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Dedicated to Professor Jan Poldsek on the occasion of his sixtieth birthday 

(Received July 12, 1985) 

Summary. The paper is devoted to the numerical modelling of a subsonic irrotational non-
viscous flow past a cascade of profiles in a variable thickness fluid layer. It leads to a nonlinear 
two-dimensional elliptic problem with nonstandard nonhomogeneous boundary conditions. 
The problem is discretized by the finite element method. Both theoretical and practical questions 
of the finite element implementation are studied: convergence of the method, numerical integra­
tion, iterative methods for the solution of the discrete problem and the algorithmization of the 
finite element solution. Some numerical results obtained by a multi-purpose program written 
by authors are presented. 

Key words: cascade of profiles, subsonic flow, stream function, nonlinear second-order elliptic 
problem, variational formulation, weak solution, finite element approximation, numerical 
integration, iterative solution of a nonlinear algebraic system. 

AMS classification: 65 N 30, 76-08 , 76 B 05, 76 N 10. 

INTRODUCTION 

In [5] we studied several boundary value problems for a stream function that 
describe stationary irrotational non-viscous flows through cascades of blades on 
an arbitrary surface of revolution in a variable thickness layer. The results were 
then extended in [14] to cover also quasistationary flows through cascades of rotor 
blades. 

Here we shall deal with the finite element solution of these interesting and topical 
problems. We describe the discretization process, prove the convergence of the method 
and deal with some aspects of algorithmization. We also present some numerical 
results. Our theoretical investigations yield a contribution to the convergence results 
obtained by a series of authors and treated e.g. in [2] or [23]. The paper represents 
an extension of these results to nonlinear boundary value problems with nonstandard 
nonhomogeneous boundary conditions. 
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1. CONTINUOUS PROBLEM 

Let us consider a rotating blade row inserted into an axially symmetric channel. 
We shall study a flow past this blade row in a layer of variable thickness, i.e, in the 
space between two close axially symmetric stream surfaces Sf^ and -5^2-

By introducing convenient coordinates xi9 x2 on S?x (cf. [5, 12]), this surface 
and its intersections with the blades can be conformally transformed into the plane 
(xl9 x2)9 where we get a domain Q a R2. The boundary dQ of Q is formed by two 
straight lines 

(1.1) Ki = {(xl9 x2); xx = di9 x2 e KJ i = 1, 2, dx < d2 

and by an infinite number of disjoint simple closed curves Ck9 k = 0, ± 1 , + 2 , . . . , 
periodically spaced in the direction of x2 with a period T > 0 (see Fig. 1). The curves 
Ck are in the strip & between the lines Kx and K2, and form the so-called cascade 
of profiles, the lines Kx and K2 represent the inlet and the outlet of the cascade, 
respectively. The domain Q is periodic in the direction of x2 with the period r: 

(1.2) (xl9 x2) e Q o (xl9 x2 + T) e Q . 

Fig. 1 
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1.1. Classical formulation 

Quasistationary, irrotational, non-viscous, incompressible or subsonic compress­
ible flow field through the cascade of blades in the fluid layer between the surfaces 
Sfl9 92 is modelled via the stream function by the equation of the form 

(1.3) i±(b(x,(MY)d±) = co^(x), 
i=\ Ox; \ dxj oxx 

considered in the domain Q. co e Rx denotes the angular velocity of the rotating 
blade row. The function b is given by the dependence of the density on the velocity. 
Moreover, both b and r depend on the geometry of the fluid layer. (Cf. [10, 14].) 

Similarly as in [5] we meet several types of boundary conditions. 

First we assume that the velocity field is also T-periodic, which means 

(1.4) \j/(xl9 x2 + T) = il/(xl9 x2) + Q , (xl9 x2) e Q 

(periodicity condition) with QeR1 given. 
On the inlet or outlet we often consider the conditions 

(1.5) \lf(di9 x2) = Wt(x2) + qt, x2eRl9 

where Wt are given by 

(1.6) Wt(x2)=[\t(Z)&?;9 x2eRl9 i = 1, 2 . 

The functions cpt are T-periodic in R1 and 

(1.7) e = [Vi(£)d£ = [ W ) d £ . 
Hence, 

(1.8) Wt(x2 + T) = Wt(x2) + Q , x2eRl9 i = 1, 2 . 

qte Rt can be unknown. 
As another possibility we use the condition 

(1.9) r fo ( - , (v<A) 2 ) ^ l (^x 2 ) = -m{x2) + (-l)'a>r2(d„x2), 

x2 e Rt , i = 1 or i = 2 ; 

mt: R± -> Ri is a given T-periodic function. Finally, 

(1.10) ^ r + T f t ( - , ( v ^ ) 2 ) ^ l ( d „ « ) d « = - Ht + (-l)'cor2(dt,x2) , 

x2 e Rt , i = 1 or i = 2 . 

Jit e Rx is a given constant. Here 3/3n denotes the derivative with respect to the unit 
outer normal n = (nl9 n2) to dQ. 
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On the profiles we have 

(1.11) ^\Ck = q0 + kQ9 k = 0, + 1 , ± 2 , 

(go G ^ i c a n ^ e unknown), and either 

b(-, (viA)2) — dS = -y + co I r 2 ^ dS , 
On J Gk 

fc = 0, ±1, ±2,... 
cк 

(1-12) 

with 7 e Rx given, or 

(1.13) 7 ^ - * ) = ° . fe= °> ± - . ± 2 
On 

Here, zfc = z0 + (0, fct) e Q are given trailing stagnation points. For the explanation 

of the physical meaning of these conditions, see [5, 10, 12, 14, 15]. 

From the point of view of technical practice it is convenient to consider the classical 

formulation of the following boundary value problems: 

I) Let T-periodic functions (pl9 cp2: Rt -> Ri satisfying (1.7) be given, let Q and 

Wl9 W2 satisfy (1.6) and (1.8). 

Problem ( P S I O J . L I ) . For given constants fil9 fi2 e R2 find if/ e C2(Q) and constants 

ql9 q2 satisfying the equation (1.3) in Q and the conditions a) (1.4), b) (1.11) with 

q0 = 0, c) (1.5) and (1.10) for i = 1, 2. 

Problem (PSIco.1.2). Given fil9 y e Rl9 find \jj e C2(Q) and constants q0, q1 satisfy­

ing the equation (1.3) in Q and the conditions a) (1.4), b) ( l . l l ) (with q0 unknown), 

c) (1.5) for i = 1, 2 with qx unknown and q2 = 0, d) (1.10) for i = 1, e) (1.12). 

Problem (PSI.co.L3). Given fi1 e Rt and trailing stagnation points zk = z0 + 

+ (0, kz) e Ck, find \j/ e C2(Q) and constants q0, qt satisfying (1.3) in Q and a) (1.4), 

b) (1.11) (with q0 unknown), c) (1.5) for i = 1, 2 with q1 unknown and q2 = 0, 

d)(1.10)fori = 1, e)(1.13). 

II) Let a constant Q e Rx and T-periodic functions ml9 m2: Rt -> Rt be given. 

Problem (PSlco.2.1). Find \J/e C2(Q) satisfying the equation (1.3) in Q and the 

conditions a) (1.4), b) (1.11) with q0 = 0 and c) (1.9) for i = 1, 2. 

At the end of this section, let us describe the mathematical properties of the func­

tions b and r. 

1.1.1 Properties of b and r. 1) The function b = b(x9rj) (x e 0* = {(xi9 x2); 

xx e(dl9d2)9 x2e R1}9 rj = 0) is continuous in W x <0, +oo), r and dr\dx1 are 

continuous in W. The function b has continuous derivatives dbjdn and dbjdxi9 

i = 1, 2, in W x <0, + co). 

