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32(1987) A P L I K A C E M A T E M A T I K Y No. 1,25—36 

SUPERCONVERGENCE OF EXTERNAL APPROXIMATION 
FOR TWO-POINT BOUNDARY PROBLEMS 

TERESA REGINSKA 

(Received August 7, 1985) 

Summary. The superconvergence property of a certain external method for solving two point 
boundary value problems is established. In the case when piecewise polynomial spaces are 
applied, it is proved that the convergence rate of the approximate solution at the knot points 
can exceed the global one. 

Keywords: Superconvergence of external approximations, two-point boundary value problems 

INTRODUCTION 

Finite element approximate solutions of differential equations can possess a super-
convergence property, that is, there are some distinguished sets of points at which 
the convergence rate of the solution or its gradient exceeds the global optimum. 
It has been observed (cf. De Boor-Swartz [2], Douglas-Dupont [4]) that certain 
collocation methods give a superconvergence of solution at the knot points of the 
splines used. Moreover, superconvergence at the knots has been established by 
Douglas-Dupont [5] for the Galerkin solution of the two point boundary value 
problem when the approximation subspaces consist of C°-piecewise polynomials. 
A superconvergence phenomenon for the gradient of the finite element approximate 
solution of the second order elliptic boundary value problem was analysed e.g. by 
Zlamal [9] and Kfizek-Neittaanmaki [7] where extensive references concerning 
this problem can be found. 

The object of this paper is to establish some superconvergence properties of a certain 
external method for solving two point boundary value problems using piecewise 
polynomial spaces. The method considered is a generalization of the Galerkin 
method. 

Let us consider the problem 

(1.1) -u" + bu =f on I = [0, 1] , 

ii(0) = ii(l) = 0 . 

We will assume that b = fi > 0, b,fe Se\l\ 
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Let us introduce two families of spaces {Vh}heyf9 {Wh}he# such that Vh c H0(I) 
and Wh c i??2(I). Let <ph be the orthogonal projection of <£2(l\ onto W, i.e. 

(1.2) VwheWh9 V v e ^ 2 ( I ) , ( ^ t e ^ ) = 0 , 

where ( , ) denotes the scalar product in ££2(l). 

The following approximate problem will be considered: 

(1.3) find uh e Vh such that 

(u'h9 v'h) + (b(j)huh9 cj)hvh) = ( / , (j>hvh) Vvh e Vh. 

It is a certain kind of the external approximation of (1.1) — the solution u is ap­
proximated by the pair {4>huh9 uh}. The problem (1.3) is another formulation of the 
partial approximation of (1.1) considered by Aubin in [1] (cf. Definition 2.1, Chap. 
XI) for a special choice of prolongations. This external approximation was also 
applied to solving eigenvalue problems (cf. [8]). 

In Section 2 a certain generalization of the Cea lemma giving a relation between 
the error bound and the approximation properties of Vh and Wh is proved. The main 
result concerning the superconvergence property is presented in Section 3 for the 
case when Vh and Wh are piecewise polynomial spaces. It is proved that if the solution 
is sufficiently smooth then the error at the knots is bounded by the square of the 
possible global estimation. In Section 4 the explicit form of (j)hvh for vh e Vh is found 
for a special choice of piecewise polynomial spaces. The general case of external 
approximation for higher order equations applying more than one, not sufficiently 
orthogonal, projections cj)h9 will be considered in the subsequent paper. 

2. ERROR ESTIMATION 

The following notation will be used: 

F = <£2 x H0 , Fn = Whx VhczF; 

CD: H0 -~* F ; cou = {u9u} e F ; 

u>h- Vh-*Fh; whvh = {cj)hvh9 vh} . 

Let us introduce a bilinear form a on F x F: 

a(u9 v) = (u'l9 vi) + (bu09 v0) 

Vw, v e F , u = {u09 ux} , v = {v09 vt} . 

By the assumption b ^ /? > 0, a is F-elliptic, i.e. 

a(u9 u)^P\ufF VHGF, 

and moreover, 3a > 0 Vw, v e F 

a(u9 v) ^ a||w||F \\V\\F , 

where \\u\\F = ||w0||o + llMi| |i-
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The variational formulation of the problem (1.1) and the problem (1.3) can be 
written as follows: 

(2.1) a(cou, cov) = (/, v) Vv e H0 , 

(2.2) a(cohuh, cohvh) = (/, cj>hvh) Vvh e Vh . 

