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SOLUTION OF A LINEAR MODEL OF A SINGLE-PISTON PUMP
BY MEANS OF METHODS FOR DIFFERENTIAL EQUATIONS
IN HILBERT SPACES

IVAN STRASKRABA

(Received September 26, 1985)

Summary. A mathematical model of a fluid flow in a single-piston pump is formulated and
solved. Variation of pressure and rate of flow in suction and delivery piping respectively is de-
scribed by linearized Euler equations for barotropic fluid. A new phenomenon is introduced by
a boundary condition with discontinuous coefficient describing function of a valve. The system
of Euler equations is converted to a second order equation in the space L%(0, 1), where /is length
of the pipe. The existence, unicity and stability of the solution of the Cauchy problem and the
periodic solution is proved under explicit assumptions.

Keywords: Compressible fluid flow, telegraph equation, time-dependent boundary condition,
stability, periodic solution.
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1. FORMULATION OF THE PROBLEM

Consider the following system. We suppose that we have a pipeline placed in the
x-axis at the beginning of which there is a piston pump while at its end there is
a voluminous tank, where a constant pressure is maintained (see Fig. 1).

TANK

p=const

PUM P

Fig. 1

We assume [1] that the flow in the pipeline is nonstationary, and that the flowing
liquid is slightly viscous (e.g. water) and compressible. The flow is described by
the Euler equations of one-dimensional hydrodynamics with a term caused by friction
of the fluid near the wall of the pipe, due to its viscosity. Namely, the governing equa-
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tions are

(1) \ u, + uu, + ! P = =k |u|u,
Q

(2) . 0, + (ou), = 0.

Here u = u(x, 1) is the velocity, p — pressure, ¢ — density of the fluid at time ¢
and position x, k is a constant. The equations (1), (2) are supplemented by a state
equation of the form

p = plo), where ¢*> = p(0)>0, (¢>0).

We assume that the variation of u along the x-axis is not too large and, moreover,
that the local Mach number Iul/c is small. Then the term u . u, is small as compared
with the other terms in (1) and so (1) can be written as

1 k
(3) u,+ - po=——|u|u.

0 0
In the equation (2) we neglect the term ug, supposing the variation of density along
the x-axis is small, so that we get

(4) 0, +ou, =0.

Set Q = S.u, where S is the cross section of the pipeline. Inserting this into (3)
we find

5) 0.+5p. =~ Xlg. 0.
So

L4

Multiplying (4) by p’(e) yields
0 !
(6) p,+§p(g)Qx=0-

Further approximation consists in taking ¢ = g, = const. — the density of the still
medium — in (5), (6). Thus we have

S k %
(7) Ql+_pt=——|Q‘Q’ pt+’£p(QO)Qx=0

Qo0 Soo S
In order to establish the boundary conditions we follow the scheme of the pump
as in Fig. 2.

The fluid flows into the reservoir with a rate of flow Q, and flows out of the working
compartment of the pump with a rate of flow Q,. The piston of the pump moves
with a periodic speed causing variations of the rate of flow of the magnitude fo(z).
A part of Q; might be either consumed or fortified by the variation of density due to
the variation of pressure.
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So we find
d4av

(8) Q=AQ=Q1—Q2=~J +f0(t)’

where 4V is the variation of the volume of the fluid in the pump.
Define the capacity of the reservoir together with the working compartment as C,,

where dV/dp = —C,, and assume that C, is constant.
Q ,
I @ l TANK
RESERVO IR
*;___,,—7 z__«‘_____

| N A

Qz

[/ [ /]

Then (8) yields
(9) Q(Oa t) + C, pt(O’ ’) = fo(t) .

This situation corresponds to an open valve. If the valve is closed we must consider
just the capacity of the working compartment of the pump, which is, say, C,. If the
time of closing the valve is t,, we have (9) in the form

(10) #(1) pA0, 1) + Q(0.1) = (1), 120,
where
c, O0=t<t,
\(11) %(’):{CO Lt <o, #(t+ o) =x1i),
_f(t)0§1<f1,
f(’)‘{()o nst<o, ft+o)=f(1), 120

(o is the period of a cycle of the pump).

