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Summary. The paper is concerned with the efficient evaluation of the integral ja° f(x) ], (rx)dx,
where J,, is the Bessel function of index # and # is a nonnegative integer, for a given sequence
of values of a real parameter r.

Two procedures are proposed and compared. One of them consists in a direct generalization
of a procedure for the evaluation of a similar integral with the weight function exp (i»x), which
employs the fast Fourier transform. The other approach is based on the construction of a special
Gaussian quadrature formula where J,, appears as a weight.

The results of the comparison show that the application of the Gaussian formula is much more
efficient.

Keywords: integrals involving Bessel functions, numerical quadrature, fast Fourier transform,
Gaussian quadrature formula.

AMS Classification: 65D32.
I. INTRODUCTION
The paper is concerned with the efficient evaluation of the integral

(L.1) J' :f(x) 5,(rx) dx

where J, is the Bessel function of index n (n being a nonnegative integer).

A similar problem to evaluate the integral

(1.2) J S(x)exp(irx)dx, r=ro ..., r;,
0
or the integrals

f f(x)cos rxdx and J f(x)sinrx dx,
0 0

is often met in computational practice. For example, the computation of the quantities
of electromagnetic field in the homogeneous or layered Earth at depth r in the
presence of a harmonic line source can be performed as the evaluation of (1.2) with
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a particular decreasing function f [4]. Many numerical procedures for the solution
of this problem have been proposed and analysed (see e.g. [6], [8], [13], [14], [17]).
The procedure described by Bezvoda and Segeth [5] is based on the employment
of the trapezoidal rule (on a finite interval (0, L)), which is evaluated with the help
of the fast Fourier transform (FFT) and yields simultaneously the values of (1.2)
for

r; = 2mj[(Nh), j=0,...,NJ2.

Here, h is the integration step, N = 2" (v is a positive integer), and L= (N — 1) &.
The fast Fourier transform then operates on N values and the total number of
arithmetic operations required for the simultaneous calculation of (1.2) is O(N log N).

Various problems in geophysics, for example the computation of the quantities
of electromagnetic field at depth r in the presence of a harmonic point source, are
reduced to the evaluation of the integral (1.1) for r = ro, ..., r, [7]. Apparently,
this problem, which we are going to discuss in the paper, is more complex than the
previous one. We follow a natural generalization of the above described procedure
for the simultaneous computation of the integral (1.2) (see e.g. [1]) and show that
the construction and application of a Gaussian quadrature formula (where J, appears
as a weight) is more efficient.

2. THE TRAPEZOIDAL FORMULA WITH A FFT COMPUTATION OF J,

The problem whose solution we discuss in this paper is the evaluation of the
integral

(2.1) I(r) = J:f(v) J(rx) dx

for a given set of values of the real parameter r, r = ry, ..., ;. Further, J, is the Bessel
function of index n, n being a nonnegative integer, and f is a complex-valued Lebes-
gue-integrable function defined on (0, + o).

Choosing an integration step h, and a positive integer N,, we may replace the
“integral I,(r) by its trapezoidal formula approximation,

Ni—2

(2.2) I(r) ~ If(r) = hl(%f(O) J,,(O) + glf(phl) J(rphy) + 3 f(Ly) J(rL})),

where L, = (N, — 1) hy is the length of the interval of actual numerical integration.

If we now calculate I:‘(r) and take this value for the approximation to I,(r), the
error of this approximation consists of three components. First, we replace the in-
finite upper limit of integration by a finite number L;. A discussion of the influence
of the choice of L, on the error of the integration is the subject of e.g. Gustafson and
Dahlquist [10]. This error is usually of little importance in practical computation
since in most cases f(x) decreases rapidly as x — co.
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Second,
) 1) dx - 130) = R,
where '
(2.3) R, = —=5L(f(&)3,(r8)), ¢€(0,Ly),

is the error of the trapezoidal formula [15]. Finally, the roundoff error contributes
to the total error, too, but its influence is very weak [15].