2) There exist positive constants cl9 cl9 c39 c4 such that 

(1.14) ct = b = c2 in ^ x <0, +oo), 

(1.15) 0 4^c 3, If 
ot\ \dXi 
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(1.16) iЏ(*,Є) 
õц 

eЏ(x,?) 
oц 

ѓcл 

Vx e W , V ^ e R p 

3) If ax e R l 5 x G <~*, then the function £b(x, a2 + £2) of the variable f is increasing 

in Rx. 

4) b and r are T-periodic in the direction of x2: 

(1.17) b(xu x2 + z9 rj) = b(x1? x2, */) , 

r(xi9 x2 + T) = r(x1? x2) , V(xl5 x2) e IF , V/? ^ 0 . 

(See e.g. [5] or [15].) • 

Similarly as in [5, 8, 15], using the Mean Value Theorem, we can prove 

1.1.2. Lemma. Let X G ^ , U J G R2. Then 

(1.18) [b(x, I2) I - b(x, e) (] • (I - t) = ct({ - £)2 

and 

(i.i9) |[b(x, l2) l - b(x, e) {] . a| g K|l - fI |s| 
with K = c2 + 2c4, where ci9 c2, c4 arc the constants from 1.1.1. • 

1.2. Variational formulation and weak solution 

Let £>T cz £> be a curved strip of a width T in the x2-direction cut from the domain 
Q. Its boundary dQx consists of two components — the profile C0 (inner component) 
and the union Fx u F2 u F~ u F+ (outer component), where F, c K. is a segment 
of the length T, F~ is a piecewise linear arc and F+ = {(xl5 x2 + T); (x l5 x2) e F~}. 
The initial points of F~ and F+ lie on Kl5 their terminal points lie on K2 and all the 
other points are elements of Q. See Fig. 1. 

Let us assume that the profile C0 is "sufficiently smooth" so that dQx is Lipschitz-
continuous and it is possible to define one-dimensional Lebesgue measure on dQT 

^(see [20]). By Q* we denote the bounded domain with dQ* = Fx u F2 u F~ u F+. 
Let i// e C2(Q) be a solution of the equation (1.3). Let us multiply this equation 

by an arbitrary function v e C™^) and integrate over the domain QT. If we use 
Green's theorem, we get 

(1.20) f b ^ v d S - f bV^.Vvdx = cof r ^ v d S - c D f r2 — d x . 
Jonx

 dn hx JdQT *U dxi 

By a suitable choice of test functions v we get variational formulations of the problems 
formulated in Section 1.1. 

In what follows we shall work with the well-known Hilbert spaces L2((0, T)), 
L2(Qx)9H\Qx)9Hl(Qx)9H

2(Qx)9L2(dQx) and H3/2(.QT) = W3
2

/2(QX) (see e.g. [20, 18, 
16, 2] and also [5]). Let us put 
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( L 2 1 ) N k a o . = ( f v2ds) , veL2(8Qz), 

ÍC \ 1 / 2 

|»|o,o. = ( v2dx\ , veL2(QT), 

И l A = - ( ľ W d x ì , Í Є f í ^ ) , 
V J ßт / 

H i A = ( N I U + И?л)1/a, ľЄЯҶûJ, 

[|3/2,ß. | l , ß i + 
O^X; 

ðv w-ғ-oo 
OЪű; 

1/2 

ғ - y ± r r 
/r 2 / d2v \ 2 \ i / 2 

y | 2 - = ( L J = i t e ) d x ) ' veH2{Q*h 

'Iko. = (IIHI0.0. + M U + MU)1 '2 , v e H2(QT). 

dxdy , veH3'2(Qx), 

It is known that ||o,ßtî |i,ß-> |3 /2 ,ß , and |2 ,ß т 

are norms in the 

spaces L2(30T), L2(-^T), H1(QX), H3/2(Qx) and H2(QX), respectively. | • \ltQx is a seminorm 

in Hi(Qx) and a norm in Hl

0(Qx), equivalent to the norm || • ||1>jQx. Similar spaces will 

also be considered over other domains with Lipschitz-continuous boundaries. 

For simplicity, let us denote 

(1.22) W= H\QX) 

and define the form a: W x W-> R x: 

(1.23) a(»>, v) = I b(-, (ViA)2) ViA . Vv dx , \jj9 v e W, 
Jo T 

linear with respect to v. Following the results from [5] or [15], we can show that the 

problems (PSIco.1.1), (PSIco.L2) ant (PSIco.2A) are formally equivalent to the 

following variational weak formulation: Find \j/: Qx -> Rx such that 

(1.24) a) x/zeW, b) ^ - f e F , 

c) a(\//, v) = fi(v) Vve V. 

Here, V <= W is a convenient closed subspace of W = H1(QX). \i is a continuous 

linear functional defined on the space V(i.e.,,/ze V*, where V* denotes the dual 

to V) and $* e Wis a suitable function. The function \j/ with the properties (1.24,a —c) 

is called a weak solution of the problem. 

In what follows we shall specify V, fx and ij/* for the problems (PSIco.lA), (PSIco.L2) 

and (PSIco.2.1): 

1.2.1. Problem (PSIco.Li). We put 

(1.25) 1T = {v e C™(QX); v\rt = const, i = 1, 2, 

v | C0 = 0, v(xx, x 2 + T) = v(x1? x 2 ) V(x l5 x 2) e F~} , 
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(1.26) v={veW;v\rt = const, i = 1, 2, 
v | C0 = 0, v(xl9 x2 + T) = v(xl9 x2) for almost every (xl9 x2) e F~} ,*) 

(1.27) fi(v)= -TYJJHiv\ri + fi.iv), veV 
i=l 

with 

(1.28) fi^v) = (o r2 — d x . 
or õxi 

We see that r e L4(Qr) is a sufficient condition under which H^ is a continuous linear 
functional defined on V. \j/* e Wis a function satisfying the conditions 

(1.29) a) il/*(xl9 x2 + T) = iyy*(x1, x2) + Q , (x1? x2) e F~ , 

b) <A* | A = Vt, i = 1, 2 , c) ^* | C0 = 0 . S 

1.2.2. Problem (PSIco.1.2). In this case we have 

(1.25)* r = {ve C°°(.QT); v | C0 = const, v | Fx = const, v | F2 = 0 , 
v(xl9 x2 + T) = v(xl9 x2) \f(xl9 x2) e F"} , 

(1.26)* V = {veW; v \ C0 = const, v | Fx = const, v | F2 = 0, 

v(x1? x2 + T) = v(xl9 x2) for almost every (x l5 x2) e F~} , 

(1.27)* ju(v) = -T/L!v | Fx - yv | C0 + fit(v) , veV. 

i/̂ * e W satisfies the conditions (1.29,a —c). • 

1.2.3. Problem (PSIco.2.1). Let mt: Rt -+ Rx be T-periodic and m, | (0, T) G L2((0, T)). 
We put 

(1.25)** r = {v e C°°(Qt); v | C0 = 0, v(xl9 x2 + T) = v(xx, x2) V(xx, x2) e F~}, 

(1.26)** V= {veW; v\ C0 = 0, 
v(xl9 x2 + T) = v(xj, x2) for almost every (xl9 x2) e F~} , 

(1.27)** /i(v) = - £ I mfv dS + fit(v) , veV. 
i = i J r . 

i/>* e Wis a function satisfying the conditions 

(1.29)** a) xl/*(xl9 x2 + T) = iA*(xx, x2) + Q , (x1? x2) e F~ , 
b) î * | C0 = 0 . • 

Let us summarize the results obtained in [5]. 

