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Summary. The paper is devoted to the numerical modelling of a subsonic irrotational non-
viscous flow past a cascade of profiles in a variable thickness fluid layer. It leads to a nonlinear
two-dimensional elliptic problem with nonstandard nonhomogeneous boundary conditions.
The problem is discretized by the finite element method. Both theoretical and practical questions
of the finite element implementation are studied: convergence of the method, numerical integra-
tion, iterative methods for the solution of the discrete problem and the algorithmization of the
finite element solution. Some numerical results obtained by a multi-purpose program written
by authors are presented.

Key words: cascade of profiles, subsonic flow, stream function, nonlinear second-order elliptic
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INTRODUCTION

In [5] we studied several boundary value problems for a stream function that
describe stationary irrotational non-viscous flows through cascades of blades on
an arbitrary surface of revolution in a variable thickness layer. The results were
then extended in [14] to cover also quasistationary flows through cascades of rotor
blades.

Here we shall deal with the finite element solution of these interesting and topical
problems. We describe the discretization process, prove the convergence of the method
and deal with some aspects of algorithmization. We also present some numerical
results. Our theoretical investigations yield a contribution to the convergence results
obtained by a series of authors and treated e.g. in [2] or [23]. The paper represents
an extension of these results to nonlinear boundary value problems with nonstandard
nonhomogeneous boundary conditions.
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1. CONTINUOUS PROBLEM

Let us consider a rotating blade row inserted into an axially symmetric channel.
We shall study a flow past this blade row in a layer of variable thickness, i.e. in the
space between two close axially symmetric stream surfaces &; and %,.

By introducing convenient coordinates x,, x, on &, (cf. [5,12]), this surface
and its intersections with the blades can be conformally transformed into the plane
(x4, X,), where we get a domain Q = R,. The boundary dQ of Q is formed by two
straight lines
(1.1) Ki={(x,x2);xy =dpx,eR,} i=12, dy <d,
and by an infinite number of disjoint simple closed curves C;, k = 0, +1, +2,...,
periodically spaced in the direction of x, with a period v > O (see Fig. 1). The curves
C, are in the strip £ between the lines K; and K,, and form the so-called cascade

of profiles, the lines K; and K, represent the inlet and the outlet of the cascade,
respectively. The domain Q is periodic in the direction of x, with the period 7:

(1.2) (x4, %) e Qe (x1,x, + 7)€ Q.

Fig. 1
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1.1. Classical formulation

Quasistationary, irrotational, non-viscous, incompressible or subsonic compress-
ible flow field through the cascade of blades in the fluid layer between the surfaces
&1, &, is modelled via the stream function by the equation of the form

(1.3) }2“ i(b(x, (V¥)?) %f—) = %:(x),

i=1 0x;
considered in the domain Q. € R, denotes the angular velocity of the rotating
blade row. The function b is given by the dependence of the density on the velocity.
Moreover, both b and r depend on the geometry of the fluid layer. (Cf. [ 10, 14].)

Similarly as in [5] we meet several types of boundary conditions.
First we assume that the velocity field is also z-periodic, which means

(1.9) Yxg, Xo +7) = PY(xy, x5) + @, (X1, %2)€ @
(periodicity condition) with Q € Ry given.
On the inlet or outlet we often consider the conditions

(1.5) W(d;, x3) = Pix;) + ¢i» x2€Ry,

where ¥; are given by

(1.6) ¥ (x,) =J pl&)dé, x,eRy, i=12.
0

The functions ¢, are t-periodic in R; and

(1.7) 0= f J(9de= L(Pz(é) de.
Hence,
(1.8) Yix, +7)=¥(x) + 0, x,eR;, i=12.

q; € R, can be unknown.
As another possibility we use the condition

(19 [H o 3| dx) = ) + (1f0rd v,

xR, i=1 or i=2;

m;: R; = Ry is a given t-periodic function. Finally,
1 X2+ 1T ) 6(// _ ; )

(1.10) - b(+, (V¥) )a—n- (d;, &) dE = — 1, + (—1) or¥(d,, x,)
)5

x,eR,, i=1 or i=2.

fi; € Ry is a given constant. Here 9/0n denotes the derivative with respect to the unit
outer normal n = (ny, n,) to 9Q.
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On the profiles we have
(111) l//lck=qo+kQ, k:()’i_l’ i2,
(g0 € Ry can be unknown), and either

0
(1.12) jb(-,(w)Z)g‘-”-ds=—y+wj PngdS, k=0, 41, 42,
Ck n

Cr

with y € R, given, or

(1.13) 2_"’(zk)=o, k=041, +2,....
1(}

Here, z, = z, + (0, kt) € C, are given trailing stagnation points. For the explanation
of the physical meaning of these conditions, see [5, 10, 12, 14, 15].

From the point of view of technical practice it is convenient to consider the classical
formulation of the following boundary value problems:

I) Let t-periodic functions ¢y, ¢,: Ry — Ry satisfying (1.7) be given, let Q and
¥, ¥, satisfy (1.6) and (1.8).

Problem (PSIw.1.1). For given constants ji;, iz € Ry find § € C*(Q) and constants
41, g, satisfying the equation (1.3) in Q and the conditions a) (1.4), b) (1.11) with
4o = 0, ¢) (1.5) and (1.10) for i = 1, 2.

Problem (PSlw.1.2). Given i, y € Ry, find € C*(Q) and constants qo, g, satisfy-
ing the equation (1.3) in Q and the conditions a) (1.4), b) (1.11) (with g, unknown),
¢)(1.5) for i = 1, 2 with g, unknown and g, = 0, d) (1.10) for i = 1, e) (1.12).

Problem (PSLw.1.3). Given fi, € R, and trailing stagnation points z, = z, +
+ (0, kt) € C,, find ¥ € C*(Q) and constants g, g, satisfying (1.3) in Q and a) (1.4),
b) (1.11) (with g, unknown), c) (1.5) for i = 1,2 with ¢g; unknown and g, = 0,
d) (1.10) for i = 1, €) (1.13).