As pressure of the fluid in the tank at the end of the pipeline is constant, we are
justified to set
(12) p(l, 1) = const., t=0.

Our model does not include the function of the valve on the delivery side of the
pump.
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Finally, we are interested in the stabilized régime of the pump when Q and p
vary periodically, i.e.

(13) Ox,t + ®) = Q(x, 1),
plx, t + w) = p(x,t), xe[0,[], t=20.
Our final simplification is that we substitute —(k/Sg,).|Q|. Q for the right-hand

side in the equation (7,), where Q is the average rate of flow during the time period w.
It is clear that it can be approximated by

2r.SQ

w

0=

where r is the radius of the crank and S, is the cross section of the piston. Thus the
system (7) is now in the form

90 Swg,
(15) pr+i?c(2) x_o'

It is seen from (10), (11) and (14) that the functions p, and Q, cannot be continuous.
In order to reformulate the problem in a suitable way we shall seek a solution of the
equations (14), (15) subject to conditions (10), (12) and (13) in the class of continuous
functions p, Q such that Q,, p. are continuous (x€[0,!], r = 0) and p,, Q, are
continuous on [0, ] x [0,¢,] and on [0, ] x [f;, w]. Let us make some formal
arrangements. The operation

_5e (15) + — (14) yields
Qo 0x
2krS
(16)' Q.+ el Q, — C(Z)Qxx =0
Qo
Substituting from (15) into (10) we get
(17) —-%(t)gg o 00,1) + Q(0,1) = f(£), t=0.

Further, differentiating (12) with regard to ¢ and using again (15), we find
(18) 0.L,)=0, t20.
Finally, (13) is expressed by

‘ Q(x,t + @) = O(x, 1), xe[0,1], t=0.
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Setting now
u(x, 1) = 0(x 1) ~ £(1),
_ krSO

QoSw |

2\ -1
c
(zlgisg) =0, 0Zt<y,

2\ -1
c
<%2m> =0, HEt<o,

(19) o) =

S
aft + ®) = oft), teR
L9(1) = =/"(1) = 2/(1)

we get for u the equations

(20) u, + 2yu, — cqug, = g(t), 0<x<lI, t>0,
u (0, 1) — oft) u(0,7) =0, =0,

(21) u(l,y=0, t20,

(22) u(x,t + w)=u(x,7), 0<x=<1, t=0.

Consider the abstract version of the problem (20)—(22). Let H = L,(0, I). Define
operators A, A, in H by the following rule:

2 dv d* , , ,
(23) D(A}) = veH;a—,d——z—eH,v(O)——cciv(O)=O, v'() = 0%,
x dx

(A}v) (x) = —cdv'(x), veD(4]), xe(0,1), i=1,2.

The problem (20)—(22) has the following equivalent:

(24) u'(f) + 2y u'(t) + A(t)* u(r) = g(t), teR,
u(t + ) = u(t), teR,
“where
Al; O§t<t19
25 A(t) =
(23) ® {Az, n<t<ow, Alt+ w)=A(t), teR.

2. AUXILIARY LEMMAS
Solving the problem (24) we shall need some auxiliary results which now follow.

Lemma 1. The operators A}, A5 defined in (23) are selfadjoint and positive
definite.
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Proof. Itis clear that e.g. the operator A = A} is symmetric, since for v,,v, € D(4)
we have

1
(Avy, v,) = -—céj vi(x) vy(x) dx =
0
!

= —eifoivaleo + AlonsiTheo = 6 | 0(x) i) 0x -
0

=dfwm%m+a@%@+mm%w—m@%@—jEMﬁuwﬂ=

=@Pm@%®—wm®um1&@wwwﬁlmwm.

We shall show that D(4*) = D(A). Let w e D(A*). Then
(Av, w) = (v, A*w) forall ve D(4).

Denote z = A*w. Then

- ¢ jlv”(x) cw(x) dx = J.Olv(x) z(x)dx for ve D(A) > CZ(0,1).