We will assume that Vv e H0 ||(1 - 4>h) v||0 = ^ H l i -
Under this assumption there exists a unique solution of (2.2) for h < h0 since, 

by the F-ellipticity of a, a(cohvh, cohvh) =
 c\\vh\\l f o r n < no-

Putting v = vh in (2.1) and subtracting (2.2) from (2.1) we obtain 

a(cou - cohuh, cohvh) + a(cou, covh - cohvh) = (/, vh - <j>hvh) . 

Since covh — cohvh = {vh — cphvh, 0} a n d / — bit = —u" (from (1.1)), we have 

(2.3) a(cou - cohuh, cohvh) = (~u", vh - <j>hvh) Vvh e Vh . 

The following theorem is similar to the Cea lemma for the Galerkin approximation 
(cf [3], Th. 2.4.1). 

Theorem 1. Let 

||v - Phv\\0 ^ ChllvUi V v G H ^ I ) . 

If u and uh are solutions 0/(1.1) and (1.3), respectively, then there exists a constant c 
independent of the subspaces Vh and Wh such that 

\\cou — cohuh\\F < C inf ||w — vh\\1 + inf ||w — wh\\0 + h inf ||w" — wh\\0} • 
vhsVh wheWh wheWh 

Proof. From the F-ellipticity of a it follows that for an arbitrary element yh e Vh 

fi\\cou — ct>/,W/,||F — a(oiu — cohuh, cou — cohuh) = 

= a(cou — cohuh, cou — cohyh) + a(cou — cohuh, coh(yh — uh)) . 

Thus, the application of the equality (2.3) to the second term of the right-hand side 
gives 

(2.4) p\\am- cohuh\\
2
F = 

< a\\cou - cohuh\\F \\cou - cohyh\\F + \(u", (1 - 4>h) (yh - uh))\ . 

Since \<f>h\ = 1, thus Vy* e Vh 

\\cou - cohyh\\F = {||w - y/zll2 + \\u ~ </V/.||o}1/2 = 

S {\\u - yh\\l + | ||M - <t>hu\\o + II" - y/.||o|2}1/2 = 

g 7 5 max [\\u - yh\\u \\u - <^ti||0] • 

Moreover, by (1.2) and by the fact that Vv e g\l) 

||(1 ~ <r\H|o = i n f |1 *> ~ Wft||o 
wheWh 
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it follows that for any zh e Wh 

\(u", (1 - <J>h) (yh - uh))\ = \(u" - zh, (I -4>h)(yk-u + u - uh)\ = 

S IK - Zh\\o { i n f \\(yh - u) - wh\\Q + inf ||(M - uh) - vvft|]o} = 
wheWh WhtWh 

S h\\u" - zh\\o {\\yh - u\\t + ||w - uhl±} , 

due to the assumption of Theorem 1. Thus, since ||w — uh\\t S fcow — cofciifc||F, 
(2.4) implies 

|con - cohuh\\
2
F ^ C\\cou - coftwft||F {max(||M - yh\\u \\u - 0fcu||o) + 

+ % " - zfc||0} + h\\u" - zfc||0 ||w - y„||i > 

for some constant C. Solving this inequality and replacing the maximum of the 
two norms by the sum, we obtain 

||con - cohuh\\F S C{\\u - yft||i + ||M - 4>hu\\0 + h\u" - zfc||0 + 

+ [(llw - y»li + b - <Mlo + h\\u" - zh\\0y + 

+ 4 h | | M " - Z / l | | 0 | | M - y , | | 1 ] 1 / 2 } ^ 

S C(\ + V3) [||M - yh\x + ||w - ^w | | 0 + h||w" - z„||0] . 

The left-hand side does not depend on yh and zh, thus the infimum over yh e Vh and 
zh e Wh of the right-hand side can be taken. Thus the theorem is established. 