II) Let a constant Q e R, and z-periodic functions my, m,: R; - R, be given.

Problem (PSlw.2.1). Find y € C*(Q) satisfying the equation (1.3) in @ and the
conditions a) (1.4), b) (1.11) with g, = 0 and ¢) (1.9) for i = 1, 2.

At the end of this section, let us describe the mathematical properties of the func-
tions b and r.

1.1.1 Properties of b and r. 1) The function b = b(x,n) (xe? = {(x,, x,);
x; €(dy, dy), x;€ Ry}, n 2 0) is continuous in Z x <0, + o), r and drdx, are
continuous in 2. The function b has continuous derivatives db/dy and 0b[dx;,
i=1,2,inZ x {0, +o).

2) There exist positive constants ¢y, ¢,, €3, ¢, such that

(1.19) c;Sb=<e¢ in 2 x 0, +»),
(1.15) Ogﬁ,gc_,,, b <e¢ (i=1,2) in Z %<0, +0),
on 0x;
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>

(1.16) y& (x, &)
on

2P (x )
an

Vxe?, YéeR,.
3) If «, € Ry, x € 2, then the function &b(x, a; + &2) of the variable ¢ is increasing
in R,.
4) b and r are t-periodic in the direction of X5t
(1.17) b(xn X, + 1,1) = b(xy, x5, 1),
KXy, Xy + 1) = r(xg, %5), Y(x1,X)€P, ¥p20.

(See e.g. [5] or [15].) |

Similarly as in [5, 8, 15], using the Mean Value Theorem, we can prove

1.1.2. Lemma. Let x€ 2, ¢, &, 9 € R,. Then

(1.18) [b(x, &) & = b(x, &%) ¢].(E = &) 2 e,(& — &)

and

(1.19 6, £) & = blx. % £] 9] = K[E - ¢] |3

with K = ¢, + 2c4, where ¢y, ¢,, ¢, are the constants from 1.1.1, ]

1.2. Variational formulation and weak solution

Let Q, = Q be a curved strip of a width 7 in the x,-direction cut from the domain
Q. Its boundary 0Q, consists of two components — the profile C, (inner component)
and the union I'y U I', U I'” U I'* (outer component), where I'; < K is a segment
of the length 7, I'” is a piecewise linear arc and I'" = {(x,, x, + 7); (x;, x,) e ' }.
The initial points of '™ and I'* lie on K, their terminal points lie on K, and all the
other points are elements of Q. See Fig. 1.

Let us assume that the profile C, is “sufficiently smooth” so that 0Q, is Lipschitz-
continuous and it is possible to define one-dimensional Lebesgue measure on 0Q,
{(see [20]). By @ we denote the bounded domain with 0QF = I'y I, I~ U T".

Let y € C*(@) be a solution of the equation (1.3). Let us multiply this equation
by an arbitrary function v € C*(Q,) and integrate over the domain Q.. If we use
Green’s theorem, we get

IZO)J‘ vdS '[ bVl,Ll.Vudx:a)j rznlvdS—w-[ rzﬂdx.
[ % 20: o, 0Xq

By a suitable choice of test functions v we get variational formulations of the problems
formulated in Section 1.1.

In what follows we shall work with the well-known Hilbert spaces L((0, 7)),
L,(2,), H(Q,), Hy(Q,), H(Q,), L,(02,) and H¥*(Q,) = W3'*(2,) (see c.g [20, 18,
16, 2] and also [5]). Let us put
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A21) o], = ( [ ds)”z . veLy(09),
. 1/2
”v”o,ﬂt = < . v? dx) » veLy(Q),
~ 1/2
flen. = ([ (vor dx) L ven'(),
“0”1‘9, = (IUUO . Tt |U|1 9,)1/2 s UEHI(.Q)
2020
lolss2.0. = \ lo]3 . ~Ldxdy| , veH’¥Q),
. |x — ¥

lol,0. = (L ii((max) dx) , veH¥Q),

[oll2.0. = (lol6.0. + [oli.oc + 1030012, v e B,

It is known that ||*]o s0. |[*[lo.2s |*[l1.00 [*]|3/2.0. @nd ||*]|2,0. are norms in the

spaces L,(02,), L,(2.), H'(2,), H**(Q,) and H*(Q,), respectively. ||, o. is a seminorm

in H'(2,) and a norm in Hy(£.), equivalent to the norm |+ ; o.. Similar spaces will

also be considered over other domains with Lipschitz-continuous boundaries.
For simplicity, let us denote

(1.22) W= HY(Q,)

and define the form a: W x W— R;:

(1.23) a(y, v) = j b(-, (V¥)?) V¢ . Vodx, y,veW,
2.

linear with respect to v. Following the results from [5] or [15], we can show that the
problems (PSlw.1.1), (PSI®.1.2) ant (PSIw.2.1) are formally equivalent to the
following variational weak formulation: Find y: Q, - R, such that

(1.24) a) yeW, b) y—y*eV,

¢) a(y,v) = puv) YweV.
Here, V = W is a convenient closed subspace of W= HYQ,).u is a continuous
linear functional defined on the space V (i.e., ue V*, where V* denotes the dual
to V) and y* € Wis a suitable function. The function ¥ with the properties (1.24,a—c)
is called a weak solution of the problem.