Any numerical procedure for the computation of (2.1) has to perform the evalua-
tion of the Bessel function J, at some (perhaps many) points. A way of a simultaneous
computation of the values J,(rx), r = ro, ry, ..., 1y, for a fixed x > 0 follows from
the integral representation ([9], formula 8.411.7)

<x>n
( =

I(n + ) T%)
where I" is the gamma function. The substitution y = x cos t yields

(L)”

2x 2 2\n—1/2 :
(2.4) (rx) = *v——(-) ( — Y32 exp (iry) dy .

2

I(n+ 1)

f (ix cos t) sin*" ¢ dt ,

Putting

gu(y) = (x* = 212 for |y| < x,
= 0 elsewhere ,
we can write

N,
(2.5) 3, (rx) = ——‘[ gn¥) exp (iry) dy,

i.e., the Bessel function J,(rx) is the Fourier transform of the function g, () (apart
from a multiplicative constant). We now consider x to be a parameter.

As we have to evaluate J (rx) for x = hy, 2hy, ...,(N; — 1) hy (cf. (2.2)) and a se-
quence of parameters r = r;, we choose

(2.6) L,>L,

and apply to (2.5) the trapezoidal formula with an integration step h, and a positive
integer N, such that L, = (N, — 1) h,. We obtain

(2.7 J(rx) = F(n(-fx%—zl"(%) hy(3g,. —L,) exp (—irL,) +
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Ny—2

+ ) 2g,,,x(khz) exp (irkhy) + 49, (L,) exp (irL,)) =

k=-Ny+

r n
2x N2—2

= — "7 _ h lgnxo + ,,xkh —irkl +
[(n + 3 T(3) 2(39,.4(0) kglg «(khy) exp (—irkh,)
+ 30, (L) exp (—irLs) + 3g,.,(0) +

N2—-2

+ Y gn.dkhy)exp (irkh,) + 19, (L,) exp (irL,))
k=1

as the function g, , is even. Note that the condition (2.6) guarantees that the function
g, is always numerically integrated in (2.7) over its whole support. Therefore,
the error involved in the replacement of J,(rx) by the formula (2.7) has only two
components. The error of the trapezoidal rule, similarly to (2.3), is given [15] by

’. n
&)
(2.8) R, = —}L,h3 x

—slahs m (9n.:(n) exp (irn))", n €(~La,Ls),

- [

while the roundoff error is again negligible.
The formula in (2.7) can be evaluated for a fixed x and simultaneously for all
r = r;if we put

(2.9) r; = 2mj[(Nohy), j=0,..,N,[2, N,=2"
with a positive integer v, and use the fast Fourier transform. Denoting by
yn,x = (%gn,x(o)a gn,x(hz)’ L] gn,x((NZ - 2) hZ): %gn,x(LZ))

a vector having N, components and by f,,, = ((b,,,x)j) its discrete Fourier transform
(having also N, components), we arrive at

(210) T (rx) ~ __(g%)_

o+ gy 2Ol + (B

with r; given in (2.9) since
exp (—2mijk/N,) = exp (2ni(N, — j) kIN,) .

The employment of the fast Fourier transform for the numerical evaluation
of (2.7) may cause an increase of the roundoff error as compared with the direct
computation (see e.g. [11], [16]). This feature, however, did not show significant
in practical computation.

Note that we cannot obtain the value of J,,(O) in this way. However, we have
Jo(0) = 1 and J,(0) = O for n > 0 (see e.g. [9]).
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A problem arises in case of n = 0 as g, (y) has a singularity for y = x. We will
turn back to the case of n = 0 later. For n > 0, we have g,,‘x(x) = 0. Unfortunately,
for n < 2 the second derivative g, ., which appears in (2.8), has also a singularity
at y = x and it is thus rather hard to obtain a reliable estimate for the error R,.