1.2.4. Theorem. 1) V is a closed subspace of W= Hl(Qx) with the norm | ' | i ,u t , 
equivalent to the norm || • \\ltQt. 

2) The set r is dense in V. For an arbitrary v e V and e > 0 there exisis wVtS e r 
such that \wVB — v\lfQx < e. 

1) The concept "almost every x£ F " i s considered here in the sense of the one-dimensional 
measure on dQv 
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3) There exist constants a, K > 0 such that 

(1.30) oc\il/1 - il/2\
2

ltQx ^ a(\j/l9 i/>x - </>2) - a(\j/29 \j/l - ij/2) 
^1,xj/2eW, 

(1-31) |<#i , t>) - fl(^2, v)| g KU^! - ^211,0, \\4uQ, 
M\l/1,\l/2,veW. 

4) There exists if/* e C™(QX) satisfying (1.29,a-b)**. If for i = 1,2, <pf: Rx ~* Rt 

are z-periodie functions, (p{ | (0, T) e L2((0, T)) OtzJ <Pi, *Fj (i = 1,2), Q satisfy 
(1.6) —(1.8), lhen there exists a function \j/* e H3/2(QX) satisfying the conditions 
(1.29,a —c). Moreover, if cpt (i = 1, 2) are p-Holder-continuous in <0, T + e> 
wirh /? 6 (£, 1> and e > 0, then \jj* e H\QX). In both cases (1.29,a-c) and (1.29,a-
b)**, \j/* can be chosen equal to zero in a certain neighbourhood of C0. Hence, 
it can be extended onto Q* so that \j/* e H3/2(Q*) or even ij/* e H2(Q*). 

5) The problem (1.24,a —c) has exactly one solution (that does not depend on the 
choice of \j/* e W satisfying the conditions (1.29,a —c) or (1.29,a — b)**). • 

Because of the discrete trailing conditions (1.13), the problem (PSIco.L3) has no 
weak formulation of the form (L24,a —c), which would be the basis for the applica­
tion of the finite element method to its numerical solution. In this case we have 
to consider solutions sufficiently smooth. According to [6, 7] we can reformulate 
the stream function problem in the following way. 

1.2.5. "Variational formulation" of the problem (PSIco.L3). Let the curve C0 and 
the T-periodic functions (p{: K1 -> Rt be sufficiently smooth, e.g. C0 e C2,a, cpt e 
eC1'a(R1), a e ( 0 , 1). Then there exists ij/* e C2iCC(Qx) satisfying the conditions 
(1.29,a —c) and equal to zero in a neighbourhood °U(C0) of C0. Then, of course, 

(1.32) ? -* ( -o ) = 0 . 
on 

Under the notation 

(1.33) V = {v G C\QX); v | C0 = 0, v | F2 = 0 , v \ Fx = const, 
v(xl9 x2 + T) = v(xl9 x2) V(xl9 x2) e F~} , 

(1.34) V = {v e C\QX); v\C0 = const, v | Fx = const, v \ F2 - 0 , — (z0) = 0, 
dn 

v(xl9 x2 + T) = v(xl9 x2) V(xl9 x2) e F~} , 

(1.35) fi(v) = - T / Z 1 v | F! + fit(v), veV 

(ji1 is defined by (1.28)), the problem (PSIco.1.3) is equivalent to finding \j/: Qx -> Rx 

such that 

(1.36) a) i> e C2(QX), b) f - f e f , c) a(i/t, v) = fi(v) Vv e V. m 

We see that (l.36,a —c) is not a variational formulation in the usual sense because 
of the discrete trailing condition. Moreover, V #= V. However, it is important that 
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the solution i/> satisfies the integral identity (l.36,c) which is the basis for the applica­
tion of the finite element method. The solvability of the problem (PSICD.L3) will 
be studied in the forthcoming paper [9] (cf. also [3]). 

2. FINITE ELEMENT SOLUTION 

2.1. Discretization of the problem 

Let C0 be approximated by a simple closed piecewise linear curve Coh so that 
the domain Qt can be replaced by a polygonal domain Qth with dQth = Coh u Tt u 
u f " u F2 u F+. Let 9~h be a triangulation of ,Qtfc with the usual properties, i.e., 
Te !Th are closed triangles and 

(2.1) a) Qth = U T, 
TeSTh 

b) if J\, T2e3Th, then either r ^ r ^ l or Tt and T2 

have a common side or Tx and T2 have a common vertex. 

Further, denoting by ah = {Pl9 ..., PN} the set of all vertices of 3Th, we assume that 

(2.2) a) ah n dQth a dQt, ah a Qt, 
b) P,- = (xl9 x2) e ah n T" <=> PJ = (x l9 x2 + T) e 07, n F+ . 

We denote by h(T) the length of the longest side and by 0(T) the smallest angle 

of the triangle Te 9*h and put h = max h(T), 0h = min 6>(T). We shall say that 
TeFh TBSTH 

the system ^ = {$~h}he(0>ho) (h0 > 0) of triangulations is regular, if 0h ^ 0 > 0 
for all ^ e y and (9 does not depend on h. 

The approximate solution ij/h will be sought in the finite dimensional space of 
conforming piecewise linear elements Wh <= H1(Qtf^: 

(2.3) Wh = {vh; vh e C(Qth), vh is affine on each T e STh\ . 

Let us define the operator of the Lagrange interpolation rh: H
l(Qth) n C(Qth) -> Wh 

by 

(2.4) rhveWh, v e H\Qth) r^ C(Qth) , 
rhv(Pj) = v(Pj) VPjetrh. 

The discrete stream function problem can be written down quite analogously 
as the continuous problem (1.24,a —c): we seek a function \j/h: Qth -> Rx satisfying 
the conditions 

(2.5) a) \j/h e Wh, b) \j/h - i/r* e V„, c) a ^ , v/f) = nh(vh) Vvh e V„. 

ij/* e Wh is an approximate analogue of the function i/>*, Vh, ah, \ih are suitable 
approximations of V, a, //, respectively. In all cases we shall define ah: H

l(Qth) x 
x H\Qth) -> Rt by 

(2.6) a4(^, t>) -. I b(•, (v«A)2) V* • V. dx , f i ) e H 1 ^ , , ) . 
Jfixh 
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The definition of Vh9 ah and fih for the particular problems will be introduced in 
2.1.2 — 2.1.4. In 2.1.6 we shall speak about the discretization of the problem (PSIco.l.3) 
with the trailing conditions. 

On the basis of Lemma 1.1.2 we can easily prove the following theorem on the 
properties of the form ah: 

2.1.1. Theorem. 1) If \jj e H\Qxh)9 then the mapping "v e H\Qxh) -> ah(\l/9 v) e Rx" 

is a continuous linear functional on H1(.QTft). 

2) There exist constants a and K > 0 independent of h such that 

(2.7) oc\\l/1 - \l/2\
2
1)Qxh g ah(\l/l9 \j/1 - \l/2) - ah(il/29 ̂  - i/J2) 

^l9xfr2eH\Qxh) 

(uniform strong monotony) and 

(2.8) \ah(iliu v) - ah(rp2, v)\ ^ Kfltfr. - ^2\\lAh \\v\\unth 

V^^veH^Qj 

(uniform Lipschitz continuity). • 

2.1.2. Discretization of the problem (PSIco.1.1). In this case we put 

(2.9) Vh = \vh e Wh9 vh\rt = const, i = 1, 2, vh \ Coh = 0, 

vh(P
xj) = vh(Pj) VPjeahnr-}9 

and 

(2.10) fih(vh) = filh(vh) + ii2h(vh), vheVh9 

where 

foh 

)nxh dxt 

2 

b) V2h(vh) = - x l ] t o | - r f . 
i = l 

Let ij/* e Wh be a function satisfying the conditions 

(2.12) a) rh(P
rj) = rh{Pj) + Q VPje<Thnr~, 

b) rh(Pj) = HPJ) VPj eahnrt, i = 1, 2 , c) # | C0 , = 0 . 