Now, our consideration will be restricted to the piecewise polynomial spaces. 
Let h = lj(n + 1) and let Ah (briefly A) be the uniform partition of I: 

dh = {xt = ih, i = 0 , . . . , n + 1} , It = (xh xi+1) . 

Let P,.(If) denote the class of polynomials of degree not greater than r on the set It. 
Let 

Sh(C°, r) = {v e C(I), v e 0>r(l) i = 0 , . . . , n) , 

Sh(£
2, r) = {v e <e2(l), v e 0>r(It) i = 0,...,n}. 

It will be assumed that 

(2.5) Vh = Sh(C°, m) n Hl
0(l) , Wh = Sh(£>2, s) 

and m > s ^ 0. 
Let v e Hr

A
+ 1, where 

H71 = {ve^2(l):veW+1(I^), i = 0, ...,n) 

with the norm 

Mi+i-iM-.l?+i. 
1 = 0 
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Let us introduce YAv as the spline interpolant to v from Sh(C°, r) generated by the 
knots 

Thus 

(2.6) 

XІJ = XІ + j ~ , j = 0, ..., r - 1, xir = xi+uo = xi+í 
r 

r* °{x) = Z PÁX) X (7 - i 
i = o Vrt 

where x(x) is the characteristic function of the interval (0, 1) and pri e &r(I}) satisfies 

(2.7) Pr{Xij) = v(xtj) j = 0, ..., r . 

From the Peano Kernel Theorem ([6], Th. 3.7A) it follows that if pri satisfies (2.7) 
then 

pxi+ 1 

\v - Pnhm.) v 
( r + l ) | 2 

Thus 

(2.8) I" - I>lí = Z I" - PriVnHlO = ^ ' H 
2 
Ar+1 

Similarly the spline interpolant J> to v from S,.(i?2, r) can be constructed. 
Namely, let ytj = xt + j(hj(r + 1)), j = 0, ..., r be the knot points of interpolation 
and let 

(2.9) l>(*) = I^*h( /--A 
í=o \ h / 

where qri e ^Jj^) satisfies 

(2.10) qri(yiJ)-:v(yiJ), j^0,...,r. 

Since L(v): = (v - J»|7. = 0 for all v e 0>k(It) where k is an arbitrary integer not 
greater than r, then for veH* + 1(If) the Peano theorem ([6], th. 3.7.1) implies that 

Thus, 

(2-11) «» ~ I>|o = ^ + 1 | M L + 1 

for v e Hk
A

+1(l) provided k ^ r. 

Therefore, (2.8) and (2.11) imply that if t* e #*+ - then 

(2.12) 

f i n f « » - ^ l | i = ^ > L + 1 , 

i"f l " - ^ | o = ^ s + 1 | | u | U + 1 , 
wheW,. 

inf ««"-wA | |0gchm i^+i,m-i) | |M | l 
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The following estimation is a simple consequence of Theorem 1 and (2.12) 
Corollary 1. If b,feHm+1(l) and Vh = Sh(C°, m) n H0 and Wh = Sh(^2,s) 

for m > 5 ^ 0, then 

\\cou — COAMA||0 ^ chs+1 . 

Convergence and error estimates of the external approximation of an elliptic 
operator were also considered by Aubin ([1], Th. 2.2. Chap. XI). The general 
results were obtained in another way. 

3. SUPERCONVERGENCE AT THE KNOTS 

Let G(t, x) be the Green function of the operator —u" with the boundary con­

ditions u(0) = u(l) = 0. 

Thus 

G(l,x) = | ; 
(1 - t) x 0 ^ x й t 

(1 - x) t ř ^ x ś l , 
and r»l 

(u\ Gf(t, •)) = - u"(x) G(t, x) dx = u(t) . 
Jo 

Let v{x) = G(xh x), where xt = ih, 0 ^ i ^ n + 1. 
Then v e Vh because, as was mentioned above, we consider now the case of the 

piecewise polynomial subspaces Vh and Wh given by (2.5) for m ^ 1. The equation 
(2.3) for vh = v takes the form 

(u - uh) (xt) = (-u",v - <j)ffi) + (b(u - c/)huh), (j)hv) . 

If S^1 then v e Sh(<£2, s) and v = (j)hv. Thus 

(3.0 i ( u - u A ) M ^ ,if : = u 

[\(b(u - cj)huh), (j)hv)\ + |(M", v - cj)hv)\ if s = 0 . 

