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ON THREE PROBLEMS OF NEUTRON TRANSPORT THEORY
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Summary. In this paper, the initial-value problem, the problem of asymptotic time behaviour
of its solution and the problem of criticality are studied in the case of linear Boltzmann equation
for both finite and infinite media. Space of functions where these problems are solved is chosen
in such a way that the range of physical situations considered may be so wide as possible. As
mathematical apparatus the theory of positive bounded operators and of semigroups are applied.
Main results are summarized in three basic theorems.

Keywords: neutron transport, initial-value problem, criticality, asymptotic behaviour, neutron
flux, analytical solution, cross sections.

INTRODUCTION

The behaviout of the neutron flux ¢ in a medium is well described by the equation

0
(1) 9@~ To + Sp + Fo
ot
completed by some conditions (e.g. initial or boundary ones). Here, the following

notation is used:

To = —{\/(2E) oV + /(2E) ;Ni(x) 0. (E, o)} ¢(x,E, 0,1);

So = /(2E) ZN,-(x)j dE/J‘ do' 6 (E' > E, o > o) ¢o(x. E', o', 1) ;
i Q

0

0
Fo = J(2E) ZNi(x)j dE’J. do' 6,(E' > E; @' > o) o(x, E, &', 1) ;
' 0 Q
x, E,o,t ... coordinates of location, energy, angle and time, respectively;
Q ... surface area of the unit sphere;
N(x) ... density of nuclei of the scatterer;
0, ... microscopic total effective cross-section;
64, 06y .. microscopic differential effective cross-section for scattering and

fission, respectively.
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In this paper, three problems will be studied:

a) the initial-value problem,
b) the problem of dominant time eigenvalues, and
¢) the criticality problem.

The problem a) is formulated as follows: to find a solution ¢ of Eq. (1) in a class C,
of complex functions if the initial distribution ¢(x, E, o, t = 0) belonging to a class
C, is given.

Existence and uniqueness of the solution to the problem a) were shown e.g. in
paper [1] for a convex homogeneous body D in the case C; = L,{D x (0, ) x
x Q x [0, 00)} and C, = L,{D x (0, ) x Q}. As inelastic scattering for high
energies and fission effective cross-sections have not appropriate properties, these
processes were not considered there. Later, the result was generalized to the case
of a convex and partwise homogeneous body including more general models of
scattering [2]. The problem was studied in the space L,, but it was assumed that the
velocities of neutrons are bounded (the reason was essentially the same as in paper
[1]). In a similar way, the problem was solved also in [3].

The problem b) has the following formulation: to find a real number 4 and a non-
trivial nonnegative function ¢ belonging to a class C5 so that the equation

(2) lop =T + Sp + Fo

may be fulfilled, 4 being the maximum of the possible values.

This problem is closely connected with the problem of asymptotic time behaviour
of the solution to the problem a).

Formulation of the problem c) is as follows: to find a real number = 0 and a non-
trivial nonnegative function ¢ belonging to a class C, so that the equation

(3) To + Sp + nFp =0

may be fulfilled.

The problems b) and c) have been discussed in literature very often. Always
a bounded and convex body is considered, L,(1 < p < o) plays the role of classes
C, — C, and the main task is to transform the problems in such a way that the
theory of compact positive operators [4] may be applied directly. Clearly, for this
purpose, the corresponding operators in the formulation must have the desired
properties, which does not dispense with strong restrictions set on the medium
characteristics. In this way, the range of physical applications gets narrower [ 1, 5—8].

In this paper we will deal with the problems a), b) and c) for both bounded and
unbounded media. The plan is as follows: First of all, basic physical properties of
the medium will be stated in a form of three generalizing suppositions (being satisfied
in all known real cases, of course). Then a space of functions will be chosen ap-
propriately with respect to these properties. Finally, the problems will be transformed
in such a way that the theory of semigroups and of positive operators may be applied,
and basic theorems will be proved.
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BASIC DEFINITIONS AND SUPPOSITIONS

Definition 1. Let B be a metric space with a measure p and M < B a given set,
H(M) > 0. Let {V },>0 be a finite or countable decomposition of M such that

i) VinV; =0 fori+jand y(Vy) = 0;

ii) for any j = 1 the set V; is open, u(V,) > 0 and there exists a constant r > 0
such that the inequality

u(V; 0 K(x, £)) > ru(K(x, ¢))

holds for any e€(0,1) and any x € V; (K(x, €) is a sphere with radius ¢ and with
centre x in the space B).

A complex function ¢ defined in B is said to have PS(M) property if it is finite
and continuous on any set V;, j 2 1.Similarly, a function ¢ is said to have SPS(M)
property if it is finite and uniformly continuous on any set V;, j = 1.

Supposition 1. For any medium i = 1,2, ..., we have

a) The total microscopic effective cross-section o,{E,w) is a real function,
6,:(0, 0) x Q — (0, ), which is bounded on the set (¢,d) x Q for any ¢, de
€(0, ), ¢ < d.

b) The function \/(2E) o,(E, ) has SPS((0, o) x Q) property and there exist
bounded functions a(w) = 0 and bw) > 0 such that

, ) / ,
lim _\/(2E) Osi = lim AY (2E) Osi - 1.

0 a; + \J(2E) b; E-o0a; + J(2E) b;
c) The functions /(2E) (00 ,/0w;), j = 1,2, 3, have SPS((0, o) x Q) property.