0

This means that the second distributional derivative of —cjw is z € L,(0, [). Now
we show that w'(0) — a«; w(0) = 0, w'(I) = 0.
For v e D(A) we have

1 1
2 "
fv.zdx= —cajv'w dx =
0 0

= ¢; |:—0'(l) w(l) + v'(0) w(0) + v(l) w'(l) — v{0) w'(0) — le\v” d,\'] .

0
As cgw” = —z and v'(0) — 2, p(0) = 0, v'(l) = 0, we have
() w'(I) — v{0) [w'(0) — o, w(0)] =0 for ve D(A).

Since it is possible to choose functions v € D(A) so that v/0) and v[/) take arbitrary
prescribed values, we necessarily have

w(l) =0, w(0)— o, w0)=0.

Hence indeed w e D(A).
Let us prove that A4 is positive. If v € D(A) then

1
(26) (Av, v) = —céj v'vdx — cg[v'(I) v'l) — v'(0) v(0)] +
0
! 1
+ cgj v'(x)* dx = cgoy 0(0)? + cg'[ v'(x)* dx.
0 0

466



Further,
o) = (0) + f “v(e)de,
0

whence

o(x)* <2 [0(0)2 + qxv’(cf) dé)z] < 20(0)* + 2[:1 dx J’ :v’(f) d¢ =

0

= 20(0)* + 2x Jxv’(é)z dé < 20(0)% + ZxJAlu'(é)2 dé.

V] 0

Hence

(27) J.:v(x)z dx < 210(0)% + ﬂzx ﬂu'(c)z dé dx =
— 20 o0 + 12 J ()7 dE < max (il 12) [ocl o(0)? + J (e df].

0 1 0

This together with (26) yields

(29) (0.0 2 6 [max (2, 2) | [ e = o

1 0

The proof is complete.

Lemma 2. We have ([2])
(29) D(A,) = D(4,) = H'(0,1) = {ve H; v e H} .

Proof. It is clear that e.g. the closure of D(A}) in D(4,) is D(4,). According to
(26) we have

1

(30) 1020, = c2es o(0)? + 2 J W) dx for ve D(A2).
0

It follows from (27) and (30) that there is a constant k > 0 such that

[oll3can = K J.;[v(x)2 + v'(x)?]dx, ve D(4}).

N\

On the other hand, using in (30) the Sobolev embedding theorem we get

1
[ol3eas < K j [o(x)? + v()7] dx, ve D(4Z)
0

with a constant K > 0. Thus the graph norm of A, is equivalent to the norm of
H*(0, I) on D(A}) and D(4,) is equal to the closure of D(A}) in the norm of H*(0, I).
Now it suffices to prove that the orthogonal complement in H'(0, [) of this closure
is the trivial subspace {0}. So, let w L cl;: D(43), i.e. let

(v, Waio.y = 0 for all ve D(A7).
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Then
1
J (o'W + vw)dx =0 forall veH*O,1) suchthat v'(0) — a, »(0) =0,
0
() =0.
Integrating by parts and using the boundary conditions we get
1
(30a) j (—v" 4+ v)wdx = o; v(0) w(0) for ve D(4}).
0
The operator —(d?/dx?) + Id is selfadjoint on D(A4}), and
1 ! 1
(=" + v,v) = a, v(0)* + '[ v'(€)* dé +J‘ v(é)? dé = .[ v(&)>d¢ for ve D(A}).
0 0 0

It follows that the range of —(d*/dx?) + Id is the whole L,(0, /). Hence, for any
¢ € L,(0, 1) there is a unique v € H*(0, [) satisfying the equations

—v" + v = ¢(x),
v'(0) — o, v(0) = 0,
v()=0.

Write the solution in an explicit form. The solution of the initial problem is
o(x) = chx. o(0) + shx. v'(0) — f “sh(x — &) (¢) de.
0

Inserting v'(0) = o v(0) we get

v(x) = (ch x + o, sh x) v(0) — sth(x - & o(¢)de,
while the derivative satisfies 0

v'(x) = (shx + oy ch x) v(0) — j'xch(x — &) p(¢)déE.