The trick presented above was used by Douglas-Dupont [5] for establishing a super-
convergence result for the Galerkin method. 

Lemma 1, Let u and uh be the solutions of (1.1) and (1.3), respectively. If b,fe 

e Hm~x(l) and Vh and Wh are given by (2.5) then there exists a constant c independent 

of h such that 

\(u -uh,bv)\ S \ 

\chzm if s = m - 1 . 

If moreover b, fe Hm(l) then for s = m — 1, 

\(u - uh, bv)\ g ch2m . 

Proof. Let us introduce an auxiliary problem 

(3.2) find ij/eH1, a(cov, w\j/) = (v, bv) Vv e H0 . 
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By the F-ellipticity pf a9 there exists a unique solution of (3.2). If b e HV
A (v = 

= m - 1, m), then bv e H^ and i// e Hv/2 and by (2.7) and (2.9), 

(3.3) ||i> - J^||i ^ chm , ||bi> - JAbil40 S chmin{s+1>v). 

Put v = u - uh Since u - uhe H0 thus (3.2) implies that 

(u - wA, bv) = a(co(u - uh), COX/J) = 

= a(cou - coAuA, co(i/> - y)) + O(coAuA - couh9 coxj/) + 

+ c7(cou — coAuA, coy — cohy) + a(cou — coAwA, coAy) 

for a rb i t ra ry y e H1. Let y = Im\j/ (cf. (2.6)). Thus 

a(cou - cohuh9 co(\l/ - Im\l/)) g a V(2) \\cou - cohuh\\F ||i/> - Im\l>\x . 

Next , since ucoAA - couA = {cbhuh - uh, 0 } , by (1.2) for wA = JAb\j/9 we have 

a(coAuA - couh9 coxj/) = (cbAuA - wA, biA - JjbtA) ^ 

^ ||0*«A - Wft||o. 1 | ^ - JAWWO, 
a n d moreover , 

a(cou - coAuA, coy - coAy) = (b(u - c/>AuA), y - c/>Ay) = 

^ c||cou - coAuA||F . \\lm
Axjj - cj)hI

mJj\0 . 

Finally, (2.3) and (1.2) imply 

c7(cow - coAuA, coAy) = (u\ cbhy - y) = (u" - JAu"9 cj)hy - y) = 

^ IK - ^>" | |o • pmA - 0 * W | o • 

Thus, (3.3), (2.9) and Corollary 1 yield 

|(II - uh9 bv)| ^ c{h<'+1>" + h^+1->[||^AuA - uh\\0 + | | I> - W A | | o ] } 

if fe HA. Now, it remains to observe that 

IK ~ <Mft||o .= I"A ~ "||o + Ilw - <Mlo + W M - w/.)||o 
and 

l - > - « A | | o S \\imA - uV||0 + ||yv - <Mlo + \\M* - - » | | o 
yield 

\\uh - <j(»,,MA||0 g c [ h s + 1 + | u - 0 f tu||o] 5g c[h* + 1 + ||M - / > | | 0 ] g c th
s + 1 

and 

| |I> - eVJHIo =§ # m + 1 + 1-A - <W||o] ^ # m + 1 + Ik - I^|o] ^ C!t s+1 , 

and the lemma is proved. 

Theorem 2. Let u and uh be the solutions O/(l.l) and (1.3), respectively. If b9fe 
e HA~l and Vh and Wh are given by (2.5) then for x( = ih, i = 1, ..., rc, 

31 



|«(x.) - uh(xt)\ š 1 m_í 
if s < m - 1 , 

if s = m — 1 . 

If moreover bje Hm then for s = m — 1, 

|«(X,) - MA(X,.)| g Ch2m . 

Proof. Let us observe that 

\(b(u - (j)huh), 4>kt>)\ = c||w - <Mfc||o lf i ~ J S^llo + \(b(u ~ <!V*)> fi)| 

and 

\(b(u - 0fcufc), v)| = \(u - (j)hu, bv) + (u - uh, (f)hbv - bv) + (u - uk, bv)\ S 

S \\bv - Js
Abv\\0 [||u - J>||0 + | |" - tt*||0] + \(u ~ uh, bt>)\ . 