In the case of the differential effective cross-section, we use a common notation o,;
for processes of scattering and of fission. Next, let g,; = 0,;; + 0,;, be a decomposi-
tion of ,; and ¢: (0, ) x Q — E, a real function. For brevity we denote:

F::(E’ w, E’a w,) = arik(E, - E& (D, - (1)) (p(EI: w’) s k = 19 2 >

gz‘,l EJ dE'J. do F";," s g(';,k’z _J dE'J. dw F"‘I g(’;‘ll EJ. dE’J dw’_a_ F;"’
0 Io) Q o,
gty _J. J. \ 0 FX¥ and gX| _J. dE’ J do’ ——FZ‘,

ow,

I1=1,2,3.

Supposition 2. There exist a bounded function f: (0, ©) — (0, o) having property
SPS((0, ©)) and a decomposition o,; = 0,y + 0, (r=5,f; i =1,2,...) such
that we have
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a) 0,;, is a real function, c,;:(0, ) x (0, 0) x @ x Q = [0, o). There exist
constants ¢, R € (0, o) and a point {E,, 0y} € (0, ) x Q such that the inequality

J dE J do’' Fi! > R
|Eo—E’|<e loo—ar|<e

is fulfilled for any point {E, } € (0, ) x Q, |[E — Eo| <&, |0 — 0| < &.

b) The functions (o,f)"* g5, (0,f)"* g1y and (0,f)"" g}'; are bounded in
(0, ) x Q a.e. while the functions (o,,f)™* g\ and (o.f)"" g7y (LT =1,2,3)
have PS((0, o0) x Q) property. Furthermore,

lim  sup J dE’ [ do'|(o,:.f) "' FNEy, o, E', o) —
ORI S0

— (64f) ' F(E,, o, E, o) =0.

c) For any function ¢:(0, 00) x Q > E; for which the functions ¢[f and
(0/ow)) (@[f), 1 =1,2,3 are bounded a.e. and have PS((0, c0) x Q) property,
the functions (¢,:f) ™" 91, (6,:f) ™" 921 and (0,.f) ™" g2 (I, I'=1, 2, 3) are bounded
a.e. and have PS((0, ) x Q) property. Furthermore, if ¢ = 0 then g}, =0
and if ¢ has SPS((0, o) x Q) property then g.}(c,.f)™! has this property, too.

. _ 0 for afw)>0
il 1 _ i
9) g‘fﬁ 97a(ouf)" = {d < oo in the other case, limg} (o)™ =0,
E-w

limg?,(f)™' <o and supg?(o.f)t <1.
E-0 E,0
We have o;; = 0;; and there exists a constant y € (0, o) such that

0 §j dE’j do' o (E—>E, o > ') <
0 o

= Y (G'”(E, (I)) —Jv dE’J‘ do’ O'si(E — E’, W — w')) A
(2]

0

e) There exist a set M; = (0, 0) x @, p(M;) > 0 and an integer n; > 0 such
that for any set M = M; and any function ¥:(0, ) x Q@ — [0, ), |¢| £/,
Y > 0 on M, the function

G+ Y(E, 0) = J’wdE’-[ do’ (6,(E, w))" ' 6,{E' > E, o - o) Y(E', @)

is positive on M, and for any pair {E, o} € M there exists an integer m > 0 such
that (G™ %) (E,®) > 0. If y = 0 on M; a.e. then G") xy = 0 on the set
(0, 0) x Q ae.

Supposition 3. For any i = 1,2, ... the function N(x):E, — [0, ) is bounded
and it has SPS(E;) property while 0N;[0x;, j = 1,2,3, have PS(E3) property.
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Furthermore, for any t € [0, o), the integrals

f ar, % [Ni(x — JRE) olt — 1)) J(2E) 0,(E, w).

Y j

t

exp <— J dt, J(2E) oufe, @) Ni(x — J(2E) i - t2)>],
ty

j=1,2,3, are bounded functions of variables x, E,  on the set E; x [0, 00) x Q

a.e. :

It can be easily shown that Suppositions 1 and 2 are true for all models of scattering
and fission cross-sections usually employed (see e.g. [9]). As for Supposition 3, it is
satisfied in all practical cases among which the case of partwise constant medium
density is very important.

Definition 2. Let D < E; be a set of nonzero measure with respect to E5. We shall
denote by C({f; D} the linear space of complex functions ® with the domain
M, = D x (0, ©) x Q and such that the function ®[f is bounded on M, a.e. and
continuous in the variable x on D for all pairs {E, o} € (0, 00) x Q. The norm is
defined by

‘bi
f

Next, we shall denote by C,{f; D} the space of functions € C,{f; D} for which
the functions (1/f) (0y//ox;) (i =1, 2, 3) are finite on M, a.e. and for which, under the
condition that the interval (x — wa, x — a)b) belongs to D, the integrals

|®] = vrai max

0

b
dslﬂ(x—ws, E o), i=123,
a faxi

are finite fuuctions of the variables x, E and o on M, a.e.

Definition 3. Let M be a subset of My, (M) > 0. A linear operator A: C,{f; D} —
— C,{f; D} is said to have KL(M) property if:

i) for any set M; = M, u(M,) > 0 and any nonnegative function ® € C,{f; D}
which is positive on the set My, the function A® is positive on My and, further-
more, for any triplet {x, E, a)} € M there exists an integer m > 0 such that
A"d(x, E, o) > 0;

ii) for any ® € C,{f; D}, @ = 0 on M a.e., there exists an integer n such that
A"d = 0on Mg a.e.

