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A MULTI-LEVEL METHOD WITH CORRECTION 
BY AGGREGATION FOR SOLVING DISCRETE 

ELLIPTIC PROBLEMS 

RADIM BLAHETA 

(Received May 24, 1985) 

Summary. The author studies the behaviour of a multi-level method that combines the Jacobi 
iterations and the correction by aggregation of unknowns. Our considerations are restricted to 
a simple one-dimensional example, which allows us to employ the technique of the Fourier 
analysis. Despite of this restriction we are able to demonstrate differences between the behaviour 
of the algorithm considered and of multigrid methods employing interpolation instead of aggre­
gation. 

Key words: multilevel method, correction by aggregation, multigrid method. 

1. INTRODUCTION 

The aim of this paper is to give some insight into the multi-level method with 
correction by aggregation of unknowns. This method belongs to the broad class 
of multi-level or multigrid methods for solving linear systems arising from the discreti­
zation of elliptic boundary value problems [1]. The consideration of the above 
mentioned aggregation correction multi-level method was motivated by the follow­
ing reasons. 

First, initial approximation by aggregation was observed to be very efficient 
in the solution of the three-dimensional elasticity problems arising in geomechanical 
modelling [5]. 

Second, in the finite element analysis of complicated and, especially, three-dimen­
sional engineering problems we are usually not able to produce a sequence of nested 
grids, which is needed for the standard multigrid algorithms. Hence, the multi-level 
algorithms with generating coarser levels from the finest one, as in the algebraic 
multigrid approach [4], are of interest. Generating coarser levels by means of aggre­
gation of unknowns is probably the simplest way of creating them, and, consequently, 
the aggregation correction multi-level method is attractive from this point of view. 

The paper is organized as follows. In Section 2 we describe a simple one-dimensional 
model problem, which allows us to demonstrate some essential features of the 
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method considered. The technique of our analysis is clarified in Section 3, cf.[2]. 
The spectral radius, energy and spectral norms of the two-level iteration operator 
are studied in the following sections. 

2. MODEL PROBLEM, ALGORITHMS 

Let us consider a one-dimensional model problem 

-u" =f in Q = (0, 1) ; u(0) = u(\) = 0 . 

In order to apply the finite difference or finite element method, a computational 
grid Qh is defined as follows: 

Qh = {xk = kh : k = 0, . . . , n} ; h = 1/ n. 

We shall consider the discretization resulting in the system of linear equations 

(2.1) Lhu
h=f with £,„ = -

2 - 1 
- 1 2 - 1 

- 1 
- 1 

2 

where Lh is an (n — 1) x(n — 1) matrix, uh, fh are (n — l)-dimensional algebraic 
vectors corresponding to the grid functions on Qh. 

Let us introduce the notation 

(2.2) Lh = Lm, u" = um, f"=fm, 

where m is the number of the highest (finest) level. Next, the lower (coarser) level 
systems of equations 

(2.3) Ltu
l =fl, I = m - 1, . . . ,0 

will be formed by means of a restriction l\~i and a prolongation l\_ x: 

(2.4) L^=I\-%IU, f-i=i\-y. 

In this paper l\~l will be an aggregation opetator, l\_1 will be a disaggregation 
operator. It means that / J" 1 , l\-\ are up to a multiplicative constant represented by 
rectangular matrices with zero elements everywhere except at most one 1 per column 
of I|_1 and one 1 per row of l\_x. 

The Fourier analysis described in the next section forces us to introduce the special 
choice of n = nm = 3mn0 and the following definition of I|_1 &ndl\_l: 
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" 0 1 1 1 
1 1 1 

(2.5) -Г1-* 
1 1 1 0 

is an {nl_1 — 1) x(nz — 1) matrix, nl = 3ln0 andIJ_ x is the transpose of l\~ 

From (2.1) and (2.4) we obtain 

(2.6) Ц 
ҺÌ 

2 
- 1 

- 1 
2 - 1 

- 1 
- 1 

2 

where h, = l/nz = 3m */zm , / = m,..., 0. 

For / = m, . . . , 1 the problem on level / (2.2), (2.3) can be solved by the iterative 
algorithm whose one cycle is defined as follows (cf. [2], [3]). 