Let us review the algorithm for the evaluation of the integral (2.1) for n > 0.
Choose /1y, Ny (cf. (2.2)) and h,, N, = 2" (cf. (2.7), (2.9)). For a fixed x = phy,
(2.10) is evaluated simultaneously for all r; given by (2.9). This evaluation consists
of the determination of the components of the vector y, ,,,, the computation of its
discrete Fourier transform f, ,,,, and the substitution into to the formula (2.10),
where x = ph,. This is repeated successively for x = ph,, p=1,..., N, — 1, and
the values of J,/r;ph,) obtained are summed up with weights f(ph,) in accord
with (2.2).

Apparently, the evaluation of (2.10) based on the fast Fourier transform of a vector
having N, components requires O{(N, log N,) arithmetic operations for a fixed x
and is repeated (N; — 1) times. Thus the total number of arithmetic operations
for the evaluation of (2.2) is O{N,N, log N,).

The procedure presented is closely connected with the two-dimensional Fourier
transform. Introducing an “artificial” parameter w and taking (2.1) into account,
we put

(2.11) I(r,w) = j ) f(x) J{rx) exp (iwx) dx .

For any function f such that f(x) = 0 for x < 0, we have
(2.12) 1,(r) = L(r,0).

Obviously, (2.11) is the Fourier transform of the function f(x)J,(rx) from (2.1)
prolonged in an apparent way into (— o0, 4+ o). Now, substituting (2.5) for J,(rx)
into (2.11), we find out that 7,(r, w) is the two-dimensional Fourier transform of the
function f(x) g, (») but, with respect to (2.12), we are interested only in the value
of this transform for fixed w = 0.

The formula (2.2) with the evaluation of J,(r,x) by (2.10) is the discrete analog
of the idea just formulated continuously. Another computer implementation different
from that presented above is also possible. We can approximate 7,(r, w), the two-
dimensional Fourier transform of f(x) g, (»), by the discrete Fourier transform,
evaluate the latter by the two-dimensional (N; x N,) fast Fourier transform and
keep only those N, values of the result which correspond to w = 0. This procedure
requires O{N,;N, log N, log N,) operations, which is (in order) only slightly more
than the previous one, but it is always still slower than this previous procedure.

Finally, we mention briefly the evaluation of I,(r). For the reason that we have
discussed above, it is advantageous to integrate by parts in (2.4) to obtain

Jo(rx) = (3 — rJ:acos (y/x)sin (ry) dy).

2
()
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We can thus use the formula (2.2) for the evaluation of Io(r), too. Only the formula
(2.7) (and, consequently, also (2.10)) is to be changed in a proper way (including
a different definition of the function go,x).

3. THE GAUSSIAN FORMULA WITH J, AS A WEIGHT

The Gauss quadrature formula is well-known and has been studied for a long
time. Using this idea, we can obtain quadratures which employ m abscissae and are
exact for polynomials of degree 2m — 1.

In literature one can often read that if a function F(x) cannot be well approximated
by polynomials but the function f(x) = F(x)/p{x) is well approximated by poly-
nomials (for example, if F(x) is a product of a high-frequency oscillation function
and a slowly varying one) and, moreover, if p{x) can be simply integrated, then it is
advisable (see e.g. [2]) to use the Gaussian quadrature with the weight function
px), )

(3.1 [ro sty e~ S iy,

a =
where the ¢;’s naturally depend on p(x). In the literature one can find the tables of x;
and ¢; for functions p(x) = 1, p(x) = (1 — x*)~"/? (which is connected with the
approximation by Chebyshev polynomials), p{x) = cos x, and some others as well
as ready-to-use subroutines (see e.g. [14]).

However, the number of applications of the Gaussian quadrature is very small
though the possibility to use the quadrature of higher order accuracy should have
been inviting. The main reason probably is that it is difficult to solve the problem
of determining x; and ¢; for an arbitrary p{x). For

(3.2) px)z0,

the algorithm is simple [3], but the condition (3.2) is rather disagreeable. In addition,
it is necessary to suppose that the moments

b
(33) uk=J‘x"p\X)d,\‘, k=0,1,...,

a

" can be exactly evaluated.