0
The boundary condition v'(I) = 0 is met if we set
v,0) = (sh 1+ a; ch l)“‘[lch(l — &) (&) de.

Inserting this into (30a) yields )

j o) w(x) dx = —— % f oh(l = &) p(¢) dé w(0)

shl + alzh—i 0

ie.

Joa o= TR -0 et g e,

shl+ a,chl
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We get

(30b) w(x) = o ch(? — x) w(0)
shl+ oa,chl
In particular, for x = 0
w(0) = oy ch 1w(0)
shl+ oy ch X
ie.
w(0).sh ! =0
from where
(300) w(0) = 0.

Now (30b) and (30c) imply w(x) = 0, q.e.d.

3. SOLUTION OF THE ABSTRACT PROBLEM

Continuing the investigation of the problem (24), let us consider at first the Cauchy
problem

(31) u'(t) + 2y u'(z) + A(1)* u(t) = g(1),
u(t) = ug,
u'(t) = uy,

where

<
A(t) = 4, 0=t <1y,
A, 1St <w, Alt+ o)=Af), teR.

For I = R, k = 0 integer denote by C¥(I; H) the space of functions from I into H
which have continuous derivatives up to order k in the norm of H.

Definition 3. 4 weak solution of the problem (31) is a function u € C*([0, o0); H)
such that

<(32) u(t) = uy, u'(t)=uy,
u(t) = Cy(t — nw) u(nw) + S,(t — nw) (u'(nw) + yu(nw)) + Jt Sy(t — 1) g(r) dr

for te[nw,no + t,] and

(33) u(t) = Cy(t — nw — ) u(nw + t,) + S,(t — nw — )
[w'(now + t;) + yu(nw + 1,)] + J Syt — 1) g(r)de
no+ty
for te[nw+t,, (n+ o], neZ, nozr,
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where
C{t) = e "cos t \J(A] — 97,

S{(t) = S =)
Vi =7

Theorem 4. Let uy € D(A,), u; € H, g € C([0, ©); H). Then there exists a unique
weak solution u(t) of the problem (31) and it is given by (32), (33). This solution
belongs to

C'([0, o0); H) n C([0, o0); D(4;)), i=1,2.

Proof. For simplicity let = 0. If n = 0 then (32) with u(0) = u,, u’(0) = u,
clearly represents a function from C'([0, #,]; H) 0 C([0, t,]; D(A,)) (this is standard).
By Lemma 2 we have D(4,) = D(4,); hence u(t;—) € D(A,). Let u(t,—) = u(t; +),
u'(ty—) = u'(t,+). Then (33) gives a function from

C'([ty, o]; H) n C([ty, @]; D{4,)).

Analogously, we can continue in [w, o+ t4], [a) + t;, 2] and so on. It is easy
to see that u is continuous in both norms of D(4;), i = 1, 2 even at the contact points
because it is continuous from the left and from the right with the same value of the
limit.

Remark. It is clear that in Theorem 4 it suffices to assume g € L*([0, 0); H)
instead of g € C([0, o0); H). The assertion remains without any change.

For construction of a periodic solution to the equation (31) it is convenient to
define the following operator K(1, t): H » H,t < t. If T < t, v € H and u(7) is a weak
solution of

(34) u'(t) + 2y u'(t) + A(t)* u(r) = 0,
O,

then we define K(, t) v = u(f). According to Theorem 4 the operator K(z,1) is
defined and K(1,t)v, (d/df)K(t,7)v = K(t,t)v and A;K(t,t)v are continuous
functions of 7 and ¢ in H for any v e H. From (32), (33) it is easy to see that for
0<t<now=t=(n+1)w we have

K(t,7) =0, K(ft,71)=1,
(35) K(t,7) = Cy(t — nw)K(nw, 7) +

+ Si(t — nw) [K{(nw, t) + 7K(nw,7)] if no <t = no+t,
and
(36) K(t,7) = Cy(t — nw — t,) K(now + t;,7) +
+ 85(t — no + ;) [K{(now + t,, 1) + yK(no + 14, 7)]
if no+t,sts(n+1)o.
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Let us consider the periodic problem
(37) w'(t) + 2y u'(t) + A()* u(t) = g(),
u(t + o) =u(t), teR,

where A(1) is as above and g € C(R; H) is a given w-periodic function. We will prove
the following.