Now let ¢ be a function belonging to the space C,{f; E;}. We shall use the fol-
lowing notation:

Sop = /(2E) ZNi(x)J. dE’J. do' 6,,(E' > E, o' > o) ¢(x, E', o),
7 o Q
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(Pp) (1) = o(x — J(2E) oot, E, o) .

. €xXp <— fdtl VRE) Y N(x — J(2E) o(t — 1)) 0u(E, m)) ,

(00) (1) = f an (o) (1 - 1),
(Ry) (1) = (05,9) (1),
(ROn) ) (1) = (Q(S + 1F) 9) (), 1€ [0, ).

Clearly, taking into account Suppositions 1—3, we may consider P, Q, R, and R
as linear bounded and positive operators which map the set C;{f; E;} into itself
for any fixed ¢ € [0, o0).

Next, let us denote

R(0) = 6(R(1) — R,) + R,

for given 1, 6 € [0, o0).

We see that R, is a linear bounded operator and, due to Supposition 2d), there
exist constants 6, > 0 and o € (0, 1) such that R,() is positive while

(4) R\(3)f < aff = Pf)
for any 6 € [0, 6,]. Using (4) we obtain

w0 2y < R0) (1=, R0
for any integer n > 0 so that the operator w,(9, 1),
Wi, i) & = ZO(R';((S) Po) (1), 1€[0.®), GeC{fiky),
is bounded and positive. Clearly,
WS, 0)f<f— 1—3/“ ElRl(@)f <f

so that
fewG,)fz...=2wilG)fz..z0
and

WS, 1) Ry(3) f < ]J_ wis, (1 =~ Wil 0)f, n=12 .
— d

Therefore

(5) ,EOW;'(& DR

o

(1- lim W(8, t))f < 1

n— oo —

o
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Now, from the definition of the operator W(4, 1) it is seen that ¢ = W (5, () ®
is a solution of the problem

(6) ¢ =R(0)p + PP, 1[0, )

where @ € C,{f; E;} and ¢ € C,{f; E;} for any t€[0, o) fixed. This implies that
W (5, 1) has the semigroup property with the parameter ¢:

(7) W,(6,0) = I (the unit operator),
WS, )W,(8,s) = Wy(5,t +s), t,5€[0,0).

Next, let t, > 0 be sufficiently small. Then the series

(X R0 P5) ()

is convergent in norm for any 1 € [0, ,], ® € C,{f; E;} and it defines a linear operator
Wn, t): Ci{f; Es} —» C,{f; E;} (see e.g. [9]). Obviously, ¢ = W(n, 1) @ is a solution
to the problem

(8) ¢ =R(n) ¢ + PP

in the interval [0, t,] where ® e C,{f; E;} and ¢ e C,{f; Es} for any 1€ [0, t,]
fixed. From (8) it follows that the operator W(#, t) has the semigroup property (7)
from which we infer that W(n, t) exists as a bounded operator which maps the space
C,{f; E;} into itself for any t € [0, c0) and any finite complex #.

Finally, the validity of the following relations can be easily verified in the case
of sufficiently small t > 0O:

8

() win, )@ = (2" ZR'(O) oFy ZR"'(O) Po)(1),

8

(10) Win. 0@ =(2( ZR’(é)(R (m) = Ry(9)))" ZOR'I'(5) Po) (1),

= m=

PeCy{f;Es}, 6€[0,6,], |n|<oo.

THEORY
In what follows we will assume that the basic suppositions 1—3 are satisfied.

Theorem 1. Let y € C,{f; E;} be a function for which (1f)(oy[ox;), i =1,2,3,
are bounded on the set E5 x (0, 0) x Q a.e. Then Eq. (1) has a solution ¢ which
belongs to the class C,{f;Es} for any fixed te (0, o) and for which ¢(x, E, o,
t — 0) = Y(x, E, o). There is just one solution of the initial-value problem with
such properties.
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Proof. Let ¢ be a solution to the initial-value problem with the properties stated
in Theorem 1. Then, obviously, the integral equation

(11) o =R1)p + Py

is fulfilled for any te [O, oo). On the other hand, it is known that there is just one
solution ¢ of Eq. (11) in the class C,{f; E;} and ¢ = W(1, 1)} (see e.g. [9]). So we
are to show that the solution of Eq. (11) belongs to the class C,{f; E;}.

Supposing all necessary conditions are satisfied, we obtain

(12) R(l) =, =123

by differentiating (11). Here y; is an expression which does not contain any derivatives
of ¢ and which depends linearly on ¢ and oy/dx; (i = 1, 2, 3). Using Suppositions
1—3 we can show that (1/f) x;, i = 1, 2, 3, are bounded functions in E; x (0, 00) x
x Q a.e. for any t so that Eq. (12) has just one solution d¢/dx; for any i (see again
[9]) and (1/f) (0¢/0x;) is bounded on the set E; x (0,00) x Q a.e. for any t. There-
fore the derivation of Eq. (12) from Eq. (11} is justified.

Now all conditions for the differentiation of Eq. (11) by ¢ are fulfilled. By this
differentiation Eq. (1) is obtained. Clearly, ¢ € C,{f; E;} for any t € [0, o) fixed.
Q.E.D.

Let us note that Theorem 1 may be extended also to the case of an independent
neutron source Q(x, E, o, t). Obviously, if Q satisfies the conditions of Theorem 1
(imposed on the initial distribution ) for any t € [0, 0), the proof remains without
changes.