The employment of the Gaussian formula to calculate (2.1) demonstrates a possi-
bility to use this quadrature for other purposes. Now the Bessel functions have been
chosen as weight functions not for the reason that computing the integrals (3.3)
is simple. Quite to the contrary, the difficulty in computing the Bessel functions
(more precisely, the long computing time needed) suggests us to construct the quadra-
ture (3.1), as the evaluation of f(x) is simpler than the evaluation of p(x). For instance
in geophysics it is necessary to compute very many integrals of type (2.1) with varying
complex functions f(x). In this case it is advisable to determine (once for all) the
abscissae x; and the coefficients ¢; and to use them for every f(x).
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Now let us deal with the approximate evaluation of the integral (2.1). We first
perform a substitution and, as usual, replace the infinite interval by a finite one:

N z\ dz oz
(3.4) 1,(r) zJ 5(2) f(—) dz _ J 1(2)J(z) dz
0 ry;r 0
Further, the interval (0, zy) is divided by the positive roots of J,(z) denoted by
z;, i = 1,..., N; in addition, we put z, = 0. In every interval [; = (z,_, z;) the con-
dition (3.2) is thus easily satisfied. (For the sake of simplicity, we do not indicate
the apparent dependence of z; and I; on the parameter n.) After that in every interval
I; the abscissae x; and coefficients c; (j = 1, ..., m)are determined. (Their dependence
on n and i is not indicated, either.)
Let us shortly describe the algorithm for determining x; and ¢; in a general interval
I; = (a, b).
The set of polynomials orthogonal with the weight p{x),

k
(3.5) 0x) =Y q‘j"’xj , g =1, k=0,1,...,
j=1
can be constructed by the recurrent formulae
(3.6) Q,=1,
Q0 =x— lv‘-l/.“o >
O = (x - 0‘;(”) Qu-1 — “iz)Qk—z, k=2,..,
where
b b
J'P\/x) XQ:—x dx JP(X) XQp- 10—, dx
(3.7) ) = T ) =J2 : I
JP(X) Q- dx J’ p(x) Q- dx

The coefficients o'’ and o>’ can be found using the moments u; (3.3). For Q,, we
need p;, i =0,1,...,2k — 1.

It is known [3] that x; are the roots of the polynomial w,,,(x) of degree m which
is orthogonal with weight to all polynomials P, of degree k < m — 1. Since P, may
be expressed as a linear combination

k
Px)=3Yd,0/x), k<sm—1,
=0

and Q; form a system of orthogonal polynomials we have
On(x) = OQplx)

and thus the x;’s are the roots of the polynomial Q,, which we obtain from (3.6)
and (3.7) if we put p(x) = J,(x). It has been proved [3], [12] that all the roots lie
inside the interval I; = (a, b) and that all ¢; > 0.
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As soon as the abscissae x; are determined the coefficients ¢; may be computed
e.g. from the linear system

(3.8) Yepxh =, k=0,1,...,m—1.
j=1
There is also an explicit formula for the coefficients ¢; [12],

1

c; =

;l(_xj) Qn— l(rxj
but it is not well suited for the evaluation.

All the above procedures assume p/x) = 0, which is true in intervals [; with odd
indices. If the index i is even we put

W = [ xk|J,,(x)| dx
and the coefficients ¢; determined from (3.8) are used in these intervals with an in-
verse sign.

The moments (3.3) have been computed in double precision by the Simpson
formula with 40 subintervals in each [;. Special measures, including proper substitu-
tions, have been taken in order that these integrals be evaluated very precisely.
The use of five abscissae x; (m = 5) means that the function f(z) in (3.4) is approxim-
ated in every interval [; by a polynomial of degree 9. The abscissae x; and the coeffi-
cints ¢; have been determined for J,(z), n = 0, 1, and for 14 intervals (N = 14).
The values of x; and ¢;, which correspond to m = 5 and N = 14, are given in Tables
1 and 2.

Let us describe the error

m

b
(3.9) R,(f) = J‘ p(x) fix)dx — Y ¢; f(x;).

a Jji=1
We assume to this end that the integrals (3.3) have been evaluated exactly. There are
two types of estimates available [2]. In the first estimate, the 2mth derivative of the
function fis used:
(3.10) R(f) = Qsup |[f2(z)],

[a,b]

where

- jhpmﬁ(x — ) dx.

a i=1

(2m)!

