i - i)

0
74 A
A = v(x]
T (x)
/ . V(X
RN b
/ \
/ \
/ \
1 / \
gl | A . S—
2 / \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
0 Vi : \
Xi_1 X Xisg

Fig. 1. The orthogonal projection of v € Sh(CO, 1) onto Sh(Lz, 0).
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Let now m = 2. In this case

|
1t 1 0 1
A /i 33 l6 b h b I 6
=N , =N N = . =N
h |4 o 1 2 2 :
=2 0 < z
L3 3 3 3
and thus
1% 2 !
3 i3 L3
ag=| [, a=| = |
ANEIRE \ !
6 13} | 6!

According to (4.1),

¢h[i(v(x,-o) (x — ih) + vlx;y) B(x — i) + o(x;) B(x — ih)) X(% - ,>] -

i=0

= X {[3 vlxio) + Folxi) = Folxia) [ holx — k) +

+ [4 vo(xi0) + 3 0lxi) + & 0(xi2)] Io(x — ih)} x(— _ )

Winy

Fig. 2. The orthogonal projection of v € §,(C°, 2) onto S,(L?, 1).
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Souhrn

SUPERKONVERGENCE VNEJSICH APROXIMACI PRO DVOJBODOVOU
OKRAJOVOU ULOHU

TERESA REGINSKA
Dokazuje se vlastnost superkonvergence pro jistou vnéj§i metodu feSeni dvoubodové okrajové

ulohy. Pro ptipad po ¢astech polynomidlnich prostort je dokazano, Ze rychlost konvergence
pribliZznych FeSeni v uzlovych bodech muZe presahnout globalni rychlost konvergence.

Pesiome

CBEPXCXOJVMOCTE BHEIIHUX ATIITPOKCUMALIMI JJISI ABYXTOYEUYHOM
KPAEBOW 3AJAYU

TERESA REGINSKA

,Z[oxasbmaerca CBEPXCXOMMOCTh OJHOTO BHELIHErO0 METOJAa PELICHUS ABYXTOYECHHOM KpaeBoi
3aJa4uH. JIJ'IS{ ciydass KyCOYHO NOJIMHOMHUAJIBHBIX IIPOCTPAHCTB JOKAa3aHO, YTO CKOPOCTb CXOAUMOCTH
HpHﬁJ’IH)KéHHBIX PEIEHUH B Y3JIOBBIX TOYKAX MOXET IPEBLICUTH CKOpPOCTh CXOAUMOCTH B LICJIOM.
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