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ESTIMATION OF PARAMETERS OF MEAN AND VARIANCE
IN TWO-STAGE LINEAR MODELS
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Summary. The paper deals with the estimation of unknown vector parameter of mean and
scalar parameters of variance as well in two-stage linear model, which is a special type of mixed
linear model. The necessary and sufficient condition for the existence of uniformly best unbiased
estimator of parameter of mean is given. The explicite formulas for these estimators and for the
estimators of the parameters of variance as well are derived.
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INTRODUCTION

The two-stage linear model is often modelled by random vectors Y;, Y, Y, of
dimensions n x 1, m x 1, respectively, with

(1) Y, = X\, + &, E(81) =0, E(slg’l) = Gle
Y,=X,B, + DB, +¢,, E(e;) =0, E(e8)) =03H,,
&, &, uncorrelated. The vectors Y,,Y, are normally distributed. The matrices
X,, X,, D of the dimensions n x k, m x p, m X k, respectively, are known, and
X,, X, are of full rank in columns. The vector parameters g, € %%, B, € %° and the
scalar parameters o}, o are all unknown. We denote 6 = (o2, 63)". The parameter
0e #%*. H,, H, are nonsingular.
If the vector Y, is consideted separately, there exists BLUE B, of the vector para-
meter f;, based on the vector of measurements Y; in the form
B, =QY,, QX, =1, Iis the identity matrix .

We transform the vector Y, by B, in the following way:

Y=Y, -DQY,=Y, - D}, .



This transformation makes it possible to form a model

()= (k) * (oo 0)
Y; X,B, —-DQ & + &)’

which can be written in the form

@) (V)7 C%) 6 (oo t) ()

The covariance matrix of the vector (Y{, Y3') is

@ Voo L0 o*H, 0 I —QD\ _ ,( H, -C
°o=\-bQ1)\o sH,/\0 I T %\_c CH;!C + gH,

where )
C=DQH,, ¢=2.
0y

In the case that the parameters 67, o5 are unknown but the ratio ¢ = 63/} is
known, the model (2) represents a usual linear model and for BLUE for the vector

parameter (B}, B3)’ based on the vector of measurements (Y;, Y;”)' the results of the
linear theory of estimation can be used.

The matrix Yy can be expressed also in the form

. H, -C 00
— 42 1 2
(4) Vo =0y (_C CH1—1C/> + 03 (0 H2> .

In the case that none of o}, 63 ¢, is known, ¢} + o3 the model (2) represents the
mixed linear model (see [1]).

1. ESTIMATION OF (8}, B)

Following [1] we immediately get the locally best linear unbiased estimator
(LBLUE) (B, B,)" for the vector (B}. B5)' in model (2). It is given by the formula

(5) (g:) = (X'V,1X)7 XYY

where
X, 0 AL
x=(5"%) (%)

Using the expression for the inverse of a partitioned matrix (see [4]) we calculate
expression (5).

H. —cC' -1
(6) V;‘=o;2( voe ) =

C  CH{'C' +gH,



e VAR

o \H;'CH;! Myt
_ L (gH;‘ + Q'D'H;'DQ Q'D'H;!
eoi \H;'DQ H;! )
Then
(7) X'V;'X = _1_2_(x; ’ )(gqﬂl + QDH;IDQ Q""’":") (Xl 0 >=
oo; \0 X;) \H;'DQ H;! 0 X,
1 [oX{H['X, + D'H;'D D'H;'X,
~ eo? <X2’H510 x;H;‘XZ)'

The inverse of X'V, !X is

(8) (XVy'X)"! = go? (V; + Vg D'HI XGETXGH; DY, —V;D'H;‘xze->

—E"X;H;'DV; E-
where
9) E = X;H;'X, — X;H;'DV, D'H;'X,
(10 V, = ¢X{H{'X, + D'H;'D .

We express now the matrix expression X'V, 'Y:

’ -1 ' -1 'y Ly —1
(11) X'vgly:L<X10><@H1 + Q'D'H;'DQ QD'H; N (¥,\ _
0ot \0 X;) \H;'DQ H;! 159
_ L (VB + DH'Y]
0ot \X;H; 'DB; + X3H3'v:)"

Finally, we have
(12) (XV X)XV Y =
(V, + V,D'H;'X,E~X;H;'DV, ) (V,B, + D'H;'Y¥) —
— Vo D'H; ' XGE™(X3H; 'DB, + X,H; YY)
—E"X;H;'DV, (V,B, + D'H;'YY) + E™(X;H; 'DB, + X;3H;'Y¥)
We can now state Theorem 1.1.

Theorem 1.1. LBLUE of the vector (Bi, B3)' in the model (2) is given by the
formulas

(13) By =V, VB, + V; D'H; 'Y} + V,D'Hy ' X,E~X;H;'(DV; D'H; ' — I) Y*,
B, = ETXH;'YS — E"X;H;'DV, D'H; 'Y},

where E and V, are given by (9) and (10), respectively.
The proof of Theorem follows immediately from the expression (12).



