Aplikace matematiky

Radim Blaheta
A multilevel method with correction by aggregation for solving discrete elliptic

problems
Aplikace matematiky, Vol. 31 (1986), No. 5, 365-378

Persistent URL: http://dml.cz/dmlcz/104214

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104214
http://dml.cz

31 (1986) APLIKACE MATEMATIKY No. 5, 365—378

A MULTI-LEVEL METHOD WITH CORRECTION
BY AGGREGATION FOR SOLVING DISCRETE
ELLIPTIC PROBLEMS

RADIM BLAHETA

(Received May 24, 1985)

Summary. The author studies the behaviour of a multi-level method that combines the Jacobi
iterations and the correction by aggregation of unknowns. Our considerations are restricted to
a simple one-dimensional example, which allows us to employ the technique of the Fourier
analysis. Despite of this restriction we are able to demonstrate differences between the behaviour
of the algorithm considered and of multigrid methods employing interpolation instead of aggre-
gation.
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1. INTRODUCTION

The aim of this paper is to give some insight into the multi-level method with
correction by aggregation of unknowns. This method belongs to the broad class
of multi-level or multigrid methods for solving linear systems arising from the discreti-
zation of elliptic boundary value problems [1]. The consideration of the above
mentioned aggregation correction multi-level method was motivated by the follow-
ing reasons.

First, initial approximation by aggregation was observed to be very efficient
in the solution of the three-dimensional elasticity problems arising in geomechanical
modelling [5].

Second, in the finite element analysis of complicated and, especially, three-dimen-
sional engineering problems we are usually not able to produce a sequence of nested
grids, which is needed for the standard multigrid algorithms. Hence, the multi-level
algorithms with generating coarser levels from the finest one, as in the algebraic
multigrid approach [4], are of interest. Generating coarser levels by means of aggre-
gation of unknowns is probably the simplest way of creating them, and, consequently,
the aggregation correction multi-level method is attractive from this point of view.

The paper is organized as follows. In Section 2 we describe a simple one-dimensional
model problem, which allows us to demonstrate some essential features of the
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method considered. The technique of our analysis is clarified in Section 3, cf.[2].
The spectral radius, energy and spectral norms of the two-level iteration operator
are studied in the following sections.

2. MODEL PROBLEM, ALGORITHMS

Let us consider a one-dimensional model problem
—u"=f in Q=(0,1); u(0)=u(l)=0.
In order to apply the finite difference or finite element method, a computational
grid Q, is defined as follows:
Q={x=kh:k=0,...,n};h=1n.

We shall consider the discretization resulting in the system of linear equations

2 —1
—1 2 -1
(2.1) Lu" = f* with L, = ,712 o ,

where L, is an (n — 1) x(n — 1) matrix, u", f* are (n — 1)-dimensional algebraic
vectors corresponding to the grid functions on .

Let us introduce the notation
(22) L,=L,, u"=u", f'=fm,
where m is the number of the highest (finest) level. Next, the lower (coarser) level
systems of equations
(2.3) Lu'=f', I=m—1,...,0
will be formed by means of a restriction I}~ ! and a prolongation I}_,:
(2'4) Ly =Ii—1L115—1, fl_l =15_1fl-

In this paper I\”' will be an aggregation opetator, I;_, will be a disaggregation
operator. It means that I'™", I}_, are up to a multiplicative constant represented by
rectangular matrices with zero elements everywhere except at most one 1 per column
of I} and one 1 per row of I}_ .

The Fourier analysis described in the next section forces us to introduce the special
choice of n = n,, = 3™n, and the following definition of I}~ " and I}_,:
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0111
111
(2.5) I''=1%

1110}

is an (n,_; — 1) x(n, — 1) matrix, n, = 3'n, and I;_, is the transpose of I} ".
From (2.1) and (2.4) we obtain
2 —1
s 1 2 -1
(26) Ll = ~; . . . )
hi S =t
-1

where h, = 1/n; = 3"""h,, [ =m,...,0.
For I = m, ..., 1 the problem on level [ (2.2), (2.3) can be solved by the iterative
algorithm whose one cycle is defined as follows (cf. [2], [3]).

Two-Level Algorithm: starting with initial u’

(2.7a) perform v, smoothing steps u' « R,(u’, f*),

(2.7b) solve the problem L,_u'~* = I}"'(f' — Lu'),

(2.7¢) perform the correction u’ « u' + Ij_ju'"%,

(2.7d) perform v, smoothing steps u' < R,(u’, f!).