Theorem 5. Let g € C(R; H) be an w-periodic function and let there exist constants
M > 0 and 6 > O such that
(38) |4:K (2, ) o]} = Me™*C2[o]],
(39) [K(t,7)v] < Me™°¢" 9o, t=7, veH.

Then there exists a unique weak solution of the problem (37). This solution is
given by

(40) u(t) = Ji K(t,7)g(r)dr, teR,

where the operator K(t, ) is defined by (35), (36).
Proof. The convergence of the integrals (40),
t
J AK(1,7) g(r) dr
as well as the validity of the formula

u'(t) = r K(t,7) g(r) dr

are guaranteed by (38), (39).

Let us show that u(z) given by (40) is a weak solution of (37;) on [0, w]. This
amounts to showing that

(41) ut) = (1) u0) + S0 [(0) + 7 u(0)] +

+ J.tsl(t —17)g(t)dr, 0Zt<t,,
(42) u(t) = Caft — ty) u(ty =) + Syt — 1) [t =) + yu(ti—)] +
+JtS2(t —17)g(r)dr, , St<ow.

ty

For 1€ [0, t,] we have by (35)

u(t) = j " K1, 1) o(c) dr + J’ K1, 7) 9(z) de =

- 0
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= J.O {C4(1) K(0, 7) + S4(1) [K,(0, 7) + 7K(0,7)]} g(z) dr + Jtsl(t — 1) g(7) dr.

- 0
Since clearly

u(0) — j " K(0,7)g(e) dr, w(0) = f ® K0, 7) g(c) dr

Y -

(41) is thus proved. The formula (42) is verified quite analogously. Further, from the
uniqueness part of Theorem 4 it follows that

K(t + o, t + w) = K(t,7) forall ©<t¢.

Besides, we have
t 0
u(i) = j K(t, 7) g(z) de = j K(t, 1 — o) g(t — ) do.
— o0 0

Hence

0

Kit+ o, t+w—0)g(t+ov—o0c)do =

ut + o) = L
- J' °°1<(t,t —0)g(t — 0)do = f ' K(t, 7) g(c) dr = u(1)

(0] — 0

and this completes the proof.

4. EXPONENTIAL STABILITY OF THE ABSTRACT PROBLEM

Now we shall derive some conditions guaranteeing (38), (39). We use the technique
suggested in [2].

Let u(r) = K(¢, t) v, where v € H and K(t, 7) is defined by (35), (36). Suppose first
that te[nw, nw + t;] and u(nw) = uye D(A}), u'(nw) = u, € D(A,). Then it
is easy to show that u e C*([nw, nw + t,]; H)n C([nw, no + t,]; D(A?)).

Putting

(«) ull) = &)
we get

(44) w(t) = (=yw(t) + w(t)) . e 779,

(43) w(t) = (77 wi) = 20 w(0) + (D). e
As

(46) w'(t) + 2y u'(t) + AT u(t) = 0

we find for T = nw

(47) w'(1) + (47 — ) w(t) = 0,

w(nw) = u,,
w(nw) = uy + yu,.
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Multiplying (47) by w'() in H we get
1d, 1d
(# L o+ L L a7 Ol = o,

Suppose for simplicity
(49) A2 zm>9y*, i=12.

(For the original problem this is satisfied.)
Integrating (48) over [now, t] we obtain

(50) W@l + (a7 =)' wn)]* =
= [wno)]* + (47 = )" w(nw)|*.