In Theorem 1, the spatial domain considered is the whole space E; but, in practice,
the following special cases are important:

A) The material medium is contained in a bounded convex body D < E; sur-
rounded by vacuum. As the densities N{x), i = 1,2,..., identically vanish in
vacuum, the domain of the respective integrals in (6) and (8) can be restricted to D.
In this way the operators W,(d, ) and W(x, t) change into operators W, and W
which map the space C,{f; D} into itself for all 7 € [0, o0). Let us recall that then the
problem a) assumes the standard form: To find solution ¢ of Eq. (1) which belongs
to class C,{f; D} for any € (0, o0) fixed and such that ¢(x, E, , t - 0) = { and
(p(x edD, E, o, t) = 0 for no < 0 where n is external normal to boundary oD of D.

B) The material medium is spread over an infinite range D = E; (surrounded
possibly by vacuum in one or two dimensions) but there exist a bounded and relatively
compact set D = D and three bounded vectors by, b, and b5 such that

(13) Nyx + kb)) = N(x), D¢ Y {D + kb, + 1b, + mbs},
k,l,m

xeD, Ljk,Iim=12....
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Then, in the problems a), b) and c), such functions @ € C,{f; E;} will play the sub-
stantial role which have the property (13) with respect to the spatial variable. In
such a case R,(6) ® and R(n) ® have the form of a convergent sum of integrals the
spatial domain of which is contained in D. In this way the operators W (4, r) and
W(, t) change into operators ¥;* and W*, respectively, which map the class C,{f; D}
into itself.

From now on we restrict our considerations to the geometrical situation cor-
responding to case A) or B). We will be looking for solutions of the problems a), b)
and c) in the space C,{f; D} where D = E; is the compact modifying the sense of
the operations R,(3), R(y), S, ... in the respective manner. For the operators W,(W)
and W(W)* we will use the common notation W,(3, t) (W(n, t)).

Theorem 2. For any te(0, w), 6e[0,1), k,1 =0,1,2,... and any complex
number n, |n| < oo, the operator G*(5, , 1),

G0, n, 1) @ = ((R(n) — R,(9)) (RS(9) P)' (R(n) — R,(9)) #) (1), e C,{f; D},

is compact as an operator mapping C{{f; D} into itself. In the case neE;, n = §
this operator is positive with a positive spectral radius and has KL/M) property for
some M = My = D x (0, ©) x Q, t'M) > 0.

Proof. For simplicity let us consider / = k =1 and ¢ € Cl{f; D}. We can write
(14)
t
G''(5,n,1) ¢ =J dt, exp( J‘ AN 2E)ZN( J(2E) ot — 1)) o,(E, w)>
0

'J‘delJ do, \/(2E)2';N,~(x = J@E)oft = 1)) [(6 + 1) 01 + (3 + 1) os.] -
(Ey = E, 0, > 0) J'“dtz exp (—J‘lldt' \/(2E1);Ni(x - JQE) ot — 1,) -
— JRE) ot — 1) ouf En, wl)) J(E) f “dE, J dr, {z Ni(xs + 3) .

ty 12
N[04 + 804y + Ooy] <E2 —E, Yo w1> exp l:— J(2E,) (J f )dt’ .
y t2=y/V2E>

<E2,y>ZN <y+x3—\/(2E2) (1, — 1) )] J dEst 3\/(2E

Z Ni(xs) [(5 + 1) Osip + (5 + '7) Gfi] <E3 - E,;, 03— f) (P(xs, E,, w3)}

i

where we have used y = x — x; — /(2E) o(t — t,) — \/(2E,) o,(t; — t,) and
y = |y| for brevity. In general, the region of the spatial integration in (14) is Ej.
It is understood that the spatial argument of the integrand which lies outside D
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is replaced by the appropriate one which belongs to D according to our agreement.
For brevity, let us denote by

J‘J‘J‘de dE3 d(l)3 K(x) Ea ] X3, E39 (1)3) (P(x3, E3a (03)

the right hand side of (14). Then, almost everywhere,

;— G'(s,n,1) q)‘ < J:de} dE; de,

Xi

0 .
(’T K(x, E, o; x3, E3, 03)] . "P(xsa Es, ‘”3)' =

0X

l

— K(x, E, 0; x3, E3, 03)

< CJ‘de3 dE, do, f

J 0x;

f(E3)9 i:1’293a

where C €(0, o0) is a constant. But, due to Suppositions 1 —3, the last expression is
obviously bounded. So there exists a constant C; € (0, o) such that

(15) 9615, n 1)
0x;

i

<C,f ae., i=1273.

Now, let {¢,} be a sequence of elements belonging to C,{f; D},
n=1,2,..., and let us set

v, =G, n 1), n=12 ...

ol = 1.

Formula (14) and Suppositions 1, 2d) and 3 imply existence of positive finite constants
C, and Cj such that

(16) lim~y, < C,
-0 f

on the set D x Q a.e. and

(17) Il = €5

foralln=1,2,....

Let us consider R € (0, o) arbitrary and put

Y, =1, for E<R and
Y, = 0 otherwise .

Clearly, Supposition 2d) implies

uniformly with respect to n.