In the second case the estimate is computed from the deviation between the function
f(x) and its best polynomial approximation P,,,_:

(31 1) an2)<f) é E2m—1 Va

where
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Table 1. Abscissae and coefficients of the formula for the evaluation of the integral (3.4) with
n = 0. The first seventy values (which correspond to m = 5 and N = 14) are given in the semi-

logarithmic form.

PN WN AW N -

» B W W WWWWWWWW I I R R R N R N R S N N e e e e
Nf‘o\900\IO\V'5'&N*OBOO\I&\WAWN—O\OOO\IO\MAL»N—‘O\D

0-1000241710 D 00
0-4898873684 D 00
0:1065565579 D 01
0-1675354898 D 01
0:2166405047 D 01
0-2667972440 D 01
0-3221972761 D 01
0-3938251717 D 01
0-4664326139 D 01
0-5240787341 D 01
0-5789406870 D 01
0-6352098903 D 01
0-7073682880 D 01
0-7800726299 D 01
0-8375724761 D 01
0-8924971373 D 01
0-9490388866 D 01
0-1021351880 D 02
0-1094043055 D 02
0-1151433989 D 02
0-1206369161 D 02
0-1263042384 D 02
0-1335426765 D 02
0-1408100449 D 02
0-1465422149 D 02
0-1520360978 D 02
0-1577111291 D 02
0-1649536379 D 02
0-1722195602 D 02
0-1779470556 D 02
0-1834405936 D 02
0-1891207771 D 02
0-1963660124 D 02
02036309197 D 02
0-2093551574 D 02
0-2148496405 D 02
0-2205332144 D 02
02277800449 D 02
0-2350438472 D 02
0-2407653930 D 02
0-2462594249 D 02
02519447185 D 02

0-2516457039 D 00
0-4768973629 D 00
0-4551871739 D 00
0-2370522368 D 00
0-4961609179 D-01

—0-5472173319 D-01

—0-2148069076 D 00

—0-2994195059 D 00
—0-1891792165 D 00

—0-4332660401 D-01
0-3852548265 D-01
0-1562310182 D 00
0-2248834731 D 00
0-1457364120 D 00
0-3394592847 D-01

—0-3140629102 D-01

—0-1287239534 D 00

—0-1874406802 D 00

—0-1226933652 D 00

—0-2878499977 D-01
0-2717424411 D-01
0-1119712833 D 00
0-1640213122 D 00
0-1079423878 D 00
0-2542567487 D-01

—0-2429144448 D-01

—0-1004108830 D 00
—0-1476237354 D 00
—0-9747815354 D-01
—0-2301963215 D-01
0-2216178199 D-01
0-9181709331 D-01
01353261201 D 00
0-8956413651 D-01
0-2118772964 D-01

—0-2051741592 D-01

—0-8511214345 D-01
—0-1256576199 D 00
—0-8330210145 D-01
—0-1973167732 D-01
0-1918536653 D-01
0:7968514728 D-01
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Table 1. Continued