In what follows we shall specify V, uand y* for the problems (PSIw.1.1), (PSIo.1.2)
and (PSlw.2.1):

1.2.1. Problem (PSIw.1.1). We put

(1.25) ¥ ={veC”(Q);v|I';=const, i=12,
UI Co =0, v(xl’ Xy + T) = U(Xl, x2) V(xl, xz)el"} s
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(1.26) V={veW,v|I';=const, i = 1,2,
v| Co =0, v(xy, X, + ) = v(xy, X;) for almost every (x;, x;) e "},")

2
(1.27) o) = -ty go| T+ py(v), veV
<1
with
(1.28) py(v) = o)f AL
a. 0%

We see that r e L,(9,) is a sufficient condition under which g, is a continuous linear
functional defined on V. y* € Wis a function satisfying the conditions

(1~29) a) Y*(xy, x, + T) = Y¥(xy, xz) + 0, (xy,x)el”,
by y*| =Y, i=12, ¢) y*|Cy=0.
1.2.2. Problem (PSIw.1.2). In this case we have

(125)* ¥ ={veC™(Q,);v|Cy = const,v|I'; =const,v|I, =0,
U{xy, X3 4 T) = v{xy, X3) V(xy, X)€"},

(1.26)* V={veW; v|Cy=const, v| Iy = const, v|I', =0,
v(xy, X5 + 1) = v(xy, X,) for almost every (x,,x,)el "},
(1.27)* uv) = —tfigw | Iy —yv| Co + py(v), veV.
Y* e W satisfies the conditions (1.29,a—c). =

1.2.3. Problem (PSI®.2.1). Let m;: R; — R, be t-periodic and m, | (0, 7) € L,((0, 7)).
We put

(125 ¥ ={veC™(Q); v|Co =0, vxy, x5 + ) = v(xy, X;) Y(xq, ;) €T},

(1.26)** V=1{veW, v|Co=0,
v(xy, X, + 1) = v(xy, x,) for almost every (x,, x,) e I'"},

2
(1.27)** po)y= =3 | mpdS+ my(v), veV.
i=1 Jry
Y* e Wis a function satisfying the conditions
(1.29)** a) Y*(xy, x; + 1) = YH(x, x2) + Q, (xp,x)el”,
b) ¥*|Co=0.

Let us summarize the results obtained in [5].

1.2.4. Theorem. 1) V is a closed subspace of W = H'(Q,) with the norm ||, o,
equivalent to the norm ||+ |, q..

2) The set ¥ is dense in V. For an arbitrary ve V and ¢ > 0 there exisis w,, € ¥
such that |w,, — v|, . <e.

1y The concept “almost every x€ I" " is considered here in the sense of the one-dimensional
measure on 98_.
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3) There exist constants a, K > 0 such that

(130) “l‘#l - l/’zlf_gr é a(‘/’la '//1 - l//2) - a(‘//z, ‘//l - l/’Z)
VWi, YeW,
(1.31) |a(¢1: v) — a(y, 0)] = K”Wl - 'l’z”l,n, ””1,9,
VWi, ¥, veW.

4) There exists Y* € C*(Q,) satisfying (1.29,a—b)**. If for i = 1,2, ¢;: R; > R,
are t-periodie functions, ¢;|(0,7)e Ly((0,7)) and ¢, ¥; (i =1,2), Q satisfy
(1.6)—(1.8), then there exists a function y* e H¥*(Q,) satisfying the conditions
(1.29,a—c). Moreover, if ¢; (i =1,2) are B-Hdolder-continuous in 0,7t + &)
with B € (%, 1> and ¢ > 0, then y* € H*(Q,). In both cases (1.29,a—c) and (1.29,a—
b)**, y* can be chosen equal to zero in a certain neighbourhood of C,. Hence,
it can be extended onto Q7 so that y* € H¥*(QY) or even y* € H*(QY).

5) The problem (1.24,a—c) has exactly one solution (that does not depend on the
choice of Y* € W satisfying the conditions (1.29,a—c) or (1.29,a—b)*¥), =

Because of the discrete trailing conditions (1.13), the problem (PSIw.1.3) has no
weak formulation of the form (1.24,a—c), which would be the basis for the applica-
tion of the finite element method to its numerical solution. In this case we have
to consider solutions sufficiently smooth. According to [6,7] we can reformulate
the stream function problem in the following way.

1.2.5. “Variational formulation” of the problem (PSlw.1.3). Let the curve C, and
the t-periodic functions ¢@;: R, = R, be sufficiently smooth, e.g. C,e C*? o, ¢
e C*(R,), «e(0,1). Then there exists y*e C>%&Q,) satisfying the conditions
(1.29,a—c) and equal to zero in a neighbourhood %(C,) of C,. Then, of course,

(1.32) W () =0.
on

Under the notation
(1.33) V=1{veCYQ); v|Cy=0,v|l,=0,v|I = const,
o(xg, Xz + 7) = 0(x1, X3) ¥(xp, X,) €T},

(1.34) V= {veC¥Q); v|Co = const, v|I'; = const, v|I, =0, gg(zo) =0,
n

v(xy, X2 + ) = v{xy, X3) (x4, X,) €T},
(1.35) p(v) = =ty v| Iy + py(v), veV

(1, is defined by (1.28)), the problem (PSI®.1.3) is equivalent to finding ¥: @, — R
such that

(1.36) a) yeC¥Q,), b) y—y*eV, c) a(y,v)=upul) YoeV. ]

We see that (1.36,a~c) is not a variational formulation in the usual sense because
of the discrete trailing condition. Moreover, ¥ # V. However, it is important that
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the solution y satisfies the integral identity (1.36,c) which is the basis for the applica-
tion of the finite element method. The solvability of the problem (PSlw.1.3) will
be studied in the forthcoming paper [9] (cf. also [3]).

2. FINITE ELEMENT SOLUTION
2.1. Discretization of the problem

Let C, be approximated by a simple closed piecewise linear curve C,, so that
the domain @, can be replaced by a polygonal domain Q;, with 0Q,, = C,, v I'; U
ul-urlr,ur* Let J,bea trlangulatlon of @, with the usual properties, i.e.,
Te 7, are closed triangles and
21 a Q,=UT,

TeTn
b) if T, T,eJ,, theneither TynT,=0 or T; and T,

have a common side or T; and T, have a common vertex.