In the above described cycle, v,, v, are constants, R, denotes the operator of the
smoothing procedure. With respect to the Fourier analysis of the convergence we shall
consider for smoothing only the Jacobi relaxation method, so that

(2.8) Ryu', f1) = Su' + Tif' = u' + Ihio(f' — Lu'),
where w is a relaxation parameter, w € (0, 1.

In order to avoid the (exact) solution of (2.7b) in the two-level algorithm we can
solve the problem on the lower level approximately by the same method. In this way
we obtain the following

Multi-Level Algorithm defined recursively:
For | = m, ..., 0 the problem on level [
Lu'=f'
is solved iteratively. One iteration is defined as follows:
If I = 0, then u® « Lj'f°.
If I > 0, then starting with initial u’
(2.9a) perform v, smoothing steps u' < Ry(u', f'),
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(2.9b) perform y cycles onlevel I — 1 for the problem
L_u™t = Ii_l(fl - Ll“l)
starting from the initial approximation u'~! = 0,
(2.9¢) perform the correction u' « u' + Ij_ju'™*',
(2.9d) perform v, smoothing steps u' « R,(u’, f').

Let us note that y in (2.9b) is a further parameter.

Both algorithms presented are stationary linear iterative methods. Let M,, M, be
the iteration operators corresponding to the two-level and multi-level algorithms,
respectively. Then forl = m, ..., 1

(2.10a) M, = S;*Q,S}",

(2.10b) Q,=1,—P,, Ijisthe(n, — 1) x (n; — 1) identity ,
(2.10c) P, =1_,L;'\II"'L,

and

(2.11) M, =M, M, =M, + SpI'\_ M,_,L;},I,"'LS}" .

For the proof of the relations (2.10) and (2.11) see [2], [3].

3. FOURIER ANALYSIS

Due to the use of uniform grids the eigenvectors of L, are algebraic vectors &,
with the entries

(3.1a) (@L)izsin]ffi: k,i=1,..,n—1,
n

and the corresponding eigenvalues of L, are

(3.1b) A = 4n} sin? kn .
2n,

The Fourier analysis of the iteration operator M, consists in its representation
with respect to the basis {®;}. The crucial point for this is the representation of the
transfer operators I}~ ', I;_; with respect to the bases {®;}, {®,"'}. The following
identities make this representation possible:

=150 _ 1 lgl—1
I” & = 3¢9,

(3.2a) 7' @Yy = oo @,
I:—I¢12N+k = %—CIZN+k¢IIc_1 >
(3.20) 1l = 1@l =0,
(3'2C) I:—l(pllc_l = %(C/lcd’;l( + 012N~k(p12N—k + c’2N+k¢lzN+k)a
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where N =n,_,k=1,...,N — 1 and

c,'(=1+2cos%,

2N — k)n
(33) —chy =1+ 2005£—3N ) ,

2 k
CIZNM(: 1 +2cOs(Lt_)7_r_

A verification of these identities may be found in the appendix.
As the consequence of (3.2), the spaces
(3.4 E,, =span{®;, ®yy ., Phy.y ), k=1,..,N—1,
E,y = span {®y}, E, ,y = span{®5,}

reduce the operators S;, P;, Q;, M, defined in Section 2. In what follows, let S, ,
Py, Q14 My, denote respectively the restrictions of the operators S;, P;, Q,, M, to
the invariant subspace E, ;.

Now, we are interested in the matrix representation of P,,, Q, ., M, , with respect
to the bases of E;; formed by the eigenvectors of L;. This matrix representation will
be denoted by a hat. Let us start with k = 1,...,N — 1. Then

i
ﬁl,k = 2_7[’1(fi ciZN—k ['lliclf" 'UZN»Ac;N—ka ;LIZN—chlZNka] .