On the basis of the assertion 4) from 1.2.4 and the inclusions H3/2(£2*) c= C(D*), 

H\Q*) <= C(Q*) (see [18, 20]), we can put 

•A* = rh\\i* . 

Another simple example of i/̂ * e Wh with the properties (2.12,a—c) is defined by 

the conditions 

(2.13) a) ^*h(Pj) = 0 for P} e ah n (Qth u Coh u (T" - (Ej u T2))) , 

b) rh(Pj) = S for P , e a, n (T+ - ( A u T2)) , 

c) rh{Pj)=xPi{Pj) for PJeahnri, i = 1 ,2 . • 
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2.1.3. Discretization of the problem (PSIoA.2). We put 

(2.9)* Vh = {vh e Wh, vh I C0/I = const, vh\f1 = const, vh | F2 = 0, 

* ) = * ) V i , i ^ f t n r } } 

//,, is given by (2.10), /z17j is determined by (2.H, a ) and 

(2.11)* li2h(vh) = -TfiiVh I F! - yvh I C0 , v„ G Vft . 

The function \j/h is defined by (2A2,a-c). 

2.1.4. Discretization of the problem (PSIco.2A): 

(2.9)** Vh = {vh e Wh, vh I Coh = 0, v„(PJ) = v„(P.) VP,- eahnr~} 

The function ph is given by (2.10) with /ilh determined in (2.11,a) and 

(2.11)** ц2ћ(vh) = - £ m ^ d S , yň є Vh. 

\j/h e Wh is a function satisfying the conditions 

(2.12)** a) î *(PJ) = tf(Pj) + Q , VPjeahnr-, 

b) ^ * | C 0 , = 0 . 

Again, we can put f* = r^i/'*. Another possibility used in practical computations 

is defined by 

(2.13)** a) tf(Pj) = 0 for Pjeah-r+, 

b) K(Pj)=Q for Pjeahnr+. • 

It is easy to see that jah is a linear functional on the finite dimensional space Vh. 

Moreover, | | ' | | i > f l t h and | ' | i ,« t h are equivalent norms on Vh. The norm |'|i,r2 r h is 

induced by the scalar product (uh, Vf)ltQxh = §Qxh S/uh.yvh dx. On the basis of these 

results and of Theorem 2.1.1 we shall prove the solvability of the problem (2.5,a —c). 

2.1.5. Theorem. The problem (2.5,a—c) wUh ah defined by (2.6) and Vh, \ih, \j/h 

from 2.1.2 or 2.L3 or 2.1.4 has exactly one solution \l/h. This solution does not 

depend on the choice of ty* with the properties (2.12,a —c) or (2.12,a —b)**. 

Proof. Theorem 2.1.1 implies that for fixed ij/heWh the mapping "vheVh~* 

-> ah(\j/h, vh) e R x " is a continuous linear functional defined on Vh. Hence, there 

exists a mapping Th: Vh -> Vh and an element fih e Vh defined by the relations 

(2.14) a) (Th(uh), vh)UQxh = ah(\l/*h + uh, vh) Vuh, vheVh, 

b) (fih, vh)ltQxh = fih(vh) Vvh e Vh . 

We see that the problem (2.5,a —c) is equivalent to the operator equation 

(2.15) Th(uh) = fih 

for an unknown uh e Vh. In virtue of Theorem 2.1.1 and of the equivalence of the 

norms | |* | | 1 > f l T j | and | ' | i ,o t h , Th is strongly monotone and Lipschitz-continuous. 

This implies that there exists v > 0 such that the operator 

Fy(uh) = uh- v(Th(uh) - fih) 
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is contractive and thus, it possesses a unique fixed point uh e Vh which is a unique 
solution of (2.15) (cf. e.g. [5]). Moreover, this solution can be found as the limit 
of a sequence defined in the following way: 

(2.16) uh e Vh is an arbitrary initial approximation, 

The function \\th = \\J * -f- uh is a solution of the problem (2.5,a — c). 
In order to complete the proof, let us consider two functions \j/hi, \j/h2 e Wh satisfying 

the conditions (2A2,a-c) or (2A2,a-b)** for the problems (PSIco.Li), (PSIcoA.2) 
or for the problem (PSIco.2A), respectively. Then \j/hl — i/J*2 e Vh. If uhi e Vh and 

(2-17)i ah{^ + uhi, vh) = nh(oh) VvheVh, i = 1, 2 , 

then \l/hi = \j/hi + uhh i = 1, 2, are two solutions of the problem (2.5,a-c). Let us 
subtract the equations (2A7)i, i = 1,2, where we substitute vh :== xj/hl - \j/h2 = 
= *A*i ~ ^*2 + "*i - wft2 e V„ and use (2.7): 

0 = Ohtyhi, fai - ^hz) - Ohfyhi, ^ i ~ hi) = a | ^ i " *l*hi\2i,ath • 
This immediately yields the equality \j/hl = \j/h2, which we wanted to prove. • 

2.1.6. For completeness we shall also describe the discretization of the problem 
(PSIcoA.3), even if its theoretical study will be carried out in a separate paper. 
Here we briefly summarize the results from [6, 7, 10]. Let us assume that there 
exists a triangle T0 e 3Th with vertices Pio* = Z0 and Pio e Qxh and with the side 
S0 = Pio*Pio normal to C0. 

The test functions ve V with V defined by (1.33) are approximated by vh from 
the finite-dimensional space 

(2.18) Vh = {vh e Wh; vh \ C0h = 0, vh \ T2 = 0, vh\P1= const, 

vh(P]) = vh(Pj) \fPje*knr-}. 

If we discretize the trailing condition (1A3) by the finite-difference equation 

(2.19) ^h(Pio*) ~ j M g J = Q 
\P — P I 

and take into account the condition that the stream function is constant on the 
profile C0, then we get the conditions 

(2.20) il/h(Pj) = q0 = ilth(Ph) for all Pj e ah n C0/J. 

Let \j/h e Wh satisfy (2A3,a —c). Then the approximate solution of the problem 
(PSIco.L3) is sought in the form \j/h = xj/* + uh, uh e Vh9 where 

(2.21) Vh = {vh e Wh; vh \ C0h u S0 = const, vh \ rt = const, vh \ F2 = 0 , 
vh(P]) = vh(Pj) VPjeahnr~} 

is a finite-dimensional space approximating V. 
We define the approximate solution of the problem (PSICD.1.3) as a function \j/h 

satisfying 
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(2.22) a) xl/heWh, b) f i r ^ F „ 
c) ah(\l/h9 vh) = /^(v/,) Vv;j € V*. 

The functional ^ is defined by (2.10) with iilh from (2.11,a) and 

(2.23) n2h(vh) = -T/iTv/, | Fi , yA e- V/?. • 

2.2. Convergence of the finite element method 

We shall study the error estimate \\\j/ — tA/.||i,orH
 anc* t u e convergence of the finite 

element method in case of the problems (PSIco.Ll) and (PSIco.2A). The investigation 
of these questions for the problem (PSIco.L2) with a given velocity circulation is 
connected with some technical difficulties and, therefore, a separate paper [8] is 
devoted to it. 