Further, denoting by o, = {Py, ..., Py} the set of all vertices of 7, we assume that
(2.2) a) 6,nd, <., o,<Q,,
b) P;=(x,x)eaq,nI" <P;=(x,x, +1)eq,nl"

We denote by h(T) the length of the longest side and by @(T) the smallest angle

of the triangle Te 7, and put h = max h(T), ©, = min O(T). We shall say that

TeIT n TeTn
the system & = {74} 1cc0.40) (o > 0) of triangulations is regular, if ©, 2 @ > 0
forall 7, € & and @ does not depend on h.
The approximate solution ¥, will be sought in the finite dimensional space of
conforming piecewise linear elements W, = H'(Q,,):

(23) W, = {v,; v, € C(2,,), v, is affine on each Te 7,} .
Let us define the operator of the Lagrange interpolation r,: H(2,) n C(2,,) > W,
by
(2.4) rweW,, ve H(Q,) n C(Qy),
ro(P;) = v(P;) VP;eoq,.
The discrete stream function problem can be written down quite analogously

as the continuous problem (1.24,a—c): we seek a function ¥,: Q,, — R, satisfying
the conditions

(2 5) a) l//h € VVI! H b) l//h - G V;: > C) ah('//}n vh) = .uh(vh) Vuh € Vh .

Wy e W, is an approximate analogue of the function y*, V,, a,, u, are suitable
approximations of V, a, p, respectively. In all cases we shall define a,: H(Q,,) x
x HY(Q,) - R, by

(2.6) ay(y, v) = '[ b(-,(V¥)) V¥ . Vodx, ¥,ve HY(Q,).

Q:h
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The definition of V;, a, and g, for the particular problems will be introduced in
2.1.2—-2.1.4. In 2.1.6 we shall speak about the discretization of the problem (PSIw.1.3)
with the trailing conditions.

On the basis of Lemma 1.1.2 we can easily prove the following theorem on the
properties of the form a,:

2.1.1. Theorem. 1) If y € HY(Q,,), then the mapping “v e H Q) —» a,(y, v) € R,”
is a continuous linear functional on H'(Qy).

2) There exist constants o and K > 0 independent of h such that

(2-7) “I‘/fl - 1/’2'%,9!,. = ah(‘/"u vy - ‘pz) - ah(‘#za vy — '102)
Yy, Y € HI(th)

(uniform strong monotony) and

(2.8) |a,,(|//1, v) — a2, ")| = K”‘/’l - ’/’2”1,9m

V‘/’h l1/27 vE Hl(th)
(uniform Lipschitz continuity). |

”" 1.2

2.1.2. Discretization of the problem (PSIw.1.1). In this case we put
(29 Vi = {v,€ Wy v, | T'; = const, i = 1,2, v,| Cp, =0,
v(P}) = v(P;) VP;e0,n T},

and
(2'10) #h(”h) = th(vh) + ﬂz;.(”h) , eV,
where
211) ) puoy) = @ j 2 0o gy
Qcn 6x1

2
b) #2;.(”;.) = -1 Z vy I r;.
i=1
Let ¥, € W, be a function satisfying the conditions
(2.12) a) Y(P) =¥y (P)+ Q VPeq,nI",
b) w:(Pj)=qli(Pj) VPjea'hnFi, i=12, C) '/’;.klco;.:o-
On the basis of the assertion 4) from 1.2.4 and the inclusions H¥*(Q}) = C(2),
HY(QF) = C(QF) (see [18, 20]), we can put
lﬁ: = ry*.
Another simple example of ¥ € W, with the properties (2.12,a—c) is defined by
the conditions

(2.13) a) Y5(P) =0 for Pe0,n(Qyu Cou ('™ — (I'y V),
b) ¥i(P) =20 for Pyea,n (It —(I'yuly),
¢) Yy(P)=¥(P;) for Pjeo,nTl;, i=12. -
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2.1.3. Discretization of the problem (PSI®.1.2). We put
(2.9)* Vi = {tw € Wy; v, | Coy = const, v, | I = const, v, | ', = 0,
v(P) = vy(P;) VPyeq, n T},
Ly is given by (2.10), u,, is determined by (2.11,a) and

(2.11)* Ha(0y) = —7Tfi;0, [ Iy = yy, l Co, v,€V,.
The function ¥ is defined by (2.12,a—c). [
2.1.4. Discretization of the problem (PSI®.2.1):
(2.9)** Vi = {va€ Wi; v, | Cop = 0, 0(P5) = v,(P;) VP;e0,n T} .
The function y, is given by (2.10) with 1, determined in (2.11,a) and
2
(2.11)** panvy) = = Y | mu,dS, v,eV,.
i=14 T
Yy € W, is a function satisfying the conditions .
(2.12)%+ a) YHP) =yiP)+ Q, VPeq,nT",
b) Y |Co=0.

Again, we can put ¥, = r,b*. Another possibility used in practical computations
is defined by
(2.13)** a) yy(P)=0 for Pec,—TI",

b) yi(P)=Q for Pieg,nl". m

It is easy to see that y, is a linear functional on the finite dimensional space V.
Moreover, |*| 1., and |*|; 0., are equivalent norms on V. The norm |+|; o, is
induced by the scalar product (uy, v3);,0.,, = [o., V.V, dx. On the basis of these
results and of Theorem 2.1.1 we shall prove the solvability of the problem (2.5,a—c).

2.1.5. Theorem. The problem (2.5,a—c) with a,, defined by (2.6) and V,, w,, ¥y
from 2.1.2 or 2.1.3 or 2.1.4 has exactly one solution . This solution does not
depend on the choice of Yy with the properties (2.12,a—c) or (2.12,a—Db)**.