Now, if ug € D(A,), u; € H, then there exist ug; e D(A3), uy; € D(Ay), ug; ——> uq,

uy; A u, which yield the corresponding solutions wj(f) of (47) with uy := uy,

uy 1= uy;. Taking wy(t) = wi(t) — wy(r) we get similarly as above
PO + (47 = )" wil0)|* =

= fluy; = e + J(Ay = 92" (uo; — o) |2,

D(A1) H
which implies that w;(1) === w(t), wi(t) == w'(1). Clearly, w is the weak solution

of (47). Suppose that e.g.
h-No+t,srsh+ko+t,<t<h+k+ 1o

(other configurations of the numbers t < ¢ with respect to intervals of the type
[jw,jo + t,], [lo + t,, (I + 1) ] can be treated quite analogously). The equality
(48) holds in all intervals [lw, lo + t,], [lo + t;, (I + )], I=0,1,...,k as
well as in [1, nw], [(n + k) o + t,, t]. Integrating (48) over [(n + k) w + t, t]
we get

(51) E(t) = [w(O* + (43 =72 w()]* =
= W + K)o+ 6)]* + (45 = 9?2 wl((n + K)o + 1)

As the operator (43 — y%)"/2 (43 — %)~ %/2 is everywhere defined and closed in H,
it is bounded, so that

(52) E(t) < |w((n + k) o + 1,)]* +

+ (45 = ) (AT =) (4] = ) (0 + K)o + )] <
(43 = 2 (4 — )2y,
L + K)o + 1) + J(43 =222 w(n + k) o + 1)]*]

Integrating (48) over [(n + k) w, (n + k) » + 1,] we find

< max {1,
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(53) Wl + Ko+ 6)[? + (47 =92 w((n + K)o + 1)]* =
= [w((n + K) o* + (47 = 2*)"2 w((n + k) 0)]* =
< max {1, (47 —y*)"2 (43 = »*) 72}
[ + F) o)|* + (43 = 9%)"2 w((n + k) 0)[7] -
If we combine (52) and (53) we obtain
E(r) < max {1, (43 — 9*)"2 (4] — y*)7 2]} .
.max{ n(Al )1/2 (A2 ,)12) 1/2”2}.
Jlw((n + k) o)]* + (45 = 932 wi(n + k) 0)||*] =
= @[[w((n + k) o) [ + (42 = )" wi(n + k) )],
where
9 o = ma (045 = ) (47 - )
” AZ _ 2)1/2 (AZ _ 2)—1/2”21 .
Indeed, we have [(43 — p?)'/2(4] — y?) 721" = (4] — y?)"/2 (43 — y?)" V2,
from where |[(47 — 9%)"*(43 — ¥%)” ”2" = |(43 — y»)'? (A2 PV OIf

(43 = )12 (43 = 2) 2] =1 then (47 = 397 (43 = )] 2 1.
Thus either
(55) max {1, [[(43 — y%)"* (47 = %) "2}
max {1, (4% = )12 (43 — )12 <
< max {[(43 —y?)"2 (47 = )77,
42 = )1 (45 = )70} = g,
if one of the numbers in parentheses is <1, or =<gq? if both the numbers
(43 — y*)2 (A} — »*)7*2| and (4] — y*)"/? (45 — 9*)~"/?| are greater than 1.
We proceed quite analogously in estimating the sum of the square powers of the
derivative w'(t) and the expressions of the type (4; — y%)"/? w(f), where t = jo or

t = jo + t;. We repeatedly use the trick with the operators (A7 — y?)*Y/2. After
2k + 2 steps we get

WO + (43 = »2)"2 wi)]* =
< ¢ ([w(no)]* + (43 = %)% w(no)[?).
Integrating (48) over [z, nw] we get
[wno)]* + (45 = 9*)"72 w(nw)|* =
= [w@I* + (42 = )" w(@)* = [o]*-
So we eventually obtain

(56) WO+ 143 = )2 W] < a2 ]o]*
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Clearly, t — © = ko + ¢, where 0 < ¢ < 2. Hence k = (1 — t — ¢)w and (56)
takes the form

(57) W@ + (42 = %) w(p)]|* = et 2 emoly]2.
Using (57), (49) and (44) we get
I e O L S (R S EE]]

Il = a

1/2
L exp —y+ln—q(t——r), t=>1,
_?2 w

Kt 7)| < 4q (1 + :/(—m-y_ y2)> exp [(—y + lnjq) (1t - r)], t=T.