Two-Level Algorithm: starting with initial ul 

(2.7a) perform vt smoothing steps ul <- R^u^f1), 

(2.7b) solve the problem L ^ - V " 1 = l\~\fl - Ltu
l), 

(2.7c) perform the correction ul <- ul + IJ^u*"1, 

(2.7d) perform v2 smoothing steps ul <- Rt(u
l
9f

l) . 

In the above described cycle, vl9 v2 are constants, Rt denotes the operator of the 
smoothing procedure. With respect to the Fourier analysis of the convergence we shall 
consider for smoothing only the Jacobi relaxation method, so that 

(2.8) K/Kf1) = $iul + TJl = ul + hhWj1 - Ltu
l), 

where co is a relaxation parameter, o> e (0, 1>. 

In order to avoid the (exact) solution of (2.7b) in the two-level algorithm we can 
solve the problem on the lower level approximately by the same method. In this way 
we obtain the following 

Multi-Level Algorithm defined recursively: 

For / = m, ... , 0 the problem on level / 

Ltu
l=fl 

is solved iteratively. One iteration is defined as follows: 

If/ = 0 , thenu0<~ Lo1/0. 

If / > 0 , then starting with initial ul 

(2.9a) perform \\ smoothing steps ul«- Ri(ul
9f

l), 
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(2.9b) perform y cycles on level / — 1 for the problem 

L^u'-^l'r'if'-Lv1) 
starting from the initial approximation ul~x = 0, 

(2.9c) perform the correction ul <- ul + Il^w*"1 , 

(2.9d) perform v2 smoothing steps ul <- Rt(u
l,fl). 

Let us note that y in (2.9b) is a further parameter. 

Both algorithms presented are stationary linear iterative methods. Let Mz, Mz be 
the iteration operators corresponding to the two-level and multi-level algorithms, 
respectively. Then for / = m,..., 1 

(2.10a) M Z = SrezSp, 

(2.10b) Qt = I t - Pz, Iz is the (nz - 1) x (nz - 1) identity , 

(2.ioc) Pz = IuL7vr% 
and 

(2.ii) JvI! = M 1 ? M Z = M Z + SrII^Mi^L;.1^;-1^;1. 

For the proof of the relations (2A0) and (2.11) see [2], [3]. 

3. FOURIER ANALYSIS 

Due to the use of uniform grids the eigenvectors of Lz are algebraic vectors <Pl
k 

with the entries 

(3.1a) (0l
k)t = s i n — i : k, i = 1, ..., nx - 1 , 

nt 

and the corresponding eigenvalues of Lz are 

(3.1b) X\ = An] sin2 — . 
2nt 

The Fourier analysis of the iteration operator Mz consists in its representation 
with respect to the basis {#£}. The crucial point for this is the representation of the 
transfer operators l\~\ l\-i with respect to the bases {$1}, {^[_ 1} . The following 
identities make this representation possible: 

(3-2a) ll{-xt>l2N-k = ¥\N-k<-\ 
1l ^2N + k — JC2N + kqJk 9 

(3.2b) / { - ^ - - / { - - ^ - . O , 

(3.2c) Il-M'1 = | ( C M + <»2w-*#.w-* + c'2N+k<Pl
2N+k), 
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whereN = n^_9 k = 1, ...,N — 1 and 

c\ = 1 + 2 cos 

(3.3) ~C2N-k = 1 + 2COS 

kn 

ЗN ' 

(2N - k)тr 

1 + 2 cos 

ЗN 

(2N + ќ)n 

ЗN 

A verification of these identities may be found in the appendix. 

As the consequence of (3.2), the spaces 

(3.4) Ehk = span {*{, &l

2N_k9 <Pl

2N+k} , k = 1, ...,1V - 1 , 

EUN = span {0l

N} , E/?2yv = span {<Pl

2N} 

reduce the operators Sh Ph Qh Ml defined in Section 2. In what follows, let Sl$k9 

Pi,k> Qi,k> Ml}k denote respectively the restrictions of the operators Sh Ph Qh Ml to 
the invariant subspace EUk. 