Proof. Theorem 2.1.1 implies that for fixed V¥, € W, the mapping “v,e V, —
— a,(Yy, v,) € R;” is a continuous linear functional defined on V. Hence, there
exists a mapping T,: V, —» V, and an element fi, € V, defined by the relations

(214) a) (T;l(uh)’ vh)lsﬂrh = ah('#: + Up, Uh) Vuhs v, € V;x )
b) (/Iha vh)l,nﬂ. = .uh(”h) Yo, e V.
We see that the problem (2.5,a—c) is equivalent to the operator equation
(2.15) T(uy) = iy
for an unknown u, € V,. In virtue of Theorem 2.1.1 and of the equivalence of the

norms |*||y.0., and |*|;.0., T is strongly monotone and Lipschitz-continuous.
This implies that there exists v > 0 such that the operator

F(uy) = uy — v(Ty(uy) — i)
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is contractive and thus, it possesses a unique fixed point u, € ¥, which is a unique
solution of (2.15) (cf. e.g. [5]). Moreover, this solution can be found as the limit
of a sequence defined in the following way:

(2.16) up e V, is an arbitrary initial approximation,
upt™ = F(uf), if mz0.
The function ¥, = ¥ ;' + u, is a solution of the problem (2.5,a—c).
In order to complete the proof, let us consider two functions ¥, V., € W, satisfying
the conditions (2.12,a—c) or (2.12,a—b)** for the problems (PSIw.1.1), (PSI®.1.2)
or for the problem (PSIw.2.1), respectively. Then ¥, — ¥, € V,. If uy,, € V, and

(2.17); af Wl + up, 0) = o) Vo, eV, i=12,
then V,; = Y% + u,;, i = 1,2, are two solutions of the problem (2.5,a—c). Let us
subtract the equations (2.17), i = 1,2, where we substitute v, 1= Y,y — Y, =

=Y — U5 + Uy — uy €V, and use (2.7):
0= ah(l//hla Uny — '//hz) - ah('/’hz: Y — ‘//hz) = “ll//hl - ‘//I:2|71',9m-

This immediately yields the equality ¥/,; = V,,, which we wanted to prove. ]

2.1.6. For completeness we shall also describe the discretization of the problem
(PSIw.1.3), even if its theoretical study will be carried out in a separate paper.
Here we briefly summarize the results from [6, 7, 10]. Let us assume that there
exists a triangle T, € 7, with vertices P; . = z, and P; € Q, and with the side
So = P;«P;, normal to C,.

The test functions ve V with V defined by (1.33) are approximated by v, from
the finite-dimensional space
(2.18) Vi = {v,e Wy v,| Cop = 0,0, | ', =0, v, | I'y = const,

v(P}) = v(P;) VP;eq,nT"}.

If we discretize the trailing condition (1.13) by the finite-difference equation

(219) l//h(Pig") - l//h(Pio) =0
|Pl'o* - Pio

o

and take into account the condition that the stream function is constant on the
profile C,, then we get the conditions

(2.20) i(P;) = qo = Y(P;,) forall Pjec,n Cy,.
Let y, € W, satisfy (2.13,a—c). Then the approximate solution of the problem
(PSIw.1.3) is sought in the form ¥, = ¥;* + u,, u, € V;, where

(2.21) ¥, = {v,e W3 v,| Con U S = const, v, | I’y = const, v, | I, =0,
v(P}) = v(P;) VP;eo,n T}
is a finite-dimensional space approximating V.

We define the approximate solution of the problem (PSIw.1.3) as a function y,
satisfying
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(222) a) WeW,, b ¥-vieh,
C) ah(l//ha le) = ,ll,,(l)h) Vl)h € V;‘
The functional g, is defined by (2.10) with p,, from (2.11,a) and

(223) llzh(']h) = =Tl Y, | ry, vneV,. L
2.2. Convergence of the finite element method

We shall study the error estimate | — [, o., and the convergence of the finite
element method in case of the problems (PSI(D.].]) and (PSIw.2.1). The investigation
of these questions for the problem (PSIw.1.2) with a given velocity circulation is
connected with some technical difficulties and, therefore, a separate paper [8] is
devoted to it.

A quite different approach must be applied to the study of solvability of the
continuous and discrete problems (PSIw.1.3) with the trailing conditions, and
to the investigation of convergence of the finite element method in this case. It will
be the subject-matter of the paper [9].

Let us consider a domain &, and a constant h, > 0 such that
(2.24) 00, =C,ur,ur,ur-urt,
Q, Q<=8 Vhe(0,h),
where C, is a simple closed curve, Cy e C? and €, < Int C, (Int C, is the bounded
component of R, — C,). Hence, 00, is Lipschitz-continuous.

Following the results from [20], Ch. 2 we can choose &, in such a way that the
solution ¥ of the problem (1.24,a—c) possesses an extension ¥ from Q, onto 3,
ye HI(Q) Moreover, if C, is sufficiently smooth (e.g. C, € C?) and € H¥(Q,),
then Y € H*(Q,). In what follows, for simplicity, we shall denote this extension agam
by the symbol .

In the study of convergence we shall need the uniform equivalence of the norms
|*]1.,0., and ||*].q., on the space V.

2.2.1. Lemma. Let V,, be defined by (2.9) or (2.9)**. Then there exists a constant
¢ > 0 such that

(2.25) Il 1,00 = c|vali 0w Vor€ Vi, Vhe(O, hy).

Proof. Let us define the space ¥ = {ve H(@,); v|Co = 0}. Since 38, is Lip-
schitz-continuous and the one-dimensional Lebesgue measure (defined on 03,)
of Cy is positive, the well-known Fridrichs inequality holds ([20]):

J: v?dx < éJ: (Vo)?dx YveV

. .

with a constant ¢ > 0 independent of v € V. Hence, there eXists ¢ > 0 such that
(2.26) lollv.a. < colua, VoeV.
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Let h € (0, ho) and v, € V. Let us denote by v: O, — R, the extension of v, defined
by

(2.27) a) 5| Qu=v,, b) vf|Q2 —Q,=0.
It is not difficult to show that v§ € ¥ and
(2.28) [ol1,00 = |0h1 5. >

loalls 00 = llval1 5. -

Together with (2.26) this implies that
loall 1.0 = loill 1.5, = eloili 5. = cloals.an, -
which proves (2.25). ]
Our further considerations will be based on the following abstract error estimate.
2.2.2. Theorem. For each h € (0, h,) let the following assumptions be satisfied:
1) W, = HY(Q,,) is a finite-dimensional space, V, = W, is its subspace, ¥, € W,
(2~29) X, = ‘/’: + V= {‘ph = '//;.k + Uy 04 € Vh} .
Wy 2 V, > Ry are continuous linear functionals.
2) a,: H{(Q,) x HY(Q,) —» Ry is a form satisfying the conditions (2.7) and (2.8).
3) ¥ € HY(Q,,) and Y, € X, satisfy the relations

(2.30) ay (¥, v) = w(vy,) + Lvy) Vo, eV,
and

(2-31) ah(‘/’ha Uh) = m(vy) Vo, €V,
respectively.