0

| +=

Next, let us denote by &, the complex function defined on the set M, = D x
x [0, R] x €, given by
¢, =vy,, E>O0
o, (x,0,0) =limy,, n=12...

ny
E-0
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Taking into account Suppositions 1—3 we easily see that @,, n = 1,2, ... have
SPS(M;) property and that they are continuous in the variable x on D for all pairs
{E, 0} €[0,R] x Q. As My is a compact set, there exists a finite decomposition
{V.}I_, of My corresponding to PS(Mg) property of the functions @, and, clearly,
this decomposition is common for all these functions.

Now, using appropriately Suppositions 1—3 and inequalities (15)—(17), the
relation
(19) lim  sup [9(z) — @, ()] =0, i=1,2,..,N

-0+ z,z'eV;

can be easily verified. Here, the notation z = {x, E, o} is used for brevity.
In what follows we will proceed in a way similar to the proof of Ascoli-Arzela’s
theorem ([10], p. 125):
By the properties of the decomposition {V,»}’i":(, there exists a countable set
N
I = UV, which is dense in M. Then the inequalities (16) and (17) imply existence
i=1
of {®, }, a subsequence of {®,} which is convergent on I. Let us consider i > 1
fixed and ¢ € (0, o). By Rel. (19) there exists 6 > 0 such that

|,(2) = @,,(2)] <&

for all n, and any z,z' € V,, |z - z’l < 0. Next, as My is a compact set, there exists
a finite set I; = I, I; = Uz; such that

min lz — zjl <o

zjels

for any z € Mg. So there exists n, such that

|,.(2,) — P (z))] <&

for any z;eI; and any n;, m; > n,. Therefore, for any z e V,, there exists z;, € I;
such that

l(bnl(z) - (Pm‘(z)l = ,(15,”(2) - (pm(zjo)l +
+ ,(p"l(zjo) - d)mn(zju)l + ,(D,,,’(Zju) - d)ml(z)l < 3.

So we have proved that {tb,,l} converges to a function ¢ on any set V;, i = 1.
Since @, has SPS{My) property for any n, the function @ has PS(Mp) property.
Furthermore, @ is continuous in the variable x in D as is seen from (14) and from
the basic Suppositions 1 —3. Then compactness of the operator G*'(3, 1, 1) is proved
by (18). Compactness of the operator G*Y(d, n, 1) for the other k, I can be proved
in the same way. Finally, positivity of the operator G*(d, n, t) for n = 6 is obvious
while positivity of its spectral radius is a consequence of Suppositions 2a) and 3.
Theorem 2 is proved.
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Theorem 3. Let a linear operator A:C{f; D} - C,{f; D} be bounded and
positive with a positive spectral radius r(A) and let it have property KL(M),
M < M,, (M) > 0. Next, let there exist ry € (0, r(A)) such that the set

Oper = E{A e a{A); || > 1y}
consists only of isolated points at which the operators (A — A)™"' and (2 — A*)™!
have poles (A* being the adjoint operator to A). Then:
a) r(A) is an eigenvalue of the operators A and A*. The eigenfunction ¢, and the
eigenfunctional , corresponding to it are nonnegative and positive, respectively.

b) The function @, is positive on the set M a.e. and it is the only linearly in-
dependent eigenfunction of A corresponding to the eigenvalue r{A). Furthermore,

Yos 90> > 0.
c) K4)> sup |4
2ea(A) +r(A)
d) There is no other nonnegative nontrivial eigenfunction corresponding to
a nonzero eigenvalue of operator A.

Proof. Assertion a) is a direct consequence of Theorem 6.1 of paper [4] (though
this theorem is formulated for compact operators its proof remains true also in our
case). Next, since C,{f; D} = L (M,), there exists a continuous functional ¥ e
e L% (M) such that

<l//> d)> = <Wo, d))
holds for all ® e C,{f; D} ([10], IV, §5, Theorem 1). Due to the representation of

L% (M), there exists a complex function y of the set which is finitely additive and
1 — absolutely continuous while

W, ¢y = f $i(dn)
for all ¢ € L,,(My) ([10], 1V, §9).
Let @ be an element of C,{f; D} and set

® =0, + D,

where ®,(®,) vanishes on the set M, —~ M(M) a.e. By KL(M) property of the
operator A we have

(20) (r(A))m <¢0’ ¢> = (V(A))m {<!//0’ (I)1> + <‘l’0’ ¢2>} =
(Yoo A"D,> + (o, A0 = J JAD, = f JAD, = (o, D1 (A"
Mo

M

for some integer m > 0. But , is a nontrivial positive functional and @ € C,{f; D}
is arbitrary. Therefore, by (20), there exists a set P = M, u(P) > 0 such that § > 0
on P. Obviously y = 0 on the set M,
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Now, since ¢, = 0 is nontrivial and the operator 4 has KL(M) property, the
equation

(21) r(A) po = Ao,
implies that ¢, > 0 on M a.e. Therefore
(22) Yo, 9oy > 0.

Let us suppose that besides ¢, Eq. (21) has another independent solution ¢, €
€ C,{f; D}. We take ¢ = ag, + ¢, where, by (22), the constant a is chosen so that
Yo, @) = 0. By Rel. (20), taking into account KL({M) property of A, there exist
disjoint sets P, « M, P, = M, u(P,) * 0, p(P,) + 0 and a decomposition

¢ =0 — ¢
where ¢* > 0 (¢~ > 0) on the set P,(P,) a.e. and ¢* =0 (¢~ = 0) on the set
M = P, (M = P,). We have
lo| = ¢* + ¢~ onMa..
and
[ 0| < Alo|

on a set Py « M, u(P;) > 0. (Clearly, we obtain a contradiction in the case of
equality because then ¢*(¢ ™) satisfies (21) so that ¢* > 0 (¢~ > 0) on the set M
a.e.) Then, by Rel. (20),

Yo, ,A(Pl> < Yo, AI(PD = "(A) Yo, [ﬁDD = (Yo, 'A€0’>
which is a contradiction. Assertion b) is proved.