Now, we are interested in the matrix representation of PLk9 Qlk9 Mlk with respect 
to the bases of Elk formed by the eigenvectors of Lh This matrix representation will 
be denoted by a hat. Let us start with k=l,...,N— 1. Then 

I\* = 
27ЯГ1 

C2N-к 

C2N + к 

_ÁkCk,
 A2N-kC2N-ki A2N + kC2N + k\ • 

From the definitions of Xl
k~

1, X[9 c\ and from the expression of sin 3a in terms of the 
trigonometric functions of the argument a we immediately obtain the following 
relations: 

9AГ 

1 ll cl 

1 A2N-кL2N-ì 

oľ 9ДГ1 

l 
J 
C2N-Ì 

5 

í 

Ѓ 
A2N + Ì 

9X 

J 
íC2N + к 
l-í 
к C 

1 
l 
2N + к 

Hence, we have 

\cl 1 "1 1 f Wк -1 

(3.5) p,,к = 1 
" J 

c2N-к 
J 
c2N + к_ 

1 1 1 
1 1 1 

J 
c2N-к 

C2N + к_ 

? 

~c[ ^ 2 - 1 - f ~cl

к ^ 

(3.6) Q,,к = 
_ 1 
" 3 C2N~к - 1 2 - 1 C2N-к 

C2N + к_ - 1 - 1 2 C2N + к_ 

and 

4 , 
V2 ~s[ ^ 

Vł 

(3.7) м,,к = S2N-к 
l 

Qi,к 
S2N-к > 

S2N + к_ S2N + к_ 
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where 

(3.8) si = 1 - (o -£ Aj = 1 - 2m sin2 — , 
V 7 2 6iV 

for z = 1, . . . , 3 JV- 1 , co 6(0, 1>. 

Finally, let us note that 

(3.9a) MhN = [sl
NY^ = [1 - > ] V 2 + V*, 

(3.9b) M/>2iV = [s2iV]V2+Vl = [1 - fco]V2+Vl . 

4. SPECTRAL RADIUS OF THE TWO-LEVEL OPERATOR 

To give some insight into the asymptotic convergence behaviour of the two-
level method we shall consider the quantities 

(4.1a) Qi = Qi(co9 v) = Q(MI) — the spectral radius of Ml, 

(4.1b) Q* = Q*(CO, v) = sup {Ql: I = 1, 2, . . .} . 

Note that both Qt and O* depend on the parameter co of the smoothing procedure 
and on the numbers of smoothing iterations vl9 v2, more precisely on their sum 
v = vt + v2. 

Taking into account the reduction of the operator Mt described in Section 2, 
we obtain 

(4.2) Qt = max {Ou, . . . , QhN-l9 QhN, Qh2N} , 

where Qhk denotes the spectral radius of Mlk9 N = ti /_1. 

Let k = 1, . . . ,N — 1, then according to (3.7) the matrix Mlfk is equivalent to 
G/fc, where 

(4.3) Glл = І 

~lcv — c V 2 c V l _- c V 2 c V l 

ŁЪk ъk ъ2N-k ъk ò2N + к 
c v i „V 2 V, ry V V2 1 

s2N-k>k LS2N-k b2N-ks2N + k 
_ c V 2 c V l — e V 2 c v l ? c v 

s2N + ksk S2N +ks2N-k LS2N + k 

v = vx + v2 and for the sake of brevity s[ means (sfc)
v, etc. 

Hence, the characteristic equation of Mhk has the form 

(4.4a) 3/i(3/i2 - 2fiBhk + Chk) = 0 , 

where 

(4.4b) Bhk = sv

k + sv

2iV_fc + s 2 i V + f c; 

(4.4c) C/jfc — SkS2N-k + S2N-kS2N + k + S2N + kSi 

The roots of (4.4) are 

(4.5) M i = 0 , fi2f3 = i(Bltk±Dltk)9 
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where 

(4.6) D2
Kk = B2

Uk - 3 C U = 

= ~2\S?k ~ S2N-k) + (S2N-k ~ S2N + k) + {S2N + k ~ Sk) J = 0 • 

From (4.2), (4.5) and (3.9) we conclude that 

(*l-»u + DiJ • k = l , . . . , i V - 1] 
(4.7) e , = max i | B a - DKk\ : fc = 1 , . . . ,N - 1 \. 

{ \i-Mv; |1 — fcol" J 

In what follows we focus our attention on the asymptotic convergence factor O*. 
We shall start with upper estimates of O* in the cases of v = 1 and v > 1 even. 

Let us consider the case v = 1. From (3.8), (4.4) —(4.7) we obtain 

(4.8a) Bhk = 3(1 - co), 

(4.8b) Dhk = \<o . 