A quite different approach must be applied to the study of solvability of the 
continuous and discrete problems (PSIoo.L3) with the trailing conditions, and 
to the investigation of convergence of the finite element method in this case. It will 
be the subject-matter of the paper [9]. 

Let us consider a domain Qx and a constant h0 > 0 such that 

(2.24) dQt = C0 u Fi u F2 u F~ u F+ , 

Qx9QxhczQT V h e ( 0 , h o ) , 

where C0 is a simple closed curve, C0 e C2 and C0 c Int C0 (Int C0 is the bounded 
component of R2 — C0). Hence, dQx is Lipschitz-continuous. 

Following the results from [20], Ch. 2 we can choose Qt in such a way that the 
solution \J/ of the problem (1.24,a —c) possesses an extension $ from Qx onto Qx9 

\j/ e H1^). Moreover, if C0 is sufficiently smooth (e.g. C0 e C2) and \j/ e H2(QX)9 

then ij) e H2(QX). In what follows, for simplicity, we shall denote this extension again 
by the symbol \jj. 

In the study of convergence we shall need the uniform equivalence of the norms 

|-|iAh a n d II"lit Ah o n t h e sPace vh-
2.2.1. Lemma. Let Vh be defined by (2.9) or (2.9)**. Then there exists a constant 

c > 0 such that 

(2.25) \\vh\\i,axh -S c\vh\UQxh VvheVh9 \/he(09h0). 

Proof. Let us define the space V= {v e H1^); v | C0 -= 0}. Since dQx is Lip­
schitz-continuous and the one-dimensional Lebesgue measure (defined on dQt) 
of C0 is positive, the well-known Fridrichs inequality holds ([20]): 

V v2 ăx S ê f ( У)2 dx VУ Є Ў 
Jñ, J õt 

with a constant £ > 0 independent of v e V. Hence, there exists c > 0 such that 

(2-26) H i A - - c H i A V y e f >-
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Let h e (0, h0) and vh e Vh. Let us denote by ve
h: Qx -> Rx the extension of vh defined 

by 

(2.27) a) ve
h\Qih = v„, b) ve

h | l3t - Qth = 0 . 

It is not difficult to show that n J e C a n d 

(2-28) \vh\UQxh = K 1 i , £ t , 

Together with (2.26) this implies that 

Nkfl-* = IKIliA = cH\iM, = cNi.ort» 
which proves (2.25). • 

Our further considerations will be based on the following abstract error estimate. 

2.2.2. Theorem. FOr each h e(0, h0) let the following assumptions be satisfied: 

1) Wh c= Hl(Qth) is a finite-dimensional space, Vh c Wh is its subspace, ifr* e Wh, 

(2.29) Xh = ft + Vh = {0h = xj,*h + vh; vh e Vh} . 

fthi h' Vh ~~* ^ i are continuous linear functional^. 

2) ah: Hx(QXf^ x Hl(Qxh) -> Rt is a form satisfying the conditions (2.7) and (2.8). 

3) \J/ e Hl(Qxh) and \l/heXh satisfy the relations 

(2.30) ahty, vh) = fih(vh) + lh(vh) Vvh e Vh 

and 

(2.31) ah(\j/hi vh) = nh(vh) Vvft e Vh, 

respectively. 

4) The condition (2.25) is satisfied. 

Then there exist constants Al9 A2 > 0 such that for each h e(0, h0) 

(2.32) \\ilf - ^|1>flth ^ AJIMIU, + A2 inf ||<A - * J . . 0 r h , 
<t>heXh 

where 

(2-33) IMU - sup JM_ 
t ;h*0 

For the proof see [8]. • 

a) Polygonal domain 

First, we shall deal with the case when the domain Qt is polygonal. Then for 
h0 > 0 sufficiently small and h e(0 , h0) we have C0h = C0, Qxh = Qx, Vh a V, 
ah = a, H^ = /x and lh = 0. 

2.2.3. Theorem. Let £f = {^}ft6(o,fto) he a regular system cf triangulations 
of the polygonal domain Qx, \j/* e H2(QX). Let \j/ be the solution of the problem 
(l.24,a —c) with xj/*, V and \x given in 1.2.1 or 1.2.3 for the problem (PSIco.l.l) or 
(PSIco.2.1), respectively. Further, let if/h be the solution of the discrete problem 
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(2.5,a —c), where xj/*, Vh and \ih ~ \x are defined in 2.L2 or 2.L4 in case of the problem 
(PSIco.1.1) or (PSIco.2.1), respectively. Then 

(2.34) l i m | | ^ - ^ | | i , ^ = 0 . 
ft-»0 

Proof. It is easy to verify that the assumptions of Theorem 2.2.2 are satisfied. 
Since lh = 0, we have 

(2-35) ||^ - fh\\1A = A 2 inf ||iA - <Ph\\UQv, 
Q>heXh 

as follows from (2.32). Further, if we take into account the assertion 5) of Theorem 
1.2.4 and Theorem 2.L5, we can write i/> = ifr* -F u, ueV and \Jjh = xj/* + uh, 
where ^* = rhijj* and wfc e Vh. It is evident that <Ph = ijj* + vheXh for all vh e Vh. 
Hence, 

(2.36) ||«A - ^ | | j A g A2(||** - **||1>fi, + inf ||« - t;»||1>flJ . 
t>hSVh 

Let £ > 0 be arbitrary. In virtue of general approximation properties of the 
finite element spaces, 

(2.37) \\v-rhv\\UQv^ch\\v\\2fQv for v e HZ(QX) 

(see [2]). Hence, there exists hx e (0, h0) such that 

(2.38) ||^* - ^*|| ^ e/3 , if fc e (0, hx) . 

Since the set y c CG0(.Qt) is dense in V, there exists u e V satisfying the inequality 

(2.39) flfl - i i f l1 A ^ s/3 . 

From (2.37) we get hx e (0, hx) such that 

(2.40) | | w - r f c f i | | l t O T ^ e / 3 , if he{09K±). 

Of course rhu e Vh. Now, (2.36) —(2.40) yield the estimate 

Ik ~ *K||i.^ S A2{\ty* - tflua, + \\u - u\\UQt + ||fi - rhu\\UQr) ^ A2s 

for all h e (0, h^), which already implies the assertion (2.34). • 

2.2.4. Remark. Similarly as in [8], it is sufficient to assume that \j/* e H3/2(QX). 
since then 

(2-41) fl** - rhr\\ua, ^ <#*l3/2,«« h112 . U 
b) Nonpolygonal domain 

Now let us assume that the profile C0 is smooth enough and hence, the domain 
Qx is not polygonal. Let us suppose that C0 e C2. Following the regularity results 
derived in [21] for the solutions of elliptic problems and using the above mentioned 
possibility of the extension of xj/ from Qx onto Qx, we shall make the assumption 
that the weak solution of the problem (1.24,a —c) satisfies the condition 
(2.42) \j/ e H2(QX) . 

Here Qx satisfies the relations (2.24). Of course, we shall assume that the system 
of triangulations {ZTh]fte(0 ho) has the properties introduced in Section 2.1. Under 
the above assumptions the following result was proved in [8]: 
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2.2.5. Lemma. There exists a constant c > 0 such that 

(2.43) meas [(Qx - Qxh) u (Qxh - Qx)] g ch2 for h e (0, h0). B 

On the basis of Theorem 2.2.2 we shall prove the error estimate of the finite element 
method. 