To prove assertion c), we will suppose on the contrary that there exists an eigen-
value v to A4 which corresponds to the eigenfunction ¢,

v=r{d)e*, (eE,, (* +2kn, k=0,1,2,....
Then

M lo] = |0] = Alo|
and

IV‘ Yo ,‘P’) = Yo, Al(pl) = I"l o, [(Pl> .
This inequality and KL(M) property of A yield
v el = 4lo|
so that @ = @,e’® where @ is a real function of the variables x, E and . Further,
Ae®p, = M O = (IC+O) g0

and, therefore
(4 — e 949 9, = 0.
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Considering the real part of the last equation and taking into account KL(M)
property of the operator A we obtain { = 0 and @ = const, which show that r{4)
is the only eigenvalue of 4 on the circle |v| = r(A) (see also [6]).

Finally, let ¥ # r(4) be another eigenvalue of the operator 4, ¥ # 0, and let
@ = 0 be the eigenfunction corresponding to it. Due to KL(M) property of the
operator 4, it is clear that ¢ > 0 on a set P = M, u(P) > 0. On the other hand,

Vo, §> = {ho, AP = r(A) Yo, D
so that

o, > =0

which is a contradiction. Theorem 3 is proved.

Theorem 4. Let the spectral radii of the operators W(1, 1) and W(0, 1) satisfy

the inequality
Ao = 1gr(W(1, 1)) > 1g r(W(0, 1)) .

Then

A) For A = A, there exists just one linearly independent nontrivial solution ¢,
of the problem (2) in the class C,{f; D}, and the nontrivial solution i, of the
problem adjoint to (2) in the class C3{f; D}. The function ¢, is nonnegative and
there exists a set M = My, w(M) > 0 such that ¢, > 0 on M a.e. The eigenfunction-
al Y, is positive.

B) For a complex number A, 1 % Ay, Red > lg{r(W(0,1)) there exists no
nonnegative eigensolution (peCz{f; D} of the problem (2) which is nontrivial
on the set M. Furthermore, there is only the trivial solution to the problem (2)
in the class C,{f; D} for any A & Ay, Re 4 = A,.

Proof. Let C denote the complex plane and
Z(1) = 6{ve C; |v| > r(W,(0, 1)} n oW (1, 1)), te(0, ),
A=&{ai=Igv, veZ(1)}.

Using the semigroup properties (7) of the operators W(1, 1) and W,(0, t), ¢ € (0, o),
and the spectral mapping theorem, we immediately see that

(23) Z(t) = Z(1))" = exp (A1).

Let ve C, |v| > r(W,(0, 1)) be arbitrary and ¢ € (0, o) fixed.
We can write

O =W, 0)" = [(v = Wi(0, ) (I — B(v, 1))]™

B(v, 1) = (v — Wy(0, 1)) (W(1, 1) — W(0,1)).

where

If the parameter ¢ is sufficiently small the operator B*(v, t) can be expressed as a series
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(convergent in norm) of operators having the form of the product of a linear bounded
operator with a power of operator G*(0, 1, t). Therefore, by Theorem 2, B*(v, )
is a compact operator for any ¢ sufficiently small and |v| > r{W,(0, t)). Clearly this
operator is holomorphic in the variable v for |v| > r(W,(0, t)).

Since HB(\', 1] e 0 we infer ([11], VIL, § 6, Lemma 13):

The operator (I — B*(v,1))™" is bounded in the complex set |v| > r(W,(0, 1))
except for a set H(t) of isolated points. As B? is a compact operator, 1 is an eigen-
value of B? with a finitedimensional eigenspace for any v e H(7).

By the spectral mapping theorem, the same is true for the operator B(v, 1) and we
have H(¢) = Z(t) # 0 by the assumpion of Theorem 4.

Now all necessary conditions are satisfied so that Theorem 3 holds for the operator
W(1, t). So to prove Theorem 4, we are to show that the problems

(24) ip=(T+ S+ F)o, ¢eC{f;D}
and
(25) Mo =W(l,1)o, ¢eC,lf; D}

are equivalent for Re 2 > lg r{W,(0, 1)).
First, let ¢ be a solution to the problem (25) and put @ = e*'¢, P, = Pe™*".
Let us confine ourselves to the case 1€ (0, t,), f, being sufficiently small. Clearly

(26) ¢ =R(1)P + PP
On the other hand, we have
¢ = B(ei.t’ f) @
and it is seen that B*(e*, 1) is a compact integral operator:
(27) BX M, 1) P = f dx' dE' do’ Ky(x, E, 0; x', E', @'; 2, 1) ®(x', E, &' ,

Mo

deC,{f;D}.

In a similar way as in the case of inequality (15), we find
(28) ayY:
0x;

l

507- Ky(x, E,0;x', E, 0'; A, 1)| . |$(x', E', 0| <

i

< —[ dx' dE' do
Mo

SC.f. |9 ae.