43 0-2591939514 D 02 0-1178059565 D 00
44 0-2664570898 D 02 0-7819730826 D-01
45 0-2721767393 D 02 0-1854111653 D-01
46 0-2776707773 D 02 —0-1808412531 D-01
47 0-2833591358 D 02 —0-7517977529 D-01
48 0-2906084137 D 02 —0-1112621274 D 00
49 0-2978709833 D 02 —0-7392767339 D-01
50 0-3035890777 D 02 —0-1754225252 D-01
51 0-3090832875 D 02 0-1715414712 D-01
52 0-3147732448 D 02 07136170068 D-01
53 0-3220232941 D 02 0-1056991711 D 00
54 0-3292853396 D 02 07028766021 D-01
55 03350021411 D 02 0-1668905311 D-01
56 0-3404965164 D 02 —0-1635468110 D-01
57 0-3461877572 D 02 —0-6807163438 D-01
58 0-3534384026 D 02 —0-1008939763 D 00
59 03606999857 D 02 —0-6713649025 D-01
60 0:3664156897 D 02 —0:1594921782 D-01
61 0-3719097744 D 02 0-1565558752 D-01
62 0-3776021569 D 02 06519732351 D-01
63 0-3848533877 D 02 0-9669119122 D-01
64 0-3921146556 D 02 0:6437610372 D-01
65 0-3978294844 D 02 0-1530033117 D-01
66 0-4033235916 D 02 —0-1503943229 D-01
67 0-4090169082 D 02 —0:6265925745 D-01
68 0-4162686150 D 02 —0-9297279096 D-01
69 0-4235296050 D 02 —0-6192980497 D-01
70 0-4292437008 D 02 —0-1472426309 D-01

EZm—l = inf sup If(x) - P2m—1(x)| s

P2y -1 [a,b]
b m
sz‘p(x)dx + Y.
a ji=1

In both (3.10) and (3.11), there is an integral term independent of the integrated
function f(x). The other term is determined by the function f and so we have no
a priori estimate for it. In some cases something can be said about the class of func-
tions applied in a particular field. For instance, in geophysics the majority of func-
tions used contain an exponential term of type exp (—ax), Rea > 0. If a is not
very small, it is possible to choose the number N less than 14. The roundoff error
may be neglected [15].
Let us demonstrate the values of Q and Vin some intervals I;. For p(x) = Jo(x):
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Table 2. Abscissae and coefficients of the formula for the evaluation of the integral (3.4)
with n= 1. The first seventy values (which correspond to m = 5 and N = 14) are given in the

semilogarithmic form.

0NN A W=

BB B W LW W W LW W W WWWENRNDRDNDRNNDNDNDNNDRN = e e e e s sk ek e
N = OO0 XA N PBWNMR)OOVWHOINNWVPEWN=OWOVKIAWNHWN=~O\O

0-3322609510 D 00
0-1021857833 D 01
0-1900917154 D 01
02785765007 D 01
03489107291 D 01
0-4103727573 D 01
04673615905 D 01
0-5406406934 D 01
0:6146168375 D 01
06732048574 D 01
07287922221 D 01
0-7856171356 D 01
0-8583698981 D 01
0-9315687059 D 01
0-9894011238 D 01
0-1044622709 D 02
0-1101447847 D 02
0-1174067536 D 02
0-1247014724 D 02
0:1304576360 D 02
0-1359674612 D 02
0-1416520116 D 02
0-1489092163 D 02
0-1561922922 D 02
0-1619348970 D 02
0-1674393155 D 02
0-1731259059 D 02
0-1803810542 D 02
0-1876575782 D 02
0-1933920946 D 02
01988933563 D 02
0-2045817358 D 02
0-2118359518 D 02
0-2191083819 D 02
0-2248375798 D 02
0-2303368713 D 02
02360267824 D 02
0-2432805893 D 02
0-2505502625 D 02
02562756985 D 02
02617743721 D 02
0-2674654468 D 02

0-8787217078 D-01
0-3640915275 D 00
0-5305699045 D 00
0-3420420516 D 00
0-7818363460 D-01
—0:4610226904 D-01
—0-1849194256 D 00
—0-2634048159 D 00
—0-1692637849 D 00
—0-3918459618 D-01
0-3489395037 D-01
0-1424113522 D 00
0-2064367229 D 00
0-1345949468 D 00
0-3148368521 D-01
—0-2927230776 D-01
—0-1203424656 D 00
—0-1758418744 D 00
—0-1154585881 D 00
—0-2714871417 D-01
02572576336 D-01
0-1061955627 D 00
0-1558812069 D 00
0-1027790999 D 00
02424376928 D-01
—0-2322589481 D-01
—0-9612112847 D-01
—0-1415087701 D 00
—0-9355825902 D-01
—0-2211441103 D-01
02133928251 D-01
0-8847032270 D-01
0-1305147108 D 00
0-8645695333 D-01
0-2046664789 D-01
—0-1984950059 D-01
—0-8240215846 D-01
—0-1217490963 D 00
—0-8076739999 D-01
—0-1914144317 D-01
0-1863757753 D-01
0-7743778373 D-01
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Table 2. Continued