4) The condition (2.25) is satisfied.
Then there exist constants Ay, A, > 0 such that for each h € (0, hy)

(2.32) [ = lian = Adllblian + A2 inf ¥ = @] 1.,
heXn
where
(23) % 0, = sup Ll
vneVn ”%”1.9:»
vh¥0
For the proof see [8]. m

a) Polygonal domain

First, we shall deal with the case when the domain Q, is polygonal. Then for
he > 0 sufficiently small and h e (0, hy) we have Cy, = Co, @, =Q,, V, =V,
a,=a, pu,=pand [, = 0.

2.2.3. Theorem. Let & = {7 ,},comn be a regular system of triangulations
of the polygonal domain Q,, y* e H*Q,). Let Y be the solution of the problem
(1.24,a—c) with y*, V and p given in 1.2.1 or 1.2.3 for the problem (PSlw.1.1) or
(PSI(o.Z.l), respectively. Further, let s, be the solution of the discrete problem
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(2.5,a—c), where ', V, and i, = pare defined in2.1.2 or 2.1.4 in case of the problem
(PSIw.1.1) or (PSIw.2.1), respectively. Then

(2.34) i‘ino ¥ — ¥a)s.0,=0.

Proof. It is easy to verify that the assumptions of Theorem 2.2.2 are satisfied.
Since I, = 0, we have
(2.35) [ = ¥ull1,0. = Az inf ¥ — @] 0.,

DpeXy
as follows from (2.32). Further, if we take into account the assertion 5) of Theorem
1.2.4 and Theorem 2.1.5, we can write ¥ = y* + u, ueV and ¥, = ¥y + u,,
where ) = rp* and u, €V, It is evident that &, = ¢ + v, e X, for all v, eV,
Hence,
(2.36) W = dllie. = AV = ¥i]1e. + influ = v,]10)
vheV R

Let ¢ > 0 be arbitrary. In virtue of general approximation properties of the

finite element spaces,

(2.37) o = rw|y o S ch|v]|, 0. for ve HX(Q)

(see [2]). Hence, there exists h; € (0, h,) such that

(2.38) [v* — vl < ¢/3, if he(0,hy).

Since the set ¥ = C*(@,) is dense in V, there exists il € ¥~ satisfying the inequality
(2.39) it = uly 0 <¢f3.

From (2.37) we get /i, €(0, h,) such that

(2.40) it = ryitl]y 0. S €3, if he(0,hy).

Of course r,ii € V,. Now, (2.36)—(2.40) yield the estimate

[V = Uillso. = A9 = Uil0. + Ju = 0. + |7 = it 10) < A2
for all h €(0, /1,), which already implies the assertion (2.34). |

2.2.4. Remark. Similarly as in [8], it is sufficient to assume that y* e H¥*(Q,).
since then

(2.41) ¥ =m0, S c¥*]s2.0. 1" |
b) Nonpolygonal domain

Now let us assume that the profile C, is smooth enough and hence, the domain
Q, is not polygonal. Let us suppose that C, e C2. Following the regularity results
derived in [21] for the solutions of elliptic problems and using the above mentioned
possibility of the extension of ¥ from ©, onto O, we shall make the assumption
that the weak solution of the problem (1.24,a—c) satisfies the condition
(2.42) Y e HXQ).
Here O, satisfies the relations (2.24). Of course, we shall assume that the system
of triangulations {7}, has the properties introduced in Section 2.1. Under
the above assumptions the following result was proved in [8]:
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2.2.5. Lemma. There exists a constant ¢ > O such that
(2.43) meas [(Q, — Q) U (2, — Q)] < ch®> for he(0, hy). m

On the basis of Theorem 2.2.2 we shall prove the error estimate of the finite element
method.

2.2.6. Theorem. Let {7 ,},c0.1,) be a regular system of triangulations with the
properties from Section 2.1 and let (2.24) be valid. If Y € H*(Q,) is a solution of the

problem (1.24,a—c) and W, is a solution of the corresponding discrete problem
(2.5,a—c) and r*> e H{Q,), then there exist constants h,, ¢ > 0, independent of h,

such that

(2.44) [¥ = ¥ul1,0. < ch forall he(0,h).
Proof. Let us prove this theorem e.g. for the problem (PSlw.1.1). If we put
Z 9 0 or?
(245 R COV R R
i=10x; 0x; 0x,

then from the assumption (2.42) and from the properties of b and r we conclude
that f € L,($;). With the use of Green’s theorem we get from (1.24,a—c) that f = 0
almost everywhere in @, and ¥ satisfies the conditions (1.4), (1.11) with g, = 0,
(1.5) and (1.10) for i = 1, 2 (restricted to &,).

Let v, € V. Then
(2.46) f fo,dx = f Sfo, dx =
Ren—NR¢c Q:h

= e : i . 2 i_lp —_ ﬁ_rz X =
h J-Qm [i; 0x; (b( ’ (le) )6x,»> ? axl:, o d>

D:cn F)

X1

- j\: vy | r;f [b(’,(Vlﬁ)z)?-p — wrzn,:IdS
i=1 ril. n

(cf. the definition (2.9) of the space V;). In view of (1.10), (2.6), (2.10), (2.11) and
(2.46), we have

J;) ‘valx dx = ah(l//’ Uh) - llh(Uh) .

Hence,
(2.47) ay(, v,) = wlvy) + L{v,) Vo, eV,
where
(2.48) 0 I(v,) = f fo,dx .
Rch— Qe

It is evident that [, is a continuous linear functional on V.
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Now, let us apply Theorem 2.2.2 whose assumptions are obviously satisfied.
In virtue of (2.32) it is sufficient to estimate

inf ”¢ - ¢h”1vgrh and ”["“T,th :

DpeXn
Concerning the first term, we use the fact that r,¥y € X, and hence,

(2.49) inf [ = @l 0, S ¥ — ribl|i 0 £ ch¥ ]2 0., < ch]¥]..a.

