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ON INTERPOLATION IN PERIODIC AUTOREGRESSIVE PROCESSES

JIki ANDEL, ASUNCION RuUBIO
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Summary. The periodic autoregressive processes are useful in statistical analysis of seasonal
time series. Some procedures (e.g. extrapolation) are quite analogous to those in the classical
autoregressive models. The problem of interpolation needs, however, some special methods.
They are demonstrated in the paper on the case of the process of the second order with the
period of length 2.

Keywords: covariance function, interpolation, multivariate AR(1) process, periodic autoregres-
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1. INTRODUCTION

The periodic autoregressive process {X,} of the nth order with a period p is given
by the relation

(1-1) X+ (- 1yp+k ='—Z1 beiXoi (- typtk—i T Mus(i-1yp+k (k =1, ~--,P) ,

where b,; are given constants and #, are uncorrelated random variables with vanishing
mean such that Varg,,;_q),+x = 0p. We shall assume that 0 < oy < o (k =
= 1, ..., p). If the variables X, ..., X, are given, then the relation (1.1) is considered
for p = 1,2, .... But under certain conditions, which will be briefly discussed later
on, it is possible to consider the process {X,} _, similarly as in the stationary
autoregressive models.

The history of the pericdic autoregressive processes is described in [2]. We only
remind that important results about the structure of the periodic autoregressive
processes and about asymptotic properties of some estimators were derived by Pagano
in [6]. Statistical analysis of the periodic autoregressive processes based on the
Bayes approach is described in [2] and [3].

In the special case when n = 2, p = 2 the model (1.1) can be written in the form

(1.2) Xoer1 = b1 Xor + bioXoio 1 + M20s1
Xorrz = 021 X001 + 022X + Mgz -

It follows from the general results given in [6] that any periodic autoregressive
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model can be transformed into classical multidimensional autoregressive model.
In the special case (1.2) we introduce random vectors

zt = (Xlt—19 X2t)l s Yx = ('72r—1» '12r)l
and matrices

1, 0 —byy, —byy 6, 0
= = D= .
BO (—bZI, 1)’ Bl ( 07 _b22 ’ Oa ()

Then (1.2) can be expressed as
(1.3) B,Z,., + B,Z, = Y,,,
(cf. [2], p. 381). It is well known that the two-dimensional autoregressive process
{Z,}© _ is stationary if and only if the roots 4, 4, of the equation
(1.4) |Bo2 + By| =0
satisfy |4,] < 1, |4,] < 1. It can be easily checked that (1.4) is equivalent to
2% = (byybay + bys + b)) A + bysbyy, = 0.

In our case Var Y, = D?. Since we are going to use some formulas derived under
the assumption that the white noise in the multidimensional autoregressive model
has the unit variance matrix, we must transform (1.3) to such case. It is quite easy,
because (1.3) is equivalent to

(1.5) AZ, +AZ =D, ,
where
(1.6) A, =D"'B,, A =D'B,.

Now, Var D™'Y, . = I. Clearly, the equation |[A;A + A;| = 0 has the same roots
A4, A, as the equation (1.4).
Till the end of this paper we shall assume that {Z,} is stationary.

2. COVARIANCE FUNCTION OF STATIONARY MULTIVARIATE AR(l) PROCESS

Although most of the results of this section are known, we introduce them for
_sake of completness. The covariance function R(f) of the process {Z,} is defined
by R(1) = EZ,,,Z,. We shall denote the elements of R(f) by R;|(1), i.e., R(t) =
= (R;j(1)) j=1. Since the elements R;(0) of the matrix R(0) occur very often, we use
the notation R;; = R;;(0) for i,j = 1,2.

Theorem 2.1. Let U = — B3 'B,. Then
(2.1) B,R(0) B, — B,R(0) B = D?,
(2.2) R, = UR(k — 1) for k=z1.