CoN+k

From the definitions of A.™%, A}, ¢} and from the expression of sin 3« in terms of the
trigonometric functions of the argument « we immediately obtain the following
relations:

a1 1 1 1 1
Ao 1 Aoy _ |1 AaverConek _ 1

= — = R =

-1 [ 1-1 [ -1 1 :
ez Ck 9 Can—k ez CaN+k

Hence, we have

[cﬁ HERRAIEH -
(3-5) Pl,k =1 céN—k 111 CIgN_k s

| 012N+k_J | 1 11 Con i

[l 1 2 =1 —1]]¢ -t
(3~6) Ql,k =3 CoN-k -1 2 -1 CIZN—k

| C£N+k_J __' - 2 Consk
and

st ‘In §! Vi
(3'7) M, = SéN—k Ql,k S’ZN—-k >

SIZN+kJ SIN+k
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where
2

h ZTm
(3.8) st=1—-—w=LA =1-2wsin>2=,
6N

z 'z

for z=1,..,3N -1, we(0,1).
Finally, let us note that

(39&) MI‘N — [s’lv]vz%-v! _ [1 _ _%_w]vz-h;, ,
(39b) MI,ZN — [SIZN]vz+v1 — [1 _ %w]v;-h;l .

4. SPECTRAL RADIUS OF THE TWO-LEVEL OPERATOR

To give some insight into the asymptotic convergence behaviour of the two-
level method we shall consider the quantities

(4.12) 0; = ¢, v) = o(M,) — the spectral radius of M,
(4.1b) 0* = ¢*(w,v) =sup{opl=1,2,...}.

Note that both ¢, and ¢* depend on the parameter w of the smoothing procedure
and on the numbers of smoothing iterations v,, v,, more precisely on their sum
V=yv; + Vv,

Taking into account the reduction of the operator M, described in Section 2,
we obtain

(4.2) 0; = max {91,1, ces Q1 N—15 Q1N Qz,zN} s

where g, denotes the spectral radius of M;;, N = n;_;.

Let k = 1,...,N — 1, then according to (3.7) the matrix M,, is equivalent to
G, where

v vy Vi V2 Vi
rzsk Sk SaN -k TSk SaN+k
A — 1 2 vy v V2 Vi
(4.3) Ge=1% SaN—1Sk 2SaN—k SoN—kS2N+K |
va vy vy vy v
L= SoN+iSk —SON+kSaN—k  2San+k 1

v = v, + v, and for the sake of brevity s; means (s;)", etc.

Hence, the characteristic equation of M 1% has the form

(4.42) 3u(3u® — 2By, + Cpy) =0,
where

(4~4b) By = sk + Siyok + Sinirs
(4'4C) Cri = SiSon—k + San—iSan+r + San4iSk -

The roots of (4.4) are
(4.5) f =0, py3 =3B+ Dy,
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where
(4~6) Dlz,k = Blz,k = 3C =
= %[(51: - s;N—k)Z + (s;N—k - S;N+k)2 + (s;N+k - SZ)Z] =0.

From (4.2), (4.5) and (3.9) we conclude that

UB o + Dyl tk=1,..,N — 1
4.7) 0, =max<{}B,, — D, l:k=1..,N—1

I —dol"; 1 = 3o
In what follows we focus our attention on the asymptotic convergence factor g*.

We shall start with upper estimates of ¢* in the cases of v = 1 and v > 1 even.
Let us consider the case v = 1. From (3.8), (4.4)—(4.7) we obtain

(4.8a) By =31 - ),
(4.8b) Dy, =30.
The proof of these relations is postponed to the appendix. Consequently, for v = 1
we have
(4.9) 0* :Q,zmax{ll —%w‘, |1 —%wl} > 1.
Moreover, o* = ¢*{(w) = 1/2 for w = 1.
Further, we shall consider the cases of v = 2 and generally of v even. For v = 2

we have
(4.10a) By, =3[(1 — 0)* + 10*] > 0,
(4.10b) D}, = Bj, —3C,, < Bj,.
The proof of the former relation will be given in the appendix; the latter relation is
obvious.

From (4.10), it follows that

%IBI,k + Dl)kl S 3B = 2[(1 - w)2 + %(1)2] ,

(4.11) o* < max {|I — 0% |1 — J0|%2[(1 — w)? + 10?]}.
The minimum value of the above estimate is 2/3 and it is attained for w = 2/3.

The estimate (4.11) holds true for all v > 1 even, since

v 2 v 2 v 2
Sk =Sk San-k = SaN-k>  San4k = Sanek -

Furthermore, considering the behaviour of the spectral radius of M; ; for [ — oo,
we can establish lower bounds for o* = ¢*(w, v).