The proof of these relations is postponed to the appendix. Consequently, for v = 1 
we have 

(4.9) O* = Ql = max {|l - ico\ , | l - |o>|} = i . 

Moreover, Q* = O*(co) = 1/2 for co = 1. 

Further, we shall consider the cases of v = 2 and generally of v even. For v = 2 
we have 

(4.10a) Bhk = 3[(1 - co)2 + ±co2] > 0 , 

(4.10b) D2
>k = B2

Uk - 3CLk < B2
Uk. 

The proof of the former relation will be given in the appendix; the latter relation is 

obvious. 

From (4.10), it follows that 

i|BIfjfc ± Dhk\ = iBhk = 2[(1 - co)2 + ico2] , 

(4.11) O* g max (|1 - ico|2; |l - fcD|2; 2[(1 - co)2 + ±co2]} . 

The minimum value of the above estimate is 2/3 and it is attained for co = 2/3. 
The estimate (4.11) holds true for all v > 1 even, since 

«v < e2 <?v < Q2 ?v < s 2 

~>fc =~ Jjt ? *2N-k = *2N-k J ^2/V + fc = *2N + k ' 

Furthermore, considering the behaviour of the spectral radius of Mz>1 for / -> oo, 
we can establish lower bounds for Q* = O*(co, v). 

From (3.8) we obtain 

s[ -> 1 for / -> oo , 

«2N-i? 4N+i -* £ = 1 - |<a for /-> oo , 

and £ e < - 0 - 5 , l ) for coe(0, 1>. 

Thus 
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Btl -> 1 + 2<T for I -> oo, 

DlA -> 1 - cf for / -> oo 

and according to (4.1), (4.2), (4.7) 

Q*((D9 v) £ max {lf2 + f | ; |£v|} . 

Consequently, for v odd we have 

inf <?*(o» v) ^ inf max {||2 + £v|; | ^ |} ^ - (1 - J L ) 
to - 2 - v < ^ v < ! 3 \ 2V X / 

and for v even 

inf Q*(CO, v) = inf max {j|2 + fv|; |<T|} ^ f . 
to 0 ^ £v < 1 

Now, let us summarize the results obtained in the following 

Theorem 1. Let Q* = Q*(co, v) be the supremum of the spectral radii of the two-
level operators introduced in (4.1). 

Then for co e (0, 1>, 

(4.12a) Q*(CO, v) ^ |(1 - 2~v_1) if v is odd, 

(4.12b) Q*(co, v) ^ § if v is even . 

Moreover, the lower bounds are attained in the cases co = 1, v = 1 and co = 2/3, 
v even. 

R e m a r k . Let us point out that Q*(co, v) does not tend to zero if v goes to infinity as 
is typical for the multi-level methods based on interpolation transfer operators, 
of. [2], [3]. 

5. E N E R G Y N O R M O F T H E T W O - L E V E L O P E R A T O R 

In this section we are interested in the quantities 

(5.1) tJ = T l(o>,v1,v2)= \\Ml\\E= llM,!*, 

(5.2) T* = z*(o), vu v2) = sup {T,: / = 1, 2, ...} , 

where 

(5.3) Ml = Mt(co, vu v2) = L;/2M,Lr1/2 = 

= SY{I-L\'2IUL-1J\^L\I2-\SY, 
and 

(5.4) \\M\\S = V(e(MTM)) 

is the spectral norm of the operator denned by the matrix M, MT denotes the transpose 
of M. 

Theorem 2. Let 0 < co rg 1, let v1? v2 be nonnegative integers, v = vi + v2. Then 
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(5.5a) T*(CO, v1? v2) = T*(CO, v2, vt) , 

(5.5b) T*(CO, v/2, v/2) = O*(co, v) for v even , v = 2 , 

(5.5c) T*(CO, 0, v) = T*(CO, v, 0) = V(O*(co, 2v)) , 

(5.5d) T*(CO, vl9 v2) = T*(CO, 1,1) = Q*(CO, 2) for vx, v2 = 1 . 

Corollary. For co = 2/3 we obtain the following optimal results: 

5.6a) T*(2/3, 0, v) = t*(2/3, v, 0) = V(2/3), 

(5.6b) T*(2/3, v/2, v/2) = 2/3 for v even, v = 2, 

(5.6c) i*(2/3, vl5 v2) = 2/3 for vl9 v2 = 1 . 