Proof. We multiply (1.3) from the right by Z;, ;4 and then we take expectation.
Since EY,,,Z,,,_, = 0 for k > 1, we get (2.2) immediately.
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Multiplying (1.3) from the right by Z;, | and taking expectation, we obtain
(2.3) B,R(0) + B,R(-1) = EY,,,Z,

t+1
Multiplying (1.3) from the right by Y, and taking expectation we have
EBOZt+leI+1 = D?.
From here
EY,. 1Z;+1 = (B(;IDZ)' .
Because
R(—1) = [R()]" = ~[B;'B,R(0)]'
and R(0) is symmetric, (2.3) is equivalent to (2.1). [J
From (2.2) we have, of course,
R(k) = UR(0), k= 1.

The only problem is to get the solution R(0) from (2.1). This can be done by one of
the following two methods. The first method is based on a system of linear equations
which we get grom (2.1) when we compute the elements of the matrices on the both
sides. Because R(0) and D are symmetric, we get three equations for three unknown
variables R,y, R;,, R;,. The second method is a modern one and it uses some
properties of the Kronecker product A ® B of the matrices A and B. If A = (aij),
B = (b;;) then A ® B = (a;;B). We shall use the following fundamental properties
of the Kronecker product:

(2.4) (A®B)"' =A"'® B! whenever A”! and B~ exist ;
(2.5) AA, ® BB, = (A, ® B,)(A, ® B,) whenever the products exist .
Further it is known that if A and B are m x m and n x n matrices with eigenvalues
¢y &y and Oy, ..., 0,, respectively, then the eigenvalues of A® B are &0;
(i=1..,mj=1,..,n).

Let A = (ay, ..., a,), where a, ..., a, are columns of A. Then the symbol vec A

means
vecA = (ai,...,a) .

If A, B, and C are matrices such that the product ABC exists, then it can be proved
(see Neudecker [5]), that

(2.6) vec ABC = (C’' @ A)vecB.

Theorem 2.2. The elements R;; of the matrix R(0) are given by the formula

vec R(0) = [(B, ® By) — (B; ® B,)]™ ' vec D?,
where
vec R(0) = (Ryy, Rz, Ryz, Raz)', vec D? = (61,0,0,03) .
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Proof. The assertion follows from (2.1) using (2.6). It remains only to prove that
the matrix B, ® B, — B; ® By is regular. Applying (2.4) and (2.5) we have
B,®B, - B, ®B, =(B,®B,)[I —(By' ® B;')(B, ® B))] =
= (B, ® By)(I — By'B, @ B;'B,) = (B, ® By)(I — U® U).
The eigenvalues of U ® U are A2, 1,4,, 4,4,, A3, and thus
A —U®U|=(1-2)(1-244)24-1)

does not vanish for A = 1. Therefore, I — U ® U is regular. The regularity of
B, ® B, is obvious, since By is regular and (B, ® B,)™' = B;' @ B; ' exists. []

3. INTERPOLATION OF Z|

In this section we solve the problem of interpolation, when all variables from one
period are missing. In the case of model (1.2) it means that we want to interp-
olate the variables X,,_; and X,, when all other variables X, (z # 25 — 1, ¢ + 2s)
are known. In fact, we shall see that it is sufficient to know only X,,_;, X,,_,,
Xosr1> Xos42e

Theorem 3.1. The best linear interpolation Z¥ of the random vector Z; based
on{Z,t =% s} is

(3.1) ' Z*=FZ,_, + GZ,,,,

where

(3.2) F = —(B,D2B, + B,D"*B,)"! B|D ?B,,
(3.3) G = —(B,D"?B, + B;D ?B,)"! B,D"B, .

The residual variance matrix V is
(3.4) V= Var(Z - Zf) = R(0) — F[R(1)]' — GR(1).

Proof. We use the form (1.5) of our model. According to formula (18) in [1]
“the best linear interpolation Z is given by
Z;k = _H;I[Hs,s~lzs—1 + Hs,s+lzs+1] 5
where
Hy = AgAg + ATA,, H oy = AlA,, H = AiA,.

5,8+

Inserting for A, and A, from (1.6) we get formula (3.1). Further, using the ortho-
gonality properties, we obtain

Var(Z, — Z¥) = E(Z, — Z¥)(Z, — Z¥) = EZ,Z, — EZ*Z].
This yields (3.4). O
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Of course, an equivalent formula for the residual variance matrix can be obtained
from the relation
Var(Z, — Z¥) = EZ,Z, — EZ}Z* .