From (3.8) we obtain
st >1 for 1-> o,

3
Son-1> shye1 > E=1—30 for - o,

and ¢e(—0-51) for we(0, 1).
Thus
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B,y = 1+2& for - oo,
D, —»1-¢& for I-
and according to (4.1), (4.2), (4.7)
o*(w,v) = max {32 + &;

&}

Consequently, for v odd we have

2 1
info*(w,v) 2 inf B L [ =
12 o*(w v)__rix;éwlmax{sl 5! el 3< 2v+l)

and for v even

inf ¢*(w,v) = inf max {%IZ + 5"'; |5“|}

o] 0=s¢v<l

1%
(8]

Now, let us summarize the results obtained in the following

Theorem 1. Let ¢0* = o*w, V) be the supremum of the spectral radii of the two-
level operators introduced in (4.1).

Then for w € (0, 1),
(4.12a) o*(w,v) = 31 — 2771 if vis odd,
(4.12b) 0*(w,v) = % if viseven.

Moreover, the lower bounds are attained in the cases w = 1,v = 1 and o = 2/3,
v even.

Remark. Let us point out that o*(w, v) does not tend to zero if v goes to infinity as
is typical for the multi-level methods based on interpolation transfer operators,

of. [2]. [3].

5. ENERGY NORM OF THE TWO-LEVEL OPERATOR

In this section we are interested in the quantities

(5.1) = 1w, vi,v2) = [Mip = [M,]s,

(5.2) ™ =, v, vy) =sup{r:l=1,2,...},

where

(5.3) M, = Mfw, v, v,) = L>ML;"? =
= SP{I = LI ) sy

and

(54) [M]s = (e(MM))

is the spectral norm of the operator defined by the matrix M, MT denotes the transpose
of M.

Theorem 2. Let 0 < w < 1, let vy, v, be nonnegative integers, v = v, + v,. Then
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(5.5a) ™, vy, v2) = (@, v4, vy) ,

(5.5b) ™(w, v2,v[2) = 0¥(w, V) for veven, v=2,

(5.5¢) ™(, 0, v) = (o, v, 0) = /(0*(w, 2v)),

(5.5d) ™, v, v;) £ ™o, 1,1) = 0%(w,2) for v,v, = 1.
Corollary. For w = 2[3 we obtain the following optimal results:

5.6a) (23,0, v) = %(2J3,v,0) = \/(2J3),

(5.6b) t™(2/3,v]2,v]2) = 2[3 for veven,v=2,

(5.6¢) (23, vy, v,) £ 2[3 for vy, v, 2> 1.

Proof. The relation (5.5a) is a consequence of the identity
M, vy, v,) = [M (@, v, v))]".
The next relation (5.5b) follows by the symmetry of M (w, v/2, v/2). More precisely,
we have
[ M (w, v]2,v[2)||s = o(M{w, v[2,v]2)) = oMo, v[2,|2)).
According to (5.5a) we have t(w, 0, v) = t*(w, v, 0). Further, by virtue of the
identity
[M/w,v,0)]" M/w,v,0) = M,/ w,v,v)
we obtain
M0, 0)s = e, v, ) = Y@M, v, ).

so that (5.5¢) holds true.
Finally, for v,, v, = 1 we have

HMI(CU» Vi, "2)

s SIS Mot O s S5
where ||S,||s = o(S,) < 1. This yields the last relation (5.5d).

6. SPECTRAL NORM OF THE TWO-LEVEL OPERATOR

Now, we shall study the quantities
(6.1) o =0/0w,v,v,) = |M]s,
(6.2) o* = o*(w, vy, vy) =supfopl=1,2,..}.

Let us notice three facts. First, the spectral norm can be expressed in the form

M
15 = sup [202

u%0 ”U”
where |ulis the I,-norm of the (n — 1)-dimensional algebraic vector u. Second,
the operator M, is reduced by [,-orthogonal subspaces E,,, k= 1,...,N, 2N.
Finally, all eigenvectors @ can be I,-normalized by the common factor.
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From these facts we can conclude that

(6.3) 0, =max {0,;, ..., Oy, Op2n} »
where
(6.4) = [Mialls = [Muu]s -

Theorem 3. Let 0 < w < 1 and let v,, v, be nonnegative integers. Then
(6.5a) o*(m, vy, v,) = 0 for w*2[3, vy, v, arbitrary,
(6.5b) o, v, v,) V% for =23, v;=1.

Proof. The matrix ]\71,’,\. has the entry

[Ml,k]l,l - Sk SNk
CaN—k

whose absolute value goes to infinity in the case @ + 2/3, k, v, v, fixed and | - oo.