Kleffe in [1] states the necessary and sufficient condition for the mixed linear
model under which the uniformly best linear unbiased estimator (UBLUE) for the
vector parameter of mean exists. We need the following notation.

H, -C . '
V0_<_C CH;1C’+H2)’ ie. Vo=V, for 0= (11).
Let the matrix M represent the projection operator onto the orthogonal complement
of the space generated by the columns of the matrix X, i.e.

I — X, X} 0 )

-1 _ +
M=1T-XxX (0 I - X, XS

The matrix X is the Moore-Penrose inverse of the matrix X.
According to Lemma 2.2 in [1] the necessary and sufficient condition for the
existence of UBLUE of (B, B5) is MV,V,'X = 0VV,. We check it in our case.

MV, — o2 (I — X, X{YH, —(I - X, X{)C
0 \=(I - X,X3)C (r- X,X3) (CH{'C + gH,)) -
Further,

Mt — o (1 XXE ’
0% T T\ (1 = X,X}) DQ + o(l — X,X5) DQ ol — X,X7)
and finally,
, iy 2 (= X X)X, 0 -
(14) MV V' X = o7 <(Q _ ])(, _ xzx;) D ol - X,X3) X, -

= (?Q - (1= X,X;)D g>

Theorem 1.2. UBLUE of the vector parameter (i, B5) under the model (2)
exists if and only if #(D) = #(X,), i.e. the space generated by the columns of the
matrix D is included in the space generated by the columns of the matrix X,.
In case this condition is met, LBLUE is UBLUE.

Proof. According to the properties of the g-inverse of a matrix (see [4]), and the
necessary and sufficient condition given by [1], the matrix from the expression (14)
is equal to zero-matrix if and only if (I — X,X3) D = 0, and this immediately yields
the statement of Theorem.

Remark. It is interesting to study the arrangement of the experiment and the
conditions under which the assumptions stated in Theorem 1.2 are valid. Let us
consider the etalon network (see [3]) arranged in the following way. Let the value
of the basic etalon E be known. Let the values of the etalons !, 3, ..., f; be unknown
and let it be possible to measure the differences between the talons B} and E, and
between the etalons f} and /3}. These are the etalons of the first stage. Let the etalons

4



of the second stage be B, ..., B;, which are to be derived from the etalons of the
first stage, i.e., the differences between Bf and B}, i=1,2,..,k j=1,2,...,p
can be measured, as well as the differences between f; and B;. It can be shown that
the only way how to arrange this type of measurements so as to fulfil the necessary
and sufficient conditions from Theorem 1.2 is the following. The only admissible
measurements are: suppose the difference between ﬁf and B} is measured. Further
suppose there is a measurement of difference between B} I = j and B . Then the
measurement of difference between B; and B is allowed, but if i * i, the measure-
ment of difference between f7 and f! is not admissible. Fig. 1 shows the situation
described. These considerations follow from the theory of graphs (see [2]).

—_— admissible measurements

—— forbidden measurements

Fig. 1

2. ESTIMATION OF o3, 6%

As we have mentioned, the model (2) forms a mixed linear model, with unknown
parameters By, B, o5 and 03, 7 + o2. We now find the conditions under which the
parameters o, 65 are unbiasedly estimable, and we find the “optimal” estimators
for them. Due to the normality assumption it is enough to check whether the con-
ditions for the existence of MINQE(U, I) for o7, 03, developed by Rao in [5], are
fulfilled (see [6]). We turn our attention to the estimators which are unbiased. The
statistic Y’AY, where A is a symmetric (n + m) x (n + m) matrix, is unbiased for
the parametric function f,6? + f,03, (f1, f2) € %2, if and only if

Es o(Y'AY) = fi07 + fr05 VBe A**P, VO R*.



It is said to be invariant, if and only if
Y'AY = (Y + XB) A(Y + XB) VBe R**P.

As shown in [6], MINQE (U, I) (minimum norm quadratic unbiased invariant
estimator) is the locally best unbiased estimator for fyo7 + f,03, (i, f2) € #>.

Lemma 2.1. (See [6]). A necessary and sufficient condition for fio; + f,63 to be
MINQE (U, I)-estimable is that the vector (fy, f;) belongs to the column space of
the matrix <,

= (a;), = tf(MV, M)* V(MV, M)* V, ij=1,2,
v,,o - algvl + o2 V,, M=1—XX*.

We check this condition in our case. Our considerations will imply the condition
A(D) = A(X,). First we check MINQE(U, I)-estimability of the parameter o7,
i.e. f1 = 1 f2 = 0.