Thus, due to Lemma 1, Corollary 1 and the estimate (2.11) it follows that 

\(b(u - <l>kuk)9 c/)hv)\ S c t f s + 1 > B l l n < s + 1 ' w - 1 >. 

Now, the theorem follows from (3.1) and the estimate 

\(u\ v - <f>hv)\ = \\u» - Js
Au"\\0 Hv - J*v||0 S 

fO if s > 0 , 
if s = 0 and bje£?2(l), 

[h2 if s = 0 and bJeHA(I). 

A comparison of the convergence properties of the external method (1.3) and the 
corresponding Galerkin method is presented in the next remark. 

R e m a r k 1. Let zh be the Galerkin approximate solution to u generated by 
Vh — Sh(C°, m) n H0(l) and let uh be the solution of the external approximation 
equation (1.3) generated by the same Vh and Wh = Sh(£?2, m — 1). Then ||u — uh\\1 

is of the same order (0(hm)) as ||u — zh\\1 and moreover, for xt = ih, i = 1, ... , n 

\ r \ / M ̂  {ch2m~l if bJeHm~\ 

while 
|u(x,) - zk(Xi)\ Sch2m if bJeHT1 • 

It is easy to see that the same result can be obtained if the nonselfadjoint equation 

u e Ho: (u'> v') + (au> v) + (bu, v) = (f u) Vu e Ho 

is approximated by 

uh e V/r « , »i) + (a<l>huh, vh) + (b^hufc, 0 ^ ) = (f (^v,,) Vv,, G Vh, 

where VA, W;t and <j)h are defined as before. 

Moreover, the method can be extended to the case of higher order differential 
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equations. For example, let us consider the problem 

UGHk
0, (u«\ v<fc>) + (bu, v) = (f v) VveH f c , 

and the approximate equation 

uh e Vh: (u
{k\ vik)) + (b(j>huh, $hvh) = (f <j>hvh) Vv„ e Vh 

where Vh = Sh(C
k~l, k -\- r) r\ Hk

0 and <\)h is the orthogonal projection of £P2 onto 
Wh = Sh(^

2, s). Then it can be proved that 

||u - uh\\k _ c{ inf ||u - vh\k + inf ||u - wh\\0 + hs inf | | / - bu - wh\\0 . 
vheVh whe>Yh wh6Wh 

In the case r = fc — 1, the superconvergence at the knot points xt = ih, i = 1, ..., n 
can be established under the condition of sufficient regularity of the solution. For 
the proof of that property, the function v(x) = G(xh x) is applied, where G(t, x) 
is the Green function of the problem( - l)fc y(2fc) = / , ye Ho- If r ^ fc — 1 then 
veV,. 

4. THE FINITE DIMENSIONAL PROBLEM 

In this section only the spaces Vh and Wh given by (2.5) for s = m — 1 will be 
considered. 

In order to obtain a matrix equation implied by (1.3) one needs an explicit form 
of (j)hvh for vh G Sh(C°, m). 

Let xt be the knot points considered above. 
Let {xij}m

=0 be the uniform partition of the subinterval [xi, xi+i]: xtj = xt + 
+ (jjm) h, j = 0 , . . . , m - 1 and xim = xi+10, x0 0 = °> xnm = 1. 

Let /™ denote the fc-th Lagrange interpolate polynomial on the m + 1 knots 

" ~ ^00? ^01? • • • ' X0mi Le . . 

]m( \ __ \X ~ XOo) "- \ x ~ x0k- l ) \X ~ x0k+ l ) • • • (* ~ -̂ Om) 

(•̂ Ofc ~~ XOo) • • • \X0k ~ X0k- l ) (*0fc "~ X0k+ l ) • • • (*0fc "" X0ra) 

Similarly, let lm~~l be the k-th Lagrange interpolate polynomial on the m knots 
x00,..., x0w_ t . If m = 0 we put l0 = 1. Then, for arbitrary vh e Vh and wh e Wh, 

n m /y. 
vhix) = Z Z ̂ (xiv) C(* - to) X (7 - * 

i = 0 v = 0 \/Z 

n m-\ fy, \ 

i = o fi = o \n ) 