2.2.6. Theorem. Let \^rh}he(o,h0) ^e a re9u^ar system of triangulations with the 
properties from Section 2.1 and let (2.24) be valid. If' \j/ e H2(QX) is a solution of the 
problem (1.24,a —c) and \//h is a solution of the corresponding discrete problem 
(2.5,a — c) and rz e Hl(Qx), then there exist constants hl9 c > 0, independent of h, 
such that 

(2.44) \\xj,-ilfh\\uo^^ch for all he(0,ht). 

Proof. Let us prove this theorem e.g. for the problem (PSIco.l.l). If we put 

(2.45) 
í = l CX; 

K;(^f)d£) + 03 
ðxt 

then from the assumption (2.42) and from the properties of b and r we conclude 
that fe L2(QX). With the use of Green's theorem we get from (l.24,a —c) that f = 0 
almost everywhere in Qx and \j/ satisfies the conditions (1.4), (1.11) with q0 = 0, 
(1.5) and (1A0) for i = 1, 2 (restricted to Qx). 

(2.46) 

ÔX; 

fvh áx = fvh áx = 
jQxh-Qr JSirh 

= í \b(;(vý) 

-2>*IIjf 
<=1 J r , 

ôr2 

vh áx = 

i yф • Vvл - cw2 — -
ôxľ 

áx 

b(;(vФ)2)^-ær2nл 
cn 

áS 

(cf. the definition (2.9) of the space Vh). In view of (1.10), (2.6), (2.10), (2.11) and 
(2.46), we have 

Í, Птh-Пт 

fvh áx = ah(ф, vh) - џh(vh) . 

Hence, 

(2.47) 

where 

<̂(<A> vh) = fih(vh) + lh(vh) Vv„ e Vh, 

(2.48) lh(vh) = f fv„ d x . 

JQth-Qt 

It is evident that lh is a continuous linear functional on Vh. 

324 



Now, let us apply Theorem 2.2.2 whose assumptions are obviously satisfied. 
In virtue of (2.32) it is sufficient to estimate 

inf \\ij/ - <Ph\\UQxh and ||/A||* Qth. 
<&hzXh 

Concerning the first term, we use the fact that rh\jj e Xh and hence, 

(2.49) inf \\ý - <Ph\\UQxh ^ \\ij, - r^\\lMrh ;£ ch\ 
®h£Xh 

\2,Qrh 
< ch\\ \2,QT 

(cf. (2.37)). Let us derive the estimate of ||!f,||t,nth- If vi, e Â> the'1 

(2.50) \lh(vh)\ ^ f \fv„\ dx ^ l / lo^ -o . 1»*|OJI»-O. • 
jQTh-Qr 

Since | | / | |0,0^-0, ^ ||/||o,«t> it remains to find the estimate of ||vA||0,r2Th-rv In 
Lemma 2.2.7 we shall prove that 

(2-51) \\vh\\o,QTh-QT^ch2\\vh\UQTh 

with c independent of h. From this, (2.32), (2.49) and (2.50) we can immediately 
conclude that the error estimate (2.44) holds. • 

2.2.7. Lemma. There exists a constant c > 0 such that (2.51) holds for each vh e VA 

and h e (0, h0). 

Proof. The set Qxh — Qx can be written as a union of disjoint open sets 5^r, r = 
= 1, ..., kA, with d£fh

r = Yll u S>, wbere Sh c C0A is a side of a triangle adjacent 
to d£>TA, and ]TJ c C0. In each ^ r we can introduce local coordinates xr, yr; yr is 
measured along Sh and xr is measured in the normal direction to Sh. Then £fh

r = 
= {(*,., yr); yV e (0, 5J), 0 < xr < aj(yr)}, where a*: <0, S*) ~> <0, + oo). We have 

(2.52) 

and 

(2.53) 

jQxh-Qx 
Z í "l 

f* cr QTh -QTJ 6Trh 

dx 

Г ГS'" I Г*rҺ(Уr) 

Ľ -̂J.ü. • = 1 I I vh(xn yr) dxA dyr. 

Since v/0, yr) = 0 for all yr e <0, sh) and 0 = xr = aj(y-) ^ const . h2 (see [8]), 
we can write 

vh\xr,yr 

ÇXr ðvh(ţ, yr 

ôxr 

dţ < const, h2 I (^diM) d c : . 
dxr 

By substituting into (2.53) we get the inequality 

f 2, ,4r
r"/r,Hyr)/svh(xr,yi.^

2 

*,2 Av <f r > ^ n r t 7̂ 4 I / | I n\ r? Jrj 

JO \J 0 
vA dx ^ const . lz4 

This and (2.52) imply 

vA dx g const . lz4 

This already yields (2.51). 

ðx„ 
dx r) dyr ^ const . /z4 j (v^/,)2 dx . 

Sfr
h 

Qxh 
(V^A)2 dx ^ const. lz4 ( v ^ ) 2 dx . 
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3. CALCULATION OF THE APPROXIMATE SOLUTION 

In this section we shall deal with the solution of the discrete problems (2.55a —c) 
(i.e., the problems without trailing conditions) and (2.22,a — c) (the problems with 
trailing conditions). 

3.1. The system of algebraic equations equivalent to the discrete problem 

First, let us study the problem (2.5,a — c). It is known that in the space Wh there 
exists a basis formed by the functions wh i = 1, ..., N, such that 

(3J) w,(P t.)= l , i = 1, . . . ,N , 

wf(P,) = 0 , i,j = l , . . . ,N , i * j . 

If vh e Wh, then 

(3.2) vh = Z VT.) wt -
i=l 

Let us denote by {w*}"=1 (n = dim Vh < N) a basis in Vh. Since Vh c: Wh, it is 
evident that each w* can be written as a linear combination of functions Wj. E.g., 
in the space Vh defined by (2.9) (for the problem (PSIco.1.1)) we consider the basis 
consisting of the following elements: 

(3.3) 

a) w, for P.- 6 ah n Qrh , 

b) Wi + Wj for P ; = P)e a„ n ( r + - (f, u T2)), P . eahn (T~ - ( r , u T2)) 

c) X lv; . i = L 2 . 
Pjeahr\Ti 

To prove that these functions form a basis in Vh, it is sufficient to notice that 
in view of (3.2) and (2.9), for vh e Vh we have 

(3.4) vh = £ v,(P,) iv, = 

2 

= I ^Pj)y»j+ I (̂-PO -̂. + ̂  + I ^ l r , . x w,, 
PjetThnQxh Pjeohn(r~ - ( T i u F 2 ) ) c = l B,e(7,.nTi 

Pi = Pf 

and that a, - C0fc is a sum of disjoint sets {P;}P.e<Thn^h, {Py, P]}Pj6<-hn(r- - (r,ur2)) a n d 

{Pj; P,. e ^ n Ft}, i = 1, 2. From (3.4) we see that every vh e Vh can be written 
in the form 

n 

(3.5) vh = Jj v,w* , 
i = l 

where the coefficients v{ are uniquely determined. The coefficients at the basis func­
tions of the type (3.3,a) or (3.3,b) or (3.3,c) are equal to vh(Pt), Pt eahr\ Qxh or 
vh(Pt), Pt e oh n (F~ - (F! u F2)) or vh | rh i = 1, 2, respectively. 
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Similarly we can proceed in the case of the problems (PSIco.L2) or (PSIco.2.1). 
We let the details to the reader. 