(i = 1,2,3) in virtue of Suppositions 1 —3. Here C € (0, o) is a constant.
Clearly ¢ € C,{f; D} for any 1€ (0, o0) fixed on the basis of inequality (28) and
of Suppositions 1 —3.
Now, differentiating Eq. (26) by ¢, we obtain
o»
P
so that ¢ is a solution to the problem (24).

iMp=(T+S+F)o

455



Conversely, let ¢ be a solution to problem (24). Then Eq. (26) is satisfied by
® = e"*¢. The solution of this equation by iterations has the form & = W(l, 1) ¢
so that ¢ is the solution to the problem (25). Theorem 4 is proved.

Corollzry. Let € C,{f; D} be a function for which 1[f(oy|ox;) (i =1,2,3)
are bounded on the set My, a.e., and let the assumptions of Theorem 4 be satisfied.
Then

a) Equation (1) has just one solution ¢ for which ¢(x, E, o, t - 0) =y and
¢ € Co{f; D} for any t € (0, ) fixed.

b) For 1 = A, there exists just one linearly independent nontrivial solution
@0 € C2{f; D} of the problem (2) and a nontrivial solution Yo of the problem
adjoint to (2). The function ¢, is nonnegative and ¢, > 0 on some set M = M,,
pw(M) > 0. The functional \, is positive. Furthermore,

lim e *'o(x, E, o, t) = (o, ¥ @o(x, E, 0) .
t—= 0

Proof. Assertion a) is a consequence of Theorem 1 while the first part of assertion
b) is a consequence of Theorem 4. Let us denote by P, a linear operator,
Py: C,{f; D} - C,{f; D},

Poy =1 — @ol¥o, 10 -

Without any restriction we set

Yoy o) =1
(see (22)) so that
I;.O2 = PO H

PW(1,1)=W(1,1) Py, te]0, ).
Furthermore, it is possible to verify that the point spectra of the operators W({l, 1)

and W(1, t) P, coincide except the eigenvalue ¢’ (see (23) and e.g. [4], § 6). Then,
for t > 0,

w0 Py (_IL(W)W = lim (JM]””)POH)I/:,

rW(1, 1)) noo elont "ot

n— o0

and, therefore,

(29) lim e““””W(l, t) Po” =0,
t— oo
We have
o =W(1,0)y
and

U= Py + 0olto, ¥

which, together with (29), prove assertion b).
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Theorem 5. Let the density N, of the fission medium be positive on a set D, — D,
w(D;) > 0. Then there exists a real value o of the parameter n for which Eq. (3)
has just one nonnegative solution @q e C,{f; D}, |@o| = 1, which is positive on
a set of nonzero measure with respect to M. There exists no other complex number n
for which Eq. (3) would have a solution with such properties.

Proof. Let us consider a complex number 7, real number 8 € (0, min (&, 1/y, 1)
(see (4) and Supposition 2d)) and introduce an operator W,(n, 1),

(30) Wl 1) = S W6, 0 (Win. 1) — W(6.1), 1€(0, ).

n=0

We easily find
(31) Waln, 1) = Y W0, ) [[R'n) — Ry(3)) Win, 1) +
n=0

+ 3 RYE) (RO — () Win, 1)]

m=1
so that this operator is bounded and maps the class C,{f; D} into itself for |y < oo
and ¢ fixed.
Let ne E,, n = 8. By Supposition 2d) there exists a constant C(#) € (0, o0) such
that ‘
(32) R(n) o < C(n) Ry(9) |o]

for any ¢ € C,{f; D}. The operator W,(n, 1) is positive and has a positive spectral
radius, as follows from (30)—(32) and Supposition 2a). Furthermore, using (31)
and Theorem 2, we find that the operator W3 (n, t) is compact and there exists a set
M(#, t) = My, f(M) > 0 such that this operator has KL(M) property. So Theorem 3
may be applied to the operator W,(#, t) provided n 2 6, t > 0. Again

(33) W3, t)®eC,{f; D}

for any @ e C,{f; D} (the operator W;(n, 1) can be written in the form (27) and
Inegs. (28) hold similarly to the case of the operator B*(v, 1)).
Now let ¢, be a nonnegative eigensolution to the problem

(34) rWan, 1)) o =Wy(n, 1)@, @eC{f; D}, 1€(0, ).

Obviously ¢, is positive on a set M = M,, u(M) > 0. Furthermore,

() el ) = fim Wn O 2 fim FE S
o o n— o n2
n 1/n
= lim w32, 1) @, ' = r(Wy(n2, 1))

ST U

for any pair 111, 112 € Eq, 1, > 1, = § in virtue of (31) and

(36) "ywmmm=w.
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We will show that
(37) rWs(8,1)) < 1.
Let ¢; be a nonnegative eigensolution to the problem (34) for 7 < §. Clearly this

function is positive on a set M = My, (M) > 0 and, in virtue of(33), (34) and (28),
the function W(3, 1) @5 is a solution to the initial-value problem

0
a—q’ =(T+S+0F) ¢, ox.Eot-0) =g,
t
¢ € C,{f; D} for any 1 = 0 fixed.
Therefore
0

-—J dx dEdoW(5,1) p; = — j‘ d,\cJ~ 4dEj\ do /(2E) on'x)W (S, 1) ¢ x, E, ») —
ot Jm, oD 0 Q

- J. dxdE do /(2E) Y N{(x) 0, (E, o) W(d, 1) ¢5/x, E, ») +
Mo i
+ f dx dE do(S + SFYW(5, 1) palx, E, )
Mo

where n(x) means the outer normal to the surface 0D of the region D at the point x.