It is important to notice that if one of the numbers
(59) = [[(43 = )2 (43 = )72,
= (43 = 7)1 (42 =)0

is smaller than 1, then in the estimates (58), ¢ can be replaced by ¢'/2.

5. EXISTENCE OF SOLUTION UNDER EXPLICIT ASSUMPTIONS
As a direct consequence of Theorem 5 we have

Theorem 6. Let g € C(R; H) be an w-periodic function and let either the numbers
41, q, defined by (59) be both greater than 1 and

(60) yo > 1Ingq
with

q = max {‘ha ‘12} s
or one of q,, q, be less or equal to 1 and
(61) yo > 3Ingqg.

Then there exists a unique weak solution of the problem (37). This solution is given
by (40) with K(t, 7) given by (35), (36).

To get a more explicit result we need

Lemma 7. If o, > o, then q, £ 1, q = 1. If, moreover,
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then

2,2 -1
(62) gz L A

Proof. Let ze H and z; = (47 — y?)""/?z, i = 1, 2. Then we have
(63) 1043 — 72 (42 = ) 2] = (43 = )2 2 = (= ) 20 ) =
1 1
= o,cg 24(0)* + céj zy(¢)* dé — yzj z,(E)? d¢ =
0 0

= (ap — %) €5 z,(0)* + acq z1(0)* + 5 j;zj(é)z dé — y? J.;zl(é)z dé =
= (02 — o) ¢ 220 + (47 =97 2 |* =
= (%2 — @) €5 2,(0) + 2 = [[*.
Thus we have g, < 1. Since
(42 = y%)'2 (43 — 7)1 = (45 = )2 (4] =) 7]
we have ¢, = (1/q,) = 1 and consequently g = ;. Let us estimate q,:

(64) a1 = (42 = 32 (4 _ )RR =
1
= a,cg 2,(0)* + co'[ z5(E)F dé — J J8)PdE = ayeg 2,(0)% + c(z)j' Z5(8)? d¢ =
0

L
< max <1, ﬁ) [azcé 2,(0)% + céj z5(¢)? dé] .
%2 0

Now, if v € D(4,) for some i = 1,2 then

o = [o0) + [we dé]zé 2[ o0 + (RXE d;)z] <
oo (19 ]

= 20{0)* + 2xj v

0

1
(€)% d¢ < 20(0)* + 2xJ v'(¢)*dé.
0

Hence
1
(65) . J.lu(x)2 dx < 21v(0)* + lzj v'(¢)* d¢.
0 0
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On the other hand,

(66) ¢ flv’(ﬁ)z d¢ + a,c5 v(0)* = ;—f[lzozi v(0)? + lzjlv'(é)z df:l =

(]

et . lo; L, o . CAYE
> l—;’ mi (1, ?> [21 v(0)* + I J‘Ou (¢)? d&f] > 2 min (1, ?> j-ov(é)z dé,

the last inequality being a consequence of (65). Here we use

Proposition 8. Leta > ¢ > 0,b>d > 0,x, y,z = 0 and

(67) z<Zcex +dy.
Then
(68) ax + by < max , b (ax + by — z).
a—c b—-d

Proof of Proposition is quite elementary:

ax + by —z2(a—c)x+(b—d)y =

Il

- - —¢ b-d
=4 c.ax+u.bygmin 4 c’_b_ (ax + by)
a b a b

= [max {a ‘i - rbd}]_l. (ax + by).

lZyZ

From (66) we have

1

0

69) 2 _[ z,(8)2 de < _ ol 2,(0) + __) j lz’z(ﬁ)z de.

0 min | 1, L) min( , )
2 2
In Proposition 8 set

.2 — —
a=oy,, b=c, ¢c= —F—°, =

x =200, y= f zy(&)?de, z= vzj z,(£)* d¢.