Proof. The relation (5.5a) is a consequence of the identity 

M/co, v1? v2) = [M/co, v2, Vi)]1 . 

The next relation (5.5b) follows by the symmetry of Mt(co, v/2, v/2). More precisely, 
we have 

||M/co, v/2, v/2)||s = O/M/co, v/2, v/2)) = O;(M/co, v/2, v/2)). 

According to (5.5a) we have T*(CO, 0, v) = T*(CO, V, 0). Further, by virtue of the 
identity 

[M/co, v, 0)]T M/co, v, 0) = M/co, v, v) 

we obtain 

||M/co, v, 0)||E = V(O/M/co, v, v))) = V(^(M/vcD, v, v))) , 
so that (5.5c) holds true. 
Finally, for vl9 v2 = 1 we have 

||M/co, vx, v2)||s = IS i l l?- 1 ||M/co,l, 1) | j , WS^'1 , 

where ||S-||s = O(SZ) = 1. This yields the last relation (5.5d). 

6. SPECTRAL NOR M OF THE TWO-LEVEL OPERATOR 

Now, we shall study the quantities 

(6.1) ax = cr/co, v1? v2) = \M\S , 

(6.2) a* = O*(co, v1? v2) = sup \GX: I = 1, 2, ...} . 

Let us notice three facts. First, the spectral norm can be expressed in the form 

H a * II \MlU\ 

\\Mi\\s = s u p L U , 
i .*0 | |u | | 

where ||u||is the /2-norm of the (n — l)-dimensional algebraic vector u. Second, 
the operator Mt is reduced by /2-orthogonal subspaces Elk, k= 1, ...,N, 2N. 
Finally, all eigenvectors <P[ can be /2-normalized by the common factor. 
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From these facts we can conclude that 

(6.3) al = max {altl, ..., ahN, aU2N] , 

where 

(6-4) _ I J t = \\Mhk\\s= [ | M a | | s . 

Theorem 3. Let 0 < CD ^ 1 and let v1? v2 be nonnegative integers. Then 

(6.5a) <r*(cD, v1} v2) = oo for co 4= 2/3 , v l 5 v2 arbitrary, 

(6.5b) a*(co, vu v2) ^ V t / ° r co = 2/3 , v ^ l . 

Proof. The matrix M / f c has the entry 

L^Z,fcJl,2 = Sk2 S2N-k 
C2N-k 

whose absolute value goes to infinity in the case co 4= 2/3, k, v1? v2 fixed and I -* oo. 

Consequently, the statement (6.5a) must hold true. 

Furthermore, for co = 2/3 we have 

c[ = 3sl

k, k = 1, . . . , n , - 1 

and M, j k assumes the form 

-24 c v 2 + 1 v i - l 
— 5fc

 s2N-k 
_ C V 2 + 1 Vt-1 ~ 

Ч ò2N + fc 
V2+3 _Ví-

л2/V-/cò/c 
ZÒ2N-/c 

c v 2 + 1 „Vi - 1 
~S2N-kS2N + k 

c v 2 + l c v i -
_ s2N + kòk 

L c v 2 + l c v i - l 
"~ò2/V + /cÄ2/V-fe 2s2N + k __ 

Thus, as the square of the spectral norm of a matrix M can be estimated from above 
by the sum of squares of its entries, we obtain 

&l,k ~ g Sk + S2N-k + S2N + k) 

for k = 1, . . . ,N - 1 and vx ^ 1. With respect to (4.10) it follows that 

<k S h • 
Finally, from (3.9) we have aUN = 2/3 and aU2N = 0, so that (6.5b) holds. 

Remark . For better understanding of (6.5a) we can consider the following example. 
Let us start with the error e1,0 

e\'° = e for i = 2 , n, - 2 , e # 0 , 

ej'° = 0 for i = 1, 3, . . . , n , - 3 , n, - 1 . 

Then performing the correction steps (2.7b), (2.7c) we obtain the new error elA 

e\A = 0 , for i = 1, 2, n, - 2, n, - 1 , 

ej'1 = - e for / = 3, ..., nt - 3 . 

The smoothing of eu by v Jacobi iterations (2.8) produces the next error elA+\, 

e|'I + v = - e for i = 3 + v, . . . , n, - v - 3 . 
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Therefore 

• ^ ^ ^ ^ 
and 

cr*(co, 0, v) = oo . 