X

43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63

64

65

66
67
68

69
70

0-2747189554 D 02
0-2819865173 D 02
0-2877090770 D 02
0-2932064125 D 02
0-2988986758 D 02
03061522492 D 02
0-3134184281 D 02
0-3191389276 D 02
0-3246356857 D 02
0-3303288427 D 02
0-3375824097 D 02
0-3448474260 D 02
0-3505661775 D 02
0-3560627593 D 02
0:3617566660 D 02
0-3690102717 D 02
03762743428 D 02
03819916889 D 02
0-3874878889 D 02
0:3931824907 D 02
0-4004361750 D 02
04076994970 D 02
04134156954 D 02
04189118096 D 02
0-4246069739 D 02
0-4318607043 D 02
04391233834 D 02
04448385840 D 02

0-1145443092 D 00
07607176258 D-01
0-1804428105 D-01
—0-1761967074 D-01
—0-7327439047 D-01
—0-1084895770 D 00
—0-7211554846 D-01
—0:1711768262 D-01
0-1675438180 D-01
06971920903 D-01
0-1033037701 D 00
0-6871859138 D-01
0:1632093084 D-01
—0-1600595055 D-01
—0:6663716463 D-01
—0-9879797342 D-01
—0-6576074063 D-01
—0-1562584665 D-C1
0-1534933212 D-01
06393122662 D-01
0-9483563821 D-01
0-6315584665 D-01
0-1501296695 D-01
—0-1476814704 D-01
—0-6153066701 D-01
—0-9131482106 D-01

—0-6083737477 D-01
—0-1446687094 D-01

Q = 011173 x 1077,
Q = 0-88087 x 1078,
Q = 074228 x 1078,

Further, for p(x) = J,(x):

0 = 012135 x 1077,
0 = 0-87211 x 1078,
Q = 072404 x 1078,

V = 0-80145
V = 059932
V = 049905
V = 0-70287
V = 0-54982
V = 0-46806

I, = (2:4048, 5:5201),
I, = (55201, 86537),
= (86537, 11:792) .

ly

|

il

It

(3-8317, 7:0156),
(7-0156, 10-173),
(10-173, 13-324).

For testing the suggested quadrature the functions have been used for which
the exact values of integrals are known. For example, we have
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“ x dx
3.12 Tolx > = 01719096,
(3.12) _[O 0 )\/(x2 + 1) exp /(x* + 1)

'f Ji(x) x e dx = 0-3535535 .
0

The results obtained by our Gaussian procedure are 0-1719312 and 0-3535531,
respectively.

One of the properties of the procedure described, which is a consequence of using
the Gauss quadrature (and not the Lobatto one), is that all the five abscissae lie
strongly inside the interval I;. So it is possible to use the procedure for a function
f(x) with a singularity at the point x = 0. Naturally, in this case one cannot expect
as exact results as in (3.12). However, for the integral

(3.13) J Lyde=1,
o X
the approximate result was 0-95021, so the error is not more than 5%,.

It may be noted that if the function f(x) has singular points then it is advisable
to separate (by expansion into a power series) the terms including singularity as well
as the terms slowing down the decrease of f(x) at infinity. As a rule, these terms may
be integrated analytically (see, for example, (3.13)). But these problems are too far
from the subject of our paper.

4. THE COMPUTATIONAL COMPARISON OF THE EFFICIENCY

The procedure described in Section 2, which consists in the evaluation of (2.2)
where (2.10) is employed, gives simultaneously the values of I;(r;), j = 0, ..., N5/2,
where the r;’s are given by (2.9). Therefore, the computation of such a set of values
of integrals served us for the comparison of the efficiency of the procedures of Sections
2 and 3.