Let av = {ttVj}m=o be a solution of the matrix equation 

where 
A _ Uvn~l lm~l\ \m-\ 
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and 

Ьv — {(C» Ц Лs?2(o,ftШ = o • 

Since Ah is the Gramm matrix of a linearly independent set of functions on [0, h], 
Ah

l exists and av = Ah

1bv. Let 

m - l 

qv(x) = £ avj lj~\x) for x e [0, ft] . 
/=o 

It is easy to see that qv(x) = <j)hl™ since 

fav(x) / ^ ( x ) = P C(x) / J " 1 ^ ) dx for j = 0 , . . . , 
J o J o 

Thus, due to the linearity of (j)h, we have Vvh e Vh 

m — 1 . 

(41) Фh Vћ(x) = £ £ *>A(*ІV) ФЛ 
i = 0 v = 0 

C ( x - / h ) Z ^ - i ) | = 

и т — 1 т /у. 

X 1 ( Х Ы < К Л Г Ч * - а д ^ 
1 = 0 / = 0 у - 0 \ГС 

I 

As examples, the cases m = 1 and m = 2 will be considered. If m = 1 then Ah = ft 
b 0 = bx = ft/2. Thus CL0 = ax = ^ and 

Z « * i ) /£(* - ih) + v(xi+1) l\(x - ih))x(~ - i] = 
i = o \ft / J 

= | o i ( ^ ) + , (x i + 1 ) )x^- i ) 

7- Л 
/ \ 

/ \ 
/ 

7 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ ^ 2 

0 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ -r-
*i-1 X< X ' + í 

фhv(xì 

Fig. 1. The orthogonal projection of v 6 SA(C°, 1) onto SA(L2, 0). 
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Let now m = 2. In this case 

Ah = Һ 

1 1 

3 3 

1 4 

3 3 

, ь 0 = h , bx = h 

and thus 
2 2 1 

3 
, <*1 = 

3 
; Û 2 = 

3 

1 2 1 

6 3 6 

According to (4.1), 

<t>n \ t (v(xio) l2o(x - ih) + v(xn) l2(x - ih) 4 v(xi2) l2
2(x - ih)) x(j~i 

n 

= Z {[i Kxio) + i v(xn) ~ 3 v(xi2)"\ ll(x - ih) + 
; = o 

+ [* v(xi0) + f <x f l) + i v(xi2)] l0(x - ih)} x(^~ i\ 

)} 

Fig. 2. The orthogonal projection of v 6 S,,(C°, 2) onto Sft(L
2, 1). 
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Souh rn 

SUPERKONVERGENCE VNĚJŠÍCH APROXIMACÍ PRO DVOJBODOVOU 
OKRAJOVOU ÚLOHU 

TERESA REGIŇSKA 

Dokazuje se vlastnost superkonvergence pro jistou vnější metodu řešení dvoubodové okrajové 
úlohy. Pro případ po částech polynomiálních prostorů je dokázáno, že rychlost konvergence 
přibližných řešení v uzlových bodech může přesáhnout globální rychlost konvergence. 

Pe3K>Me 

CBEPXCXO£HMOCTÍ> BHEIHHHX AnnPOKCHMAH.HH AJDI AByXTOMEHHOM 
KPAEBOH 3AríAHH 

TERESA REGIŇSKA 

rTJ,OKa3BIBaeTCa CBepXCXOTTHMOCTb O/THOrO BHeiHHerO MeTOAa pemeHHH /JBVXTOHeHHOH KpaeBOM 

3aAaHH. fljlfl CJiyHaH KVCOHUO nOJIHHOMHaJIbHblX npOCTpaHCTB AOKa3aHO, HTO CKOpOCTb CXOflHMOCTH 

npH6jIH5KěHHbIX peHieHHH B y3JIOBBIX TOHKaX MO^CeT npeBblCHTb CKOpOCTb CXOÍIHMOCTH B HCJIOM. 

Authoťs address: Dr. Teresa Regiňska, Institute of Mathematics, Polish Academy of Sciences, 
ul. Šniadeckich 8, 00-950 Warszawa, P.O.B. 137, Poland. 
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