Take (69) instead of (67). Then (68) yields

l
(70) aycq 2,(0) + C(’“;J‘ z5(&)? d¢ <
0
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2 2
ose ¢
< max 270 — 0 ¥
l22

ApCo — O — ¢ l
min (1, %) mln aZ\]

.[%Cg 2,0 + ¢ f 2(8)? dE — f (&) dé]

2
¢
= Olz 2 ”2”2 M
2 Y
I
min (1 iz)
2
From (64) and (70) we see that
2,2 -1
g, < o fy_ Iy )

%2 2 min ( lﬁzz)

It can be shown that the particular values of constants oy, o,, I, y, ¢o, @, We are
insterested in satisfy the condition

q.e.d.

L |2

2.2 -1
- In Iy
2

1— < yw,

%2 & min < , %)

Remark. It should be mentioned that, in fact, the function f(7) in (9) is of the
form f(1) = w(t) . fo(t), where W(f) = 0 for 0 £ ¢t < t, and ¥(f) = 1 for t; £ t < o,
v(t + w) = ¥(t), and fy(1) is a smooth function describing the motion of the piston.
This function has jumps at the points ¢t; + nw, n integer. So far we have supposed
that f(f) is approximated by a smooth function. This can be avoided by treating the
problem (31) with g(r) = f“(t) + 2y f(t), considering here the distributional
derivatives of f. The “worse” function on the right hand side of (31) is then of the
type 8'(t — ¢; — nw) . 1, which still yields a weak solution of the abstract problem.
Another possibility is to set, instead of (19;),

which is sufficient for (61).

folt) — f Qﬁ)_(ﬁlw—vx),z_

Ky — Uy Py — %y)

u(x, t) = Q(x, 1) —

Then the problem (16), (17), (18), (13) is reduced to (31) with g(¢) sufficiently smooth
and in the explicit formulas no distributions need be treated.
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Souhrn

RESENI LINEARNiIHO MODELU JEDNOPISTOVEHO CERPADLA METODAMI
PRO DIFERENCIALNI ROVNICE V HILBERTOVYCH PROSTORECH

IVAN STRASKRABA

V préaci je formulovan a feSen matematicky model proudéni tekutin v jednopistovém Cerpadle.
(‘fasovff prubéh tlaku a prutoku v sacim resp. vytlaéném potrubi je popsan linearizovanymi Eule-
rovymi rovnicemi pro barotropni tekutinu. Novy jev prina$i okrajovd podminka s nespojitym
koeficientem popisujici funkei ventilu. Soustava Eulerovych rovnic je pfevedena na jednu rovnici
druhého tadu v prostoru LZ(O, /), kde / je délka potrubi. Je dokazana existence, jednoznacnost
a stabilita FeSeni Cauchyho tlohy a periodického feSeni za explicitnich pfedpokladu.

Pesiome

PEUIEHUE JIMHEMHOW MOJEJIM OJHOITOPIIHEBOI' O HACOCA METOJAMU
I JUOPEPEHUVAJIBHBIX YVPABHEHUI B I'MJIBBEPTOBBIX
TITPOCTPAHCTBAX

IVAN STRASKRABA

B pabote cdhopmMynupoBaHa W pelieHa MaTeMaTHYeCKasi MOZENb TCYCHHUSI XXUIKOCTH B OJHONOP-
LIHEBOM Hacoce. BpeMeHHOM X041 AaBNeHNUs M IPOTEKaHNs B CI[yCKHOM KOJIJIEKTOPE OIMCAH JTMHEapH-
30BaHHBIMHM ypaBHEHMsAMHM Oitniepa anst 6apoTponHoii xmakoctu. HoBoe siBIeHME NpenCTaBisieT
co60it KpaeBoe yCIIOBHE C Pa3pbIBHBIM K03 duLHeHTOM, onuckiBarouiee paborty BenTuisi. Cucrema
ypaBHeHUil Dilnepa nepeBe/ieHa Ha OAHO YPaBHEHHE BTOPOIO IOPSAKAa B NPOCTPAHCTBE L2(0, ),
Kae/— mHa KosuiekTopa. JlokasaHbl CynIeCTBOBAHME, ONHO3HAYHOCTh M YCTOMYMBOCTH PCLICHHS
3afa4yu Koy u nepuoanyeckoro pelieHus Npy BhINOJIHEHUH SIBHBIX IIPETIONOKEHHMIA.
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