If we seek an approximate solution in the form 

(3.6) i//h = \J/h + uh, uh e Vh 

(cf. the proof of Theorem 2.L5), then 
n 

(3.7) */>/. = \j/* + £ Ujw* , UjeRl9 j = 1, ..., n . 
1 = i 

Hence, the problem (2.5,a — c) can be written in the equivalent form 

(3.8) ah(xlf*h + t utf, w*) = fih(w*), i = 1, ..., n 
1=i 

or, in view of (2.6), 

(3.9) f b(•, (V^* + I " s Vws*)2) I "j Wv* . vw* dx = 
Jii,h s=i j=l 

= rt,(w*) - j 6(-,(V«//* + i "s Vw*)2) VA* • Vw* dx , i = 1,...,« . 
J «rh S = 1 

This is obviously a system of n equations for unknown values Uj e Rl9 j = 1, ..., n. 
If we put u = (u1? ..., un)

T, *(«) = ( ^ ( u ) , ..., 0>n(t7))r and A(fi) = (alV(u))^. = 1 

with 

(3.10) *,(fi) = nh(w*) - f 6(-, (v«A* + i us Vw*)2) V ^ * • Vw* dx , 
J ^ r h S = l 

au(u) = f &(•, (v^A* + I us vw*)2) Vw* . Vw* dx , 
J-Qrh S = l 

then (3.9) can be written in the matrix form 

(3.11) A(u)u = &(u). 

From the properties of the function b, from Theorem 2.1.5 and from (3.10) we 
easily derive the following properties of this system: 

3.1.1. Theorem. 1) The system (3.11) has a unique solution which determines 

a unique solution of (2.5,a — c) via the formula (3.7). 

2) For each u e R„ the matrix A(u) is symmetric and positive definite. 

3) The functions <l>i(u) and fl,;(u) are bounded and continuously differentiable 
in Rn. 

4) Ifb depends on x only (the flow is incompressible), then the system (3.11) is linear. 

m 

Now let us briefly mention the construction of the system (3.11). For the purpose 
of iterative solution of this system, which will be described in Section 3.2, it is necessary 
to be able to calculate the matrix A(u) and the vector <fr(u) for an arbitrary u e Rn. 
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If we use (2A,a) and the fact that Vvh | T = const for each Te 3~h and each vh e Wh, 
then we can write 

(3.12) ah{4ih, v„) = £ Vtfr» | T. V»» | TI 6(•, (V<A* | T)2) dx 
Te;Th J T 

for ^ e W;j, vh e Vh . 

Further, if \j/h e W/; is a function determined by (3.7) with given u1. . . . , M„, then 

(3.13) a,.,(i7) = £ Vw* | T. Vw* | T f 6(-, (VAA | Tf) dx , 
Te^h J T 

Ф/.й) = лмК) + со I Р-1 Г 
ТеУ~И 0Х1 

r2 dx 
T 

- I VA**|T.Vvv*|Tf fc(%(V«A„|T)2)dx, 
Te^"h J T 

i ,J = 1 , . . . , n, u = ( M 1 5 . . . , M n ) r . 

In general, it is impossible to calculate the integrals in (3.12) or (3.13) exactly 
and we must use suitable numerical quadratures. The integral of a function / over 
a triangle Tcan be evaluated e.g. with the use of the formula 

(3.14) / dx « f(xT) meas (T) 

or 

(3.15) f/dx » K M ) + A-°/) + APfc))
 m e a s ( T ) > 

where x7 is the centre of the triangle T, meas(T) is its measure and p., Py, Pfc its 
vertices. 

Also the integrals from the definition (2.11)** of the functional \ilh arising in the 
problem (PSIoo.2.1) should be approximated. We use the following possibility: 
If S c Tk (k = 1, 2) is a side given by vertices Ph P,- of a triangle Te 3~h adjacent 
to Tk, then we write 

(3.16) [mkwt dS » |P, - Pj\ (i(mk(Pt) - m,(Py)) + irn^P,)) . 

This formula is obtained by linear approximation of the function mk on the side S 
and it uses the fact that wt(Pt) = 1, wt(Pj) = 0. 

Then, instead of the problem (2.5,a — c) we get a modified problem equivalent 
to a new system of equations of the form (3.11). However, the elements of the matrix 
A(u) and the components of the vector # ( M ) are calculated from the formulae (3.13), 
where the integrals are replaced by the above mentioned quadratures. 

The question how the numerical integration affects the resulting error of the 
method can be studied quite analogously as in [8] . We shall not deal with this 
problem here. 
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3.1.2. Some remarks to the problem (PSIco.L3). Let us return to part 2.L6 
devoted to the discretization of the problem (PSIco.L3). The following assertions 
hold: 

1) The space Vh defined in (2A8) has a basis {w*} which consists of the following 
elements: 
(3.17) a) w{ for Pt e crh n Qxh, 

b) Wi + wj for PiEC7hn(r~ -(rlur2))9pj = P], 
c) I WJ-

2) In the space Vh defined by (2.21) we have a basis {vv*} formed by 

(3.18) a) w, for Pt e ah n Qth - {Ph} , 

b) wt + Wj for P . e ah n ( r~ - (Tx u T2)), Pj = J*J, 
c) I WJ' 

PjGO-hOTl 

d) ~ Wj. 
PjeahnCohV{Pio} 

Proo f of these assertion is a consequence of (3.2), the definitions of the spaces V& 
Vh and the fact of the disjoint decomposition of ah — F2. • 

We see that the bases defined in (3A7,a —c) and (3A8,a —d) have the same number 
of elements equal to n = card (ah n Qxh) -f card \&h n (F~ — (Fx u F2))] + 1 
(<N). 

The sought approximate solution will be expressed as 

(3.i9) ^h = rh+iujw*. 
7 = 1 

In view of the discrete formulation (2.22,a —c), the relations (2.10), (2.Ll,a) (2.23) 
and (2.6), we get a system of algebraic equations for unknown values ul9..., un: 

(3.20) f b(; (vtf +ius vKf) 1 "j V*T • Vw* dx = 
J Qxh S = l 7 = 1 

= nh(w*) - f 6(«, (v^* + X «, Vws*)
2) v t f • Vw* dx , 

Jttrfc S = l 

i = 1, . . . , n . 

This system has the form (3.11), where the elements of A(u) and the components 
of <fr(u) are defined by the relations 

(3.21) *ju) = n„(w*) - f b(; (V#* + i us Vw*)2) V#T • Vw* dx , 
J ^ r h s = l 

«*/*) = I K% (V<A* + I "s vw*)2) vw* . Vw* dx . 
J « r h S = l 

Since V/, =t= Vh9 the matrix 4(M) is not symmetric. Nevertheless, we have 
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3.1.3. Theorem, l) The functions <&i(u) and a{j(u) are bounded and continuously 
differ entiable in Rn. 

2) If b depends on x only, then the system considered is linear. 

3) If all angles of all TeZTh are less than or equal to 90° and the triangulation 
3Th is sufficiently fine, then A(u) is irreducibly diagonally dominant (see e.g. [ l ] ) 
for each u e Rn. 

Proo f of assertions 1), 2) follows immediately from the properties of the function 
b. For the proof of 3) see [15]. (Similar results can also be found in [13].) • 

If the flow is incompressible, then it follows from the assertion 3) that the linear 
system (3.H) is uniquely solvable under the above mentioned assumptions. 

3.2. Iterative solution of the system (3.H) 

The system (3.H) is linear for an incompressible flow and can be solved by the 
successive over-relaxation method (SOR). Its convergence follows from Theorem 
3.LI (the assertion 2)). If we consider trailing conditions, then in view of assertion 3) 
from Theorem 3.L3, the Gauss-Seidel method converges. However, the matrix A 
differs from a symmetric one only slightly. This implies the conjecture that also 
the SOR method could be convergent and even faster than the Gauss-Seidel method. 
This has also been confirmed by a series of numerical experiments. 