The elements of V will be denoted by V;; (i,j = 1, 2).

4. INTERPOLATION OF A SINGLE VALUE

The main point of this paper is to derive a formula for the best linear interpolation
when one value of the process {X,} satisfying (1.2) is missing. A solution is based
on the following theorem.

Theorem 4.1. Let # be a Hilbert space of random variables with vanishing
mean and #, its Hilbert subspace. Let B,y ..., Vm € #. Denote #, the Hilbert
subspace generated by Vy, ..., Y- Put ¥ = (y1, ..., Ym)- Let B be the projection of f
onto #, and let y be the vector of the projections of the components of y onto H# ;.
Let § =y — 3. If E§5 is a regular matrix, then the projection p* of B onto the
Hilbert subspace # | + 3, is

B = B+ (E47) (E39)1 5.
Proof. See Luenberger [4], p. 92, Theorem 3. [J

Let X,,_, be the missing value of the process {X,}. All the other variables X,
(1 # 2s — 1) are supposed to be known. (However, it is sufficient to know only X,
for t =25 — 3,25 — 2, 25, 2s + 1, 2s + 2.) The best linear interpolation of X,
will be denoted by X5._ ;. We use Theorem 4.1, where f = X,,_;,m =1,y =y, =
= X,,. Then

(B, )A?)' = Z:‘ = (XZS—-l’XZs), s T=Xp - XZs'
Obviously,
Efy’ = E(Xy — X50)* = Vaa
Further,
EBy’ = EXzs—1(X2s - Xzs) .
Denote f;; and g;; the elements of the matrices F and G, respectively (i,j = 1, 2).
Then

Xos = f21Xog-3 + [22 X522 + 921X o501 + 922X0542
and

EBY’ = Ryp — (f21 + 921) Ru(l) = f22 R12(1) — 922 Ryy(1).
Therefore, the final formula for interpolation is
X531 = Xogor +
+ VZ—ZI[Rll - (fZl + gZI) Rll(l) _f22 R12(]) - g22 R21(1)] (XZS - )?Zs) B
where (X,,_4, X5,) = Z from (3.1).
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The case, when only X, is missing and all variables X, for ¢ % 2s are known, is
quite analogous. We get
X;ks = XZS +

+ V1_1][R12 - (fll + 912) Rzz(l) - f11 R21(1) — 911 R12(1)] (X2s—l - Xstl)'

The methods described in this paper can be generalized to n = 2, p = 2. It seems,
however, that it is more useful to derive formulas for a given particular model rather
than to try to write down cumbersome formulas for the general case.
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Souhrn

O INTERPOLACI V MODELECH PERIODICKE AUTOREGRESE
JiIRi ANDEL, ASUNCION Rubio

Modely periodické autoregrese jsou vhodné pro statistickou analyzu sezénnich &asovych fad.
Nékteré postupy (napf. extrapolace) jsou pro n& zcela analogické jako v pripadé klasickych
autoregresnich modela. Odvozeni interpolacnich vzorcu vSak vyZaduje pouZit specialnich netri-
vialnich metod. Ty jsou v praci demonstrovany na modelu druhého Fadu, ktery ma délku periody
rovnu dvéma.

Pe3ome
OB MHTEPIIOJISILIMU B IMTEPUOANYECKUX IMTPOLIECCAX ABTOPETPECCHUN
JiIRi ANDEL, ASUNCION RUBIO

HekoToppie mnpoueaypbsl B NEPHOJUYECKMX IPOLECCAX aBTOPETPECCHM CTPOATCA TaK Ke Kak
B KJIACCHYECKOM MOMENM aBTOPErPECCH — HANpPHUMeEp IKCTpanonsauusa. B npobieme uuTepnonsuuu
HaJl0 MPUMEHUTD CIIEIMallbHbIE METOABI. B CTaThe 3TO NOKa3aHO AJs IPOLECCOB BTOPOrO NMOpAAKA
C nepuoJom 2.
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