Consequently, the statement (6.5a) must hold true.
Furthermore, for @ = 2/3 we have

ci=3s,i, k=1,...,n, —1

and M,, assumes the form

T vot+1 vi—1 vt ovi—1

2sy —S" SaN-k Sk” SaN+k

1 vat+1 vi—1 v V2t 1l vi—1
3| TSaN-kSk 253Nk SoN—kS2N+k |-
va+1 vi—1 va+1 vi—1 v I

L —San+1Sk —SON+KSaN—k 282Nk A

Thus, as the square of the spectral norm of a matrix M can be estimated from above
by the sum of squares of its entries, we obtain

i = g St + Sov-i S;:\H—k)
for k =1,...,N — 1 and v; = 1. With respect to (4.10) it follows that
ok 3.
Finally, from (3.9) we have o,y = 2/3 and 0,5 = 0, so that (6.5b) holds.

Remark. For better understanding of (6.5a) we can consider the following example.
Let us start with the error e"°

¢ for i=2, n—2, ¢#0,
et =0 for i=1,3,...,m—3, n—1.
Then performing the correction steps (2.7b), (2.70) we obtain the new error e

' =0, for i=1,2,n,—2,n—1,

i

1,0
€;

I

11

el": —¢ for i=3,..,n —3.
The smoothing of ¢! by v Jacobi iterations (2.8) produces the next error e"'*”,
eb't = —¢ for i=34+v,..,n —v—3.
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Therefore

o0 s L7 S Jm =2 9

el ~ V2

0*(w,0,v) = 0.

and

Let us note that a little less unfavourable example was proposed in [4] to demonstrate
the features of the so called one-sided interpolation transfers.

Remark. The use of Gauss-Seidel or conjugate gradients for smoothing after
the aggregation correction steps does not change the above behaviour.

7. CONCLUDING REMARKS

The results concerning the spectral radius and the energy norm of the aggregation
correction (AC) two-level iteration operator indicate a substantial acceleration of
the convergence rate as compared with the simple Jacobi relaxation method. On the
other hand, one AC two-level cycle is computationally more expensive than one
Jacobi iteration, so that an estimate of the number of arithmetic operations to obtain
given accuracy is needed for the appreciation of the AC method.

To this end, let us consider the multi-level AC process (2.9). In [6] we proved
that under the assumptions @ = 2/3, v; = v, > 0 the number of arithmetic opera-
tions required to reduce the energy norm of the initial error by a given factor is
proportional to n% where n is the number of unknowns and o = In 4/ln 3 = [-262.

From the above result we can conclude that the AC multi-level method is more
efficient than the simple relaxation methods but less efficient than multigrid methods
with better interpolation transfers. Thus, the multi-level AC method can be useful
for problems where a better interpolation transfer is excluded for some reasons.

Acknowledgement. 1 thank Jan Mandel for valuable comments to this paper.
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APPENDIX

Let us start with three identities verifiable by elementary means. In the sequel,
k, N are arbitrary, x = l or x = 2:

() cos™ KT | o XEN =R (KON KT
3N 3N
(ii) sin xkn _ sin XN — k) + sin 2N + k) =0,
3N 3N 3N
2N —
(ili)  cos? hn + 0052( k) n + cos? @N+ K _3
3N 3N 2

Now, let us proceed to the formulae to be proved. For the proof of the first two,
(3.2a),(3.2b), it will suffice to compare the entries of the vector identities. For example,

. kn kn . km
I ')y, = 1| sin — (3i — 1) 4 sin— 3i + sin — (3i + 1) | =
(17 = 3 sin 5 30— 1) sin 15 31+ sin 17 14

kn krn
=13(1 4+ 2cos — |sin =— 3i = ey(dL7Y),
3( 3N> N bei(@47)

for i =1,...,N — 1, so that I "'®} = le/®.™'. The proof of the other identities
is similar.