The first term on the right hand side of this equation is nonpositive due to our
agreement A) and B). Next, for any 6 > 0 sufficiently small, the remaining part of
the right hand side is negative in virtue of Supposition 2d). So

j dx dE do W(5, 1) ¢ix, E, ) < j dx dE do ¢4(x, E, o)
Mo

Mo

for any ¢t > 0. Similarly it can be shown that

j dx dEdo W (6, 1) ¢5(x, E, ) < j dx dE dw ¢;'x, E, 0)
Mo

My
for small 6 > Oand ¢ = 0.
Now, from (34) we have

r(Wy(6, 1)) @5 = W(0, 1) @5 + (r(W3(5, 1)) — 1) W(d, 1) ¢5
which, provided r(W,) = 1, yields '

r(WZ)J~ dx dE dw ¢, <J dx dE dof e, + (r(W;) — 1) 5] =
Mo

Mo
= 1'(W2)I dx dE do ¢; .
Mo
This is a contradiction and, therefore, Ineq. (37) holds.
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On the other hand, rW3(, t) is continuous in the interval [§, o0) ([11], VII,
§ 6, Theorem 9). Therefore, by virtue of (36) and (37), there exists a point 17, € [ 9, o)
such that

(38) Wi, 1)) =1, t>0.

We will show that there is only one value of the parameter 7 € [, 00) which satisfies
(38). Indeed, if (38) holds for 7, == n, then, by (35), this equation holds on the whole
interval [, n,] (or [y, no] if n; < no). But, in virtue of (31), the operator W;({, t)
is holomorphic in the variable { on the set Re { > & which together with Ineq. (37)
leads to contradiction ([11], VI, § 6, Lemma 13).

Let us denote by ¢, a nontrivial nonnegative eigensolution of the problem (34),
and by v, the positive eigenfunctional corresponding to the problem adjoint to (34)
for n = ny. We can write

(L= W,(8,0) (I — Wy(no, 1)) = I — W(no, 1)

so that @, is a solution of the problem

(39) ¢ =W, 1)@, @eCi{f;D}.

We have ¢, € C,{f; D} and, as Theorem 3 holds for W(n,, 1), this is the only non-
trivial and linearly independent solution to the problem (39).

Next, let us suppose that there exists a solution ¢ to the problem

(40) p=Wht)p, 0=<¢eC{f;D}

and ¢ > 0 on some set M, = M,, u(M,) > 0 and 5 =+ n,. Clearly, without any
restrictions, we can confine ourselves to the case # € E;. We have

@ = 9o =W 1) (@ — @o) + (W(n, t) — W(no, 1)) @

and the condition of solvability of this problem with respect to the function ¢ — ¢,
gives
0= <l//07 W”(UOa t) (W(’L t) - W("IOa t)) (P> , h = 0, 15 cee s

But, by our assumption, (W(n, 1) — W(no, 1)) ¢ + 0 on a set M; = M, u(M,) > 0
and, since the operator W({n,, 1) — W(n,, t) is positive for any n, > n, = 5, we
necessarily have

o, W(no, )y (W(n, t) — W(ne, 1)) @> £0, n=0,1,...

which is a contradiction. Theorem 5 is proved because any solution ¢ € C,{f; D}
of the problem (3) obviously fulfils (40).
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Souhrn
O TRECH PROBLEMECH Z TEORIE PRENOSU NEUTRONU
JAN KyNcL

Jde o dlohu s podateéni podminkou, problém asymptotického chovani feSeni Glohy s po¢atecni
podminkou v Case a problém kriti¢nosti. Zminéné Glohy jsou studovany pro pripad linearni
Boltzmannovy rovnice a konefného i nekoneéného prostiedi. Prostor funkci, ve kterém jsou
ulohy feSeny, je vybran tak, aby byla zahrnuta co nejSirsi oblast fyzikalnich situaci. PouZivanym
matematickym aparatem jsou teorie pozitivnich ohranienych operatori a teorie semigrup.
Hlavni vysledky jsou shrnuty do tfi zakladnich tvrzeni.

Pe3iome
O TPEX ITPOBJIEMAX TEOPUU TTEPEHOCA HEWTPOHOB

JAN KyNcL

B nausoit paboTte paccMOTpeHbl IpobsieMa ¢ HayaJbHbIM YCIOBHEM, IIPOOIeMa aCUMIITOTHYECKO-
ro TOBE/EHUs] €€ PELUCHMsI BO BpeMeHM W NpobJieMa KPUTHYHOCTH. DTH NpoOJeMbl M3y4EHBL IS
cily4asi IMHEHHOrO ypaBHeHust BoibuMaHa W [ OTPAaHMYEHHON WJIM HEOTPAaHWYEHHOM CpeIbl.
IIpocTpaHCcTBO (yHKUMIA, B KOTOPOM 3TH IPOOIEMBI PelIeHbl, BLIOPAHO TakuM 0Opa3om, YTOOBI
BKJIFOYHTH KaK MOXXHO HaiiboJsiee IMPOKHii Kiacc GU3HYECKUX CHTyauwuii. MaTeMaTHYECKHM Cpel-
CTBOM CJIy’XaT T€OPHSs IOJIOKHUTEIbHBIX OIPAHHYEHHBIX ONEPATOPOB M TEOPHUsI ONyrpym. [JiaBHbie
pe3yJIbTAaThI IOABEAEHBI B TPEX OCHOBHBIX T€OpeMax.
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