Let us note that a little less unfavourable example was proposed in [4] to demonstrate 
the features of the so called one-sided interpolation transfers. 

Remark . The use of Gauss-Seidel or conjugate gradients for smoothing after 
the aggregation correction steps does not change the above behaviour. 

7. CONCLUDING REMARKS 

The results concerning the spectral radius and the energy norm of the aggregation 
correction (AC) two-level iteration operator indicate a substantial acceleration of 
the convergence rate as compared with the simple Jacobi relaxation method. On the 
other hand, one AC two-level cycle is computationally more expensive than one 
Jacobi iteration, so that an estimate of the number of arithmetic operations to obtain 
given accuracy is needed for the appreciation of the AC method. 

To this end, let us consider the multi-level AC process (2.9). In [6] we proved 
that under the assumptions co = 2/3, vx = v2 > 0 the number of arithmetic opera­
tions required to reduce the energy norm of the initial error by a given factor is 
proportional to na, where n is the number of unknowns and a = In 4/ln 3 = F262. 

From the above result we can conclude that the AC multi-level method is more 
efficient than the simple relaxation methods but less efficient than multigrid methods 
with better interpolation transfers. Thus, the multi-level AC method can be useful 
for problems where a better interpolation transfer is excluded for some reasons. 

Acknowledgement. I thank Jan Mandel for valuable comments to this paper. 
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APPENDIX 

Let us start with three identities verifiable by elementary means. In the sequel, 

k, N are arbitrary, x = 1 or x = 2: 

(0 
xkn x(2N - k) n x(2N + k) n 

cos 1- cos — — + cos — L— = 0 , 
3/V ЗN ЗN 

,.., . xkn . x(2N — k) n . x(2N + k) n 
(п) sm sm — — + sm — ' — = 0 , 

ЗN ЗN ЗN 

, . . л 2kn J2N-k)n 2(2N + k)n 3 
(ш) cos2 — + cos2 — + cos2 v 

v } ЗN 
ЗN ЗN 

Now, let us proceed to the formulae to be proved. For the proof of the first two, 

(3.2a), (3.2b), it will suffice to compare the entries of the vector identities. For example, 

' (/•-*{), = * [ a i n ^ ( 3 . - 1) + .in ̂ 3 . + s i n ^ ( 3 / + 1)J = 

= i ( l + 2 c o s ^ s i n ^ 3 i = i c K - 1 ) , -

for i = 1, . . . , N - 1, so that l\~l$[ = ic[<Pl

k~
l. The proof of the other identities 

is similar. 

Next, we shall prove (3.2c). Let N = nl_l, j = 1, ...,N — 1. For the proof 

we shall compare the i-th entries of the vector identity. It is necessary to distinguish 

the cases i = 3j, i = 3j — 1, / = 3j + 1. In the first case we have 

kn 
(c[Ф[ + cl

2N_kФ
l

2N„k + cl

2N+kФ
l

2N+k)3j = 1 + 2cos 
ЗN 

. кn _. 
sin — 3/ 

ЗN 

1 + 2 cos 
(2N-к)ҡ-\ (2N - k) л 

1 + 2 cos 

ЗN 

(2N + k) n 

ЗN 

sm 

sm 

ЗN 

(2N + k) 71 

ЗN 

3/ + 

У = 

- . kn kn . 
= 3 sin —• / + 2 sin — j 

N N 

kn (2N - k) n (2N + k) n 
cos h cos '- h cos '— 

ЗN ЗN ЗN 

k7Г 

¥' 
^ ú ъ ~ ì = 9{Ѓx_xФt%. 
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since (i) holds and 

. fcтr _. . (2N - fc) тr „. . (2N + fc) тr „. , fcтr . 
sin — 3/ = — sm — 3/ = sin - — 3/ = sm — j . 