In the nonlinear compressible case we applied two methods: 

3.2.1. Generalized relaxation method. We write A = AL + D + Av, where the 
matrix AL is strictly lower triangular, D diagonal and Av strictly upper triangular. 
We construct a sequence {uk}k>o by the process 

(3.22) a) u° eRn is a convenient initial approximation, 

b) AL(uk) uk+1 + D(uk) uk+1/2 + Av(u
k) uk = $(uk), 

c) Uk+1 = uk + v(uk + 1/2 -uk), k ^ 0 , ve (0 , 1>. 

This method was originally proposed by M. Feistauer and used successfully in 
calculations of subsonic flows by the finite difference method (see e.g. [4]). The 
convergence of this method can be proved under relatively restrictive assumptions. 
Numerical experiments show that it converges for the problems both without and with 
trailing conditions if v = 1, the initial approximation represents the incompressible 
flow and the calculated stream field is subsonic. The optimal relaxation parameter 
can be found only experimentally. However, the convergence of this method seems 
to be faster in connection with the finite-difference method. This is the reason why 
we applied also another method. • 

3.2.2. Steepest-descent method with preconditioning. This method is inspired by the 
iterative process (2A6) used in the proof of the solution of the discrete problem 
(2.5,a —c). With respect to the definition of the operators Th and Fv, (2.16) can be 
written in the form 
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(3.23) u°h e Vh, 

(u\+\ w*) = (ul wf) - v[ah(ul + tf, wf) - nh(w*)] , 

i = 1, . . .,r i, k = 0 , v > 0 . 

Here (•, •) denotes a scalar product on Vh. In order to get good convergence of the 

process (3.23), it is convenient to choose this scalar product in some relationship 

with the form ah. We put, e.g., 

(3.24) (uh9 vh) = (uh, vh)b = b(«, 0) \juh • Vvh dx , uh, vheVh. 
J Qrh 

It follows from the properties of the function b that (3.24) really determines a scalar 
product on Vh. 

Now we see that (3.23) represents an iterative process, which can be written 
in the following way: 

(3.25) u°eRn, 

e | f c + 1 = -(A(uk)uk-<!>(uk)), 

uk+1 = uk + v f + 1 , k = 0 . 

v > 0 is a suitable parameter and B is the matrix with elements 

(3.26) by = E Vw? | T. vw* | T \ b(x, 0) dx , ij = 1,..., n . 
T6^h J T 

Usually we choose the initial approximation u° as a solution of an incompressible flow. 
In view of the results from Section 2, we know that there exists v > 0 such that 

the process (3.25) converges for v e (0, v). The choice of the optimal value of v can 
be carried out only experimentally. The estimate of the value v is determined by 
the constants a, K from (2.7) and (2.8), respectively. 

The method described represents the steepest descent method with preconditioning 
for the minimization of the functional Q>h, defined by 

(3.27) Фћ(uh) = Ң •, Шt + "A))2) d* - џh{uh), uheVh, 
o„ 

F(x, rj) = i b(x, t)åt, i | ž 0 , 

on the space Vh. From this point of view, other iterative methods arise as possible 
ones — e.g. the steepest descent method with an optimal step size in every iteration 
or the well-known conjugate gradient method. We shall not go into details. Cf. e.g. 
[17]. • 

4. E X A M P L E S 

Based on the theory presented, a system of FORTRAN programs was written 
which allows the finite element solution of irrotational cascade flows on an arbitrary 
surface of revolution in a layer of variable thickness of an arbitrary form. 

331 



V/VI 

Fig. 3 
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Here we shall present some calculated stream fields past a cascade of profiles. 
The domain Qx is drawn in Fig. 1. Fig. 2 represents the triangulation. It consists 
of 685 vertices and 1160 triangles. In all the examples considered the iterative proces­
ses (SOR in linear cases, generalized relaxation method in case of a nonlinear sub­
sonic flow) were stopped when the relative error in the stream function was less 
than 10~4. 

The first example concerns an incompressible flow with the inlet angle 57°. The 
resulting outlet angle is — 64°39'. We have used the trailing condition. In Fig. 3 
we see the comparison of the velocity distributions (i.e. V/Vl-distributions, where V 
is the velocity and VI is the inlet velocity) round the profile calculated by the finite 
element method (denoted by x ) and by the integral equation method (denoted by O). 

Figs. 4 — 6 represent the streamlines, lines of constant velocity and velocity vectors 
drawn at the vertices of the triangulation. 
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Fig. 5 
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Fig. 7 represents the velocity distribution on the profile calculated for the compress­

ible fluid with the use of the method (3.22?a —c). For the inlet Mach number M = 0.7 

this iterative process converged in 50 iterations. 
v/vi 

Fig. 7 

И.И 

As the third example we consider an incompressible cascade flow in a fluid layer 

whose thickness decreases linearly from its inlet value hi > 0 to the outlet thickness 

h2 = ft./4. 

In Fig. 8 the velocity distribution is drawn and Fig. 9 represents the streamlines. 

v/vi 
Fig. 8 

и.и 
И.И И.2 И.H И.B И.B !. 

S/5D 
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Fig. 10 
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In all the above examples we considered the trailing condition. In the following 
example we do not use this condition but we assume that beside the inlet angle also 
the outlet angle —45° is given. We consider again an incompressible plane flow. 
The results drawn in Fig. 10 (velocity distribution) and Fig. 11 (streamlines) show 
that the outlet angle is not well determined. (It ought to be equal to —64°39' as 
in the first example.) This last example demonstrates the necessity to use the trailing 
conditions. 
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Souh rn 

ŘEŠENÍ PROUD NÍ PROFILOVÝMI MŘÍŽEMI 
VE VRSTVË PROM NNÉ TLOUŠŤKY METODOU KONEČNÝCH PRVKÜ 

MlLOSLAV FEISTAUER, J I Ř Í F E L C M A N , Z D E N Ě К VLÁŠEК 

V předloženém článku se zabýváme numerickým modelováním nevírivých stacionárních nebo 
kvazistacionárních proudových polí profìlovými mrížemi ve vrstvë proměnné íloušťky na osove 
symetrické proudoploše. Tento problém, velmi důležitý pro konstruktéry lopatkovўch strojů, 
je formulován jako nelineární okrajová úloha eliptického typu pro proudovou funkci s nestan-
dardními nehomogenními podmínkami a je diskretizován metodou konečných prvků. Článek 
je v nován jak teoretickým, tak praktickým aspektům této metody: jde zejména o konvergenci 
metody, numerickou integraci, iterační metody pro řešení nelineárního diskrétního problému 
a aîgorítmizaci. Jsou též uvedeny ukázky numerických výsledků získaných mnohoúčelovým 
progгamem, který autori vytvorili. 

Р е з ю м е 

РЕШЕНИЕ ТЕЧЕНИЙ РЕШЕТКАМИ ПРОФИЛЕЙ В СЛОЕ ПЕРЕМЕННОЙ 
ТОЛЫЦИНЫ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ 

МI^08^АV РЕ18ТАШК, 11К1 РЕЕСМА^ 20ЕШК У Е А З Е К 

Работа посвящена численному моделлированию дозвуковых стационарных или квази-
стационарных безвихревых течений решетками профилей в слое переменной тольщины 
на осесимметричной поверхности тока. Эта проблема, очень важная для конструкторов 
лопаточных машин, формулирована как нелинейная задача эллиптического типа для функции 
тока с нестандартными неоднородными краевыми условиями и дискретизирована методом 
конечных элементов. Статья посвящена теоретическим и практическим аспектам метода: 
изучены сходимость метода, численное интегрирование, итерационные методы для решения 
нелинейной дискретной задачи и алгорифмизация. Приведены некоторые результаты числен­
ных расчетов по авторами составленной программе. 
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