We have
MV, M =
I-X,X; 0 H -C 1-X,X; 0
=l (o - xzx;> (_c CH{'C + QOH) <o - xzx;> =
= g2 (' - X1X;L) Hl(’—xle) _(’ - xle) C,(’ - szik) >
Io (_(: — X,XP) €l — X,X7) (I — X,X3) (CH{'C'+ goH,) (I — X, X7)

For #(D) < #(X,) the matrix C'(I — X,X;) as well as its transpose vanish, i.e.
the Moore-Penrose inverse of MV, M is
[(’—xle) Hz(’_x1xf)]+ 0

0 L L=%X5) Hy(1- X, x3)]*

0

(MV00M)+ = i

1o

After some technical calculations we get the entries of the matrix ./ in the form

(15) aqy = tr(MVouM)+ VI(MV%M)* YV, =
= _i’ [te(M;H M,)* H{(MH,M,)" H, + 2tr L (MH,M,)" C(M,H,M,)" C +
10 0
.1 - ’ - 4
+ L t(MH,M,)* CHT ' C(M,H,M,)* CHT'CT] .
0

Il

Because of the identity (M,H,M,)" = H3 (I — Xy(X5HZ ' X,) ™! X;3H; ') we have
(M;H,M,)* C = (M,H,M,)* DQH, =
= H;'(I — Xy(X;3H;'X,)™" X;H; ') DQH, = 0.
Then we get
1
(16) ayy = ;4_ tr(M1H1M1)+ "’1(M1H1M1)+ H

1o



(17) aqp = a’21 = tr(MVOOM)+ VI(MV‘,OM)+ VZ =

= : 2 tr(M,H,M,)" CHT'C' (M,H,M;)" H, = 0,
01,20
and finally
(15 32 = (MY, M) VMV, M)V, =
=1 2 tr((M,H,M,)* Hy(M;H,M,)" H, .
10%0

The matrices M,, M, are the projection matrices onto the orthogonal complements
of the spaces generated by the columns of the matrices X,, X,, respectively.
Then the criterion matrix for the existence of MINQE(U, I) is
(19) 1 tt(M{HM,)* H(MH M,)* H, 0
o = — 1
at, 0 —Ztr(M2H2M2)+ H,(M,H,M,)* H,
0

of is a diagonal matrix and it is obvious that both the parameters ¢7 and o3 are
MINQE(U, I)-estimable.

Now we consider the modified second stage, i.e. Yo = X,B, — DQeg; + &,. The
covariance matrix of Y5 is Wy = 62CH;'C’ + ¢2H,. The criterion matrix for the
MINQE(U, I)-estimability in the modified model is

B = (b)) by = tr(MyWo My)* W(M,W, M))* W, i=1,2, j=1,2,

where Wy = CH'C’ W, = H,. Under the assumption (D) = %(X,) the matrix 2
can be expressed in the form

) 1 (o 0 )
01,05 \0 tr(M,H,M;)* H,(M,H,M,)* H,
In this case the parameter o7 is not MINQE(U, I)-estimable.

Theorem 2.1. Under the model (2) and the condition #(D) = %(X,) the uniformly
best unbiased invariant estimator for the parameter o7 is

(1) & = k
tr(M,H,M,)* H,(M,H,M,)* H,

and for the parameter o2,

Y/(MHM,)" H(MH,M)" Y,

1
tr(M,H,M,)* Hy(M,H,M,)*t H,

(22) 65 = Yzl(MszMz)+ Hz(MszMz)+ Y,,

which coincides with the uniformly best unbiased invariant estimator for 5 under
the modified second stage model.

The proof follows from the expressions for MINQE(U, I) (see [6]).
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Sdhrn

ODHAD PARAMETROV STREDNEJ HODNOTY A DISPERZIE
V DVOJETAPOVYCH LINEARNYCH MODELOCH

JULIA VOLAUFOVA s

Dvojetapovy linedrny model je charakterizovany nahodnymi vektormi Y, Y, nasledovne:
Y, = X, B+ & E(g) = 0 E(eye}) = o?H;
Y, = X,B,+ DB, + &, E(e,)=0 E(e,eh)=0a3H,,
&;, &, nekorelované. Nezname si vektorové parametre By, B, a skalirne parametre o2, o3.
V praci je uvedena nutna a postadujiica podmienka pre existenciu rovnomerne najlepSicho

nevychyleného odhadu pre parametre B, ,. Uvedeny je najlepSi nevychyleny odhad pre para-
metre 67, 63
1, 2.

Pe3ome

OLIEHVBAHUE IMAPAMETPOB CPEOHEI'O W JVICITEPCUM
B ABYXOTAITHOM JIMHEMHOW MOIEJN

JULIA VOLAUFOVA

B cTaTthe yKa3aHO HEOOXOAHMOE M HOCTATOYHOE YCIOBHE JJIA CYIIECTBOBAaHMS DPaBHOMEPHO
HAWJIy4IIMX HECMEMIEHHbIX OLEHOK HEM3BECTHBIX MApaMeTPOB CPEAHEro. BoiBeneHb! GOpMyIIbI s
BBIYKCJICHAS 3THUX ONEHOK. YKAa3aHBl TAaKXKe HAWJIyYIINE HECMEIIEHHBIE OLEHKM i NapamMeTPOB
JACHEPCHH.
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