ЗN ЗN ЗN N 

In the second case 

(ofrl + cl

2N_k<Pl

2f,-u + cl

2N+k4>'2N + k)ij-1 

3t 
kn~\Y . kn fc7r kn . . kn~] 

1 + 2 cos — sin — / cos cos — j sin — + 
3N I I N 3N N 3NJ 

(2N - fc)7f| V .klí . (2N - fc)7T 1 — 1 + 2 cos -— - sm — 7" cos ~— — cos 
ЗN N ЗN 

kn . .. (2N - fc) тЛ 

N ЗN J 

Г „ (2N + fcbl Г . fcтr . (2N + fc)тr fcтr . . (2N + fc)тrl 
+ 1 + 2 cos v '— sin — / cos v '— — cos — j s in v —— •• 

L ЗN J L N ЗiV N ЗN J 

= 3 s i n ^ j = 9 ( / ! _ 1 < Z > r % - 1 , 

since (i), (ii) for x = 1 and x = 2, and (iii) hold true. The proof in the case i = 3/ + 1 

is similar. 

Finally, let us focus our attention on the relations (4.8a), (4.8b) and (4A0a). From 

the definition (3.8) we obtain 

Sk + S2N-k + S2N + k = 

3 - 2co 
' . 2 fc7Г . , ( 2 N - fc) 7Г . 2 ( 2 N + fc) 7Г 
s m 2 h s i n 2 v '- 1- sm2 -

6N 6N 6N 

= 3 — 2co 

Further, 

3 i kn 
4 — \ cos 4 

3N 

cos 
(2N-fc)тr . (2N + fc)тЛ , 
• \ cos Ь '— = 3(1 - co). 

ЗN ЗN 

(slkY + (sl2N-k)2 + (S2N + kY = 

kn j c .^ 2 ( 2 N - fc) 7T ^ c.^2 ( 2 N + fc) TT" 

6N 

V .kn . , (2N - fc) TT . 2 2N + fc) TTI 
= 3 - 4co s i n 2 — + s i n 2 v '— + s i n 2 * '— + 

L 6N 6N 6N J 

+ 4oY sin' 
k* , -:-Л^-k)к , ^ 4 ( 2 i V + fc)я 

+ CO' '[('-

6N 

fcтrV 

+ sm 

cos — 1 + 
ЗN, 

cos 

+ sin 
6N 6N 

(2N - fc)тrx2 

3/V 
+ 11 — cos 

= 3 - бco + 

(2N + fc)IЛ2^ 

= 3[(1 - æ)2 + i co 2 ] . 

377 



Consequently, 
, i i 

òkò2N-k "Г *2N~kò2N + k + S2N + kSk 

= i[(sí + sLv-* + 4 N + , ) 2 - (-Í)2 - (s^-*) 2 - (sl2N+k)
2] = 3[(1 - « 2 ) - ica2] . 

Apparently, the above identities yield the relations to be proved. 

Souhrn 

VÍCEÚROVŇOVÁ METODA S OPRAVOU POMOCÍ AGREGACE 
PRO ŘEŠENÍ DISKRÉTNÍCH ELIPTICKÝCH ÚLOH 

RADIM BLAHETA 

V práci se studuje chování víceúrovňové metody, která kombinuje Jacobiho iterace a korekci 
pomocí agregace proměnných. Studium je omezeno na jednoduchý jednorozměrný modelový 
příklad, který umožňuje plně využít techniku Fourierovy analýzy. Přes uvedené omezení je 
v práci ukázán rozdíl v chování studované metody proti chování vícesíťových metod využívajících 
interpolaci místo agregace. 

Pe3K>Me 

MHOrOCETOHHBIÍÍ METOA PEUIEHM^ AMCKPETHBIX EJLJlHnTMHECKHX 
3AflAH C nOnPABKOH nOCPEACTBOM ArPErAH,HH HEH3BECTHBIX 

RADIM BLAHETA 

B CTaTte H3y*iaeTCJi noBê eHMe MHoroceTOHHoro auropn^Ma Hcnojib3yK>mero npocTbie HTepaunn 
H nonpaBKH nocpe/rcTBOM aprepainra HeH3BecTHbix. noBe^eHne ajiropH(J)Ma npOAeMOHCTpnpOBaHo 
Ha npHMepe npocTOH o/JHOMepHoií KpaeBoíi sa^a^H, #jra KOTOpoří Bnojnie npHMeHHM annapaT 
aKajiH3a Oypte. 3TOT npHMep TaK ĉe noKa3biBaeT pa3HH4He Meiaczry noBe^eHneM paccMaTpn-
BaeMoro auropn^Ma H noBe/reHHeM MHoroceTOHHbix ajiropmjiMOB, Hcnojib3yK)HrHx HHTep-
nojiHHHK) BMecTO arperauHH. 
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