Next, we shall prove (3.2c). Let N =n,_;, j=1,...,N — 1. For the proof
we shall compare the i-th entries of the vector identity. It is necessary to distinguish
the cases i = 3j,i = 3j — 1, i = 3j + 1. In the first case we have

knl . km .
(cx®; + chy_ Pony + CIZN+I(¢[2N+k)3j = [1 + 2COS§1T]] sin W 3 —

-1+ ZCOS(ZN_ k) sin(zN — k)n3j+
3N 3N

7I3j=

+ I:l + 2 cos (2N 3+ k) n] sin (2N + k)

3N
=3sin@j+25inﬁj cosl(—n——kcos(*—zN_ k)7§+COS(—2N+k)n =
N N 3N 3N 3N

. km, . _
= 3sin —1\7} =9I &),
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since (i) holds and

. ko . . 2N+ k)=
sin — 3j = — sin ~— = sin *———
3N N

km
3j=sin—j.
/ N

In the second case

131 1 1 1 I _
(ex®y + coniPon—i + ConirPonsi)zj—1 =

krn . km . km kn . . kn
=|1+4+ 2cos —||sin—jcos — — cos — jsin — | +
3N N 3N N 3N

1+2cos — k)m —sinEchosQN——k)j—r co ]smw—
3N N

3N N 3N
1+ 2cos(2N + ) sin E7-Z*j cos @—N——f—kkt co kn} sin ~— (2N + k)
3N N 3N N 3N

km -
—351n'1—\],-]—91£ ldsk 1)3] 1

since (i), (ii) for x = 1 and x = 2, and (iii) hold true. The proof in thecase i = 3j + 1
is similar.

Finally, let us focus our attention on the relations (4.8a), (4.8b) and (4.10a). From
the definition (3.8) we obtain

1 ] !
S+ Son-k t SNtk =

— 3= 20| sint M BN R O ]
6N 6N 6N

=3-2w %—%coskﬂ—%cos(z—N:—kﬁc—%cos(~2N—+ﬁT =3(l — w).
3N 3N 3N

Further,
(5¢) + (san—i)® + (s2n44)* =
- 2 k
=3 - 4w [5111 I6CN + sin? (—J—Yﬂ—l\i— sin? K—N—*‘—)n] +

6N 6N
+ 4w? sin"'-lﬁr + sin* Q—N;—k—)j + sin* QM)J—Z =3 — 6w+
6N 6N 6N

2 ( _ 2 . 2
+ w?| (1 = cos E + (1 — cos \2£J<)_7‘ + (1 — cos (721\14%;/_)_71 =
3N 3N 3N
=3[(1 — 0)® + {w?].
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Consequently,

S:islzN—k + SIZN—kSIZNJrk + s12N+ksll( =
= %[(sllc + Shy_p + séNH)Z - (Szlc)z - (Slzzv—k)z - (Sl2N+k)2] = 3[(1 - wz) - %wz] .

Apparently, the above identities yield the relations to be proved.
Souhrn

VICEUROVNOVA METODA S OPRAVOU POMOCI AGREGACE
PRO RESENI DISKRETNICH ELIPTICKYCH ULOH

RADIM BLAHETA

V préci se studuje chovani vicedroviiové metody, kterd kombinuje Jacobiho iterace a korekci
pomoci agregace proménnych. Studium je omezeno na jednoduchy jednorozmérny modelovy
ptiklad, ktery umoZiiuje pln€ vyuZit techniku Fourierovy analyzy. Pfes uvedené omezeni je
v praci ukazan rozdil v chovani studované metody proti chovani vicesitovych metod vyuZivajicich
interpolaci misto agregace.

Pesrmome

MHOI'OCETOYHbBI METO/] PEIIEHUSA JUCKPETHBIX EJUIUIITUYECKUX
3AZJAY C ITOINMPABKOU ITOCPEJICTBOM AT'PErALIUU HEU3BECTHBIX

RADIM BLAHETA

B craThe uzyyaercs noseIeHe MHOTOCETOYHOTO aJIropuhMa UCIIOJIB3YIOLETO IPOCThIE HTEPALUK
M IIONPABKH MOCPEACTBOM aprepaluy Heu3BeCTHbIX. TToBeneHne anropudma npoaeMOHCTPUPOBAHO
Ha IIpUMeEpe IPOCTOH OAHOMEPHON KpaeBoil 3ajayu, AJs KOTOPOH BIIOJIHE IIPUMEHUM almapat
aranu3a @ypre. DTOT HpuMEp TAKXKE IOKA3bIBAET pa3fMyve MEXAy IOBEACHHEM paccMaTpH-
BaeMOro ajnropupma U IIOBEACHWEM MHOTOCETOYHBIX aJrOPU(YMOB, HCTIONB3YIOIIUX HHTEP-
TOJISIMIO BMECTO arperauuu.
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