Both the procedures have been tested on a set of simple model integrals

(4.1) L(r;) = f exp (—zx) J,(r;x) dx,
0]
where
r; = 2nj[(Nh), j=0,...,NJ2,
with some fixed N = 2* and h. The other parameters used were n = 0 and 1, and
z = 0125, 0.5, 1, and 2. Typical values were N = 64 and h = 0-2.
The fast Fourier transform approach thus gives all the values (4.1) simultaneously

if N, is properly chosen. The Gaussian formula was applied (N/2 + 1) times to
obtain the same set of results.
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In order to obtain roughly the same accuracy as with the Gaussian formula, we
took hy ~ 0-1 and N, =~ 150. Further, we were forced to take h, =~ 0-03 and
N, ~ 23N in the fast Fourier transform. We thus obtained simultaneously much
more results than required (as far as the parameter r; is concemed) but for a very
high extra cost.

The comparison in single precision shows that the Gaussian quadrature formula
is 10—20 times faster (depending on the N; and N, chosen) than the fast Fourier
transform approach. It means that the work invested into the evaluation of the
abscissae and coefficients of the special Gaussian formula pays.

This is the conclusion concerning the evaluation of the integral (1.1). We wish
to recall that the fast Fourier transform approach is a very efficient tool when the
simpler integral (1.2) is evaluated.
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Souhrn

O NUMERICKEM VYPOCTU INTEGRALU OBSAHUJICICH BESSELOVY
FUNKCE

VAcLAV BEzZvODA, RUSZLAN FARZAN, KAREL SEGETH, GALINA TAKO

Clanek je vénovan efektivnimu vypo&tu integralu (1.1), kde J, je Besselova funkce nezapor-
ného celého indexu n, pro zadanou posloupnost realnych parametra » = r, ..., r;. Jde o integral,
jehoZ hodnota je duleZita v fadé aplikaci, napf. pfi vypoctu hodnot elektromagnetického pole
v geofyzice.

V praci jsou popsany a porovnany dva postupy, Prvni spoiva v pfimém zobecnéni postupu
pro vypocet integralu (1.2) s vahovou funkci exp (irx), ktery je zaloZen na rychlé Fourierové
transformaci. Druhy postup vyuZiva konstrukce specialni kvadraturni formule Gaussova typu
s vahovou funkei J,. Uzly a koeficienty formule jsou uvedeny v tabulkach 1 a 2.

Vysledky srovnani ukazuji, Ze pouziti formule Gaussova typu je podstatnd G&inngjsi.

Pe3ome
O BBIYUCJIIEHMU UHTEIPAJIOB, COAEPXAILIX ®YHKUWUU BECCEJIA

VAcLAV BEZVODA, RUSZLAN FARZAN, KAREL SEGETH, GALINA TAKO

CraTtbsi nocssieHa 3GeKTHBHOMY BBIYUCIIEHHIO HHTErpajia jg’ S0 3, (rx) dx, rae J,— dynxuus
Beccenrst HEOTpULATEILHOrO LIENIOTO WHAEKCA n, Ul 3aJaHHOM IOCIENOBATENBHOCTH 3HAYCHUM
ACUCTBUTENBHOTO MapamMeTpa r.

IMpusoasiTCsi M CpaBHUBAIOTCS [ABE Mpoueaypbl. OHA U3 HUX 3aKJII0YAeTCs B IPSAMOM 0000LIEHUI
NPOLEIYPbI U151 BBIYUCIEHUS] POACTBEHHOTO MHTErpajga ¢ Becom exp (irx), KoTopas Moib3yercs
OBICTPBIM TipeobpazoBatnem MPypbe. BTOPOI M0AX0Q OCHOBAH HA TIOCTPOSHHM YaCTHOW KBaapaTyp-
Hoit popmyrel Tuna Iaycca ¢ Becom J,,.

Pe3yneraThl cpaBHeHHs ITOKa3bIBAIOT, YTO NpUMeEHEeHHe (opmyJisl Tuna [aycca ropasmo Gosee

sddexTuBHO.
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