DpeXn
(cf. (2.37)). Let us derive the estimate of ||I,] T q.,. If v, € V}, then

(2.50) [1(vs)] = L fou dx = [ fllo.0u-e.

Since [ fllo.gm-2. = | f]0.5., it remains to find the estimate of [v,]o.0.,-q. In
Lemma 2.2.7 we shall prove that

Uh” 0.Q2ch~ Q0 *

th ™ 3¢

(2.51) [oall0.00- 0. = €h?[[0a]1 0.,
with & independent of h. From this, (2.32), (2.49) and (2.50) we can immediately
conclude that the error estimate (2.44) holds. ™

2.2.7. Lemma. There exists a constant ¢ > 0 such that (2.51) holds for each v, € V,
and h e(0, k).

Proof. The set Q,, — @, can be written as a union of disjoint open sets %, r =
=1,..., ky, with 0% = Y U S}, where S = C,, is a side of a triangle adjacent
to 0Q,, and Y ¥ = C,. In each &! we can introduce local coordinates x,, y,; y, is
measured along S and x, is measured in the normal direction to S". Then %" =
= {(x,, »,); ¥, €(0,s}), 0 <x, <ai(y,)}, where ol: 0, st> — <0, +o0). We have

(2.52) Jr ppdx= Y J. v7 dx
Qen=0: SHe G- 70

and

s ()
(2.53) J. vf dx =f (j vH(x,s 1)) dx,) dy, .
Sh 0 0

Since v,(0, y,) = 0 for all y,€<0,s!> and 0 £ x, < a(y,) < const . h* (see [8]),
we can write

) X 9 -y 2 a(ye) /A /:’ TN\ 2 )
vHx,, y,) = —IEJ") dé| < const. h? @"—E—}') dé.
o Ox o 0x,

r

By substituting into (2.53) we get the inequality
s 7 e er) )\ 2

J. v dx < const . 114J (J <%(7x"—}')> dx,) dy, < const . Iz“J‘ (vo,)* dx.

S 0 0 ox, s
This and (2.52) imply
J v dx < const. lz“f (vo,)? dx < const . 114‘[ (vu,)? dx .
Ren— Q22 Qep— Q¢ fe27%
This already yields (2.51). [ ]
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3. CALCULATION OF THE APPROXIMATE SOLUTION

In this section we shall deal with the solution of the discrete problems (2.5,a—c)
(i.e.. the problems without trailing conditions) and (2.22,a—c) (the problems with
trailing conditions).

3.1. The system of algebraic equations equivalent to the discrete problem

First, let us study the problem (2.5,a—c). It is known that in the space W, there
exists a basis formed by the functions w;, i = 1, ..., N, such that

(3.1) w(P)=1, i=1.,N,
wiP)=0, i,j=1..,N, i+j.
If v, € W, then

(3.2) vy =Y. 0,{P;)w;.
i=1

Let us denote by {w{}I_, (n = dim ¥, < N) a basis in V}. Since V, = W,, it is
evident that each w{ can be written as a linear combination of functions w;. E.g.,
in the space ¥, defined by (2.9) (for the problem (PSlw.1.1)) we consider the basis
consisting of the following elements: '

(3.3)
a) w, for P,eg,nQ,,
b) w,+w; for P,=Pieg,n(I'" —(I'yul,),Piea,n(I'" —(I;uTl,)
c) Yowy, i=1,2.
PjeannTy
To prove that these functions form a basis in Vj, it is sufficient to notice that
in view of (3.2) and (2.9), for v, € ¥, we have

N
(3'4) Up = Z "h(Pi) w; =
i=1
2
= Y uP)w; + Y o(P) (Wi +w) + Y0, | T Y wy,
PjconnQqwn Pjsahr\(l‘_‘;il]ul'z)) i=1 Pjeannrl;
i=P;

and that g, — C,, is a sum of disjoint sets {Pj}Pjeahr\Qm’ {Pjs P}} pconnir- —(ryoray and
{P;;P,eaq,nT,}, i =1,2. From (3.4) we see that every v, € ¥, can be written
in the form

(3.5) v, =Y vwr,

where the coefficients v; are uniquely determined. The coefficients at the basis func-
tions of the type (3.3,a) or (3.3,b) or (3.3,c) are equal to v,(P;), P;ea, N Q, or
v(P;), Pieo, n(I'” — (I'y UT,))orv,| I, i=1,2, respectively.
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Similarly we can proceed in the case of the problems (PSIw.1.2) or (PSlw.2.1).
We let the details to the reader.
If we seek an approximate solution in the form

(36) lph = ll/;,k + Uy, u, € Vh

(cf. the proof of Theorem 2.1.5), then

(3.7) Vo=V + Y uwr, ueRy, j=1,..n.
i=1

Hence, the problem (2.5,a—c) can be written in the equivalent form

(3.8) afy + Y uwi, wi) = w(wi), i=1,...n
=1

or, in view of (2.6),

(3.9) J‘ b(s, (Vi + Y u,ww))?) Y u; ywi . yw! dx =
Qen J

s=1 =1

= p,(w}) _f b(-, (VUi + Y u,vwl)?) vy, . Vwidx, i=1,..,n.
Qen s=1

This is obviously a system of n equations for unknown values u;e Ry, j = 1,..., n.
If we put it = (uy,...,u,)", D) = (D), ..., d,(a))" and A(@r) = (a;(a1)); ;-
with

(10) @) = o) - |

Q:h

b(-, (Wi + Y u,vw))?) vy, . ywi dx,
s=1

aij(ﬁ) = L b(., (V'//: + glus VWf)Z) Vw;" . wa dx,

then (3.9) can be written in the matrix form

(3.11) Aii) i = D(ii) .
From the properties of the function b, from Theorem 2.1.5 and from (3.10) we

easily derive the following properties of this system:

N

3.1.1. Theorem. 1) The system (3.11) has a unique solution which determines
a unique solution of (2.5,a—c) via the formula (3.7).
2) For each ii € R, the matrix A(i) is symmetric and positive definite.
3) The functions @ (i) and a;(ii) are bounded and continuously differentiable
in R,.
4) If b depends on x only (the flow is incompressible), then the system (3.11) is linear.
]

Now let us briefly mention the construction of the system (3.11). For the purpose
of iterative solution of this system, which will be described in Section 3.2, it is necessary
to be able to calculate the matrix A(i1) and the vector @(ii) for an arbitrary i € R,.
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If we use (2.1,a) and the fact that Vo, | T = const for each Te 7, and each v, € W,,
then we can write

(3.12) a(m o) = Y. Vi, | T. Vn,| Tf (v | T)?) dx

TeIn
for l//hevth U,‘GV;,.

Further, if , € W, is a function determined by (3.7) with given u;. ..., u,, then

(3.13) a;{in) = Z Vwi | T. yw} | TJ. (V¥ | T)?) dx,

L) = 1uw?) + 0 3 “’"le dx -
T

TeTn 0Xq

_ Y | T v Tf (W | TY) dx,
TeTn
ij=1,..,n, i=_(uy..,u).
In general, it is impossible to calculate the integrals in (3.12) or (3.13) exactly
and we must use suitable numerical quadratures. The integral of a function f over
a triangle T can be evaluated e.g. with the use of the formula

(3.14) dex ~ f(x;) meas (T)

or

(3.15) J.fdx ~ Y fiP)) + f\P}) + fi{P,)) meas (T),
T

where x; is the centre of the triangle T, meas (T) is its measure and P, P;, P, its
vertices.

Also the integrals from the definition (2.11)** of the functional y,, arising in the
problem (PSI®.2.1) should be approximated. We use the following possibility:
If S = I, (k = 1, 2) is a side given by vertices P;, P; of a triangle Te .7, adjacent
to I'y, then we write

(3.16) Lmkw dS ~ |P; — P;| (3{(m(P;) — m(P))) + im(P;)).

This formula is obtained by linear approximation of the function m, on the side S
and it uses the fact that wy(P;) = 1, wy(P;) = 0.

Then, instead of the problem (2.5,a—c) we get a modified problem equivalent
to a new system of equations of the form (3.11). However, the elements of the matrix
A(ii) and the components of the vector @(i1) are calculated from the formulae (3.13),
where the integrals are replaced by the above mentioned quadratures.

The question how the numerical integration affects the resulting error of the
method can be studied quite analogously as in [8]. We shall not deal with this
problem here.
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3.1.2. Some remarks to the problem (PSI®w.1.3). Let us return to part 2.1.6
devoted to the discretization of the problem (PSIw.l.3). The following assertions
hold:

1) The space ¥, defined in (2.18) has a basis {wj} which consists of the following
elements:

(3.17) a) w; for Piec,nQ,,
b) w;+w; for Pieg,n(I'" —(I'yuTl,)),P;=P;,

c) Yoow;.

Pjeannly
2) In the space ¥, defined by (2.21) we have a basis {, } formed by
(3.18) a) w; for P,eo,nQ, — {P,},

b) w,+w; for Pieg,n(I" —([yuTl,), P;=P;,

<) X Wi

PjeonnI'y
d) Y W .
PjeannConv {Pi }
Proof of these assertion is a consequence of (3.2), the definitions of the spaces V}»
¥, and the fact of the disjoint decomposition of g, — I',. |
We see that the bases defined in (3.17,a—c) and (3.18,a—d) have the same number
of elements equal to n = card(o, N Q,) + card [o, 0 ('™ — ([ U T,)] + 1
(<N).
The sought approximate solution will be expressed as

(3.19) = U5+ Y

In view of the discrete formulation (2.22,a—c), the relations (2.10), (2.11,a) (2.23)
and (2.6), we get a system of algebraic equations for unknown values u,, ..., u,:

(3-20) J b(-, (W) + X u, vw))?) Y u; ywi . ywi dx =
Qen s=1 j=1
\ = o)) = [ 90+ R v et o,
Q:n s=1

i=1,...,n.

This system has the form (3.11), where the elements of A(i7) and the components
of ®(ii) are defined by the relations

(321)  Da) = w(wy) ~J

b(.’ (V'/I: + Z us VW:‘)Z) Vll/: M Vw’lk dx ’
s=1

th
a;(#) =J‘ b, (VWi + X u, vW)?) ywi . vws dx.
Q<n s=1
Since Vj + V,, the matrix A(ir) is not symmetric. Nevertheless, we have
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3.1.3. Theorem. 1) The functions ®(i1) and a;(it) are bounded and continuously
differentiable in R,

2) If b depends on x only, then the system considered is linear.

3) If all angles of all Te J, are less than or equal to 90° and the triangulation
T, is sufficiently fine, then A(ii) is irreducibly diagonally dominant (see e.g. [1])
for each e R,.
Proof of assertions 1), 2) follows immediately from the properties of the function
b. For the proof of 3) see [15]. (Similar results can also be found in [13].) |
If the flow is incompressible, then it follows from the assertion 3) that the linear
system (3.11) is uniquely solvable under the above mentioned assumptions.

3.2. Iterative solution of the system (3.11)

The system (3.11) is linear for an incompressible flow and can be solved by the
successive over-relaxation method (SOR). Its convergence follows from Theorem
3.1.1 (the assertion 2)). If we consider trailing conditions, then in view of assertion 3)
from Theorem 3.1.3, the Gauss-Seidel method converges. However, the matrix A
differs from a symmetric one only slightly. This implies the conjecture that also
the SOR method could be convergent and even faster than the Gauss-Seidel method.
This has also been confirmed by a series of numerical experiments.

In the nonlinear compressible case we applied two methods:

3.2.1. Generalized relaxation method. We write A = A, + D + Ay, where the
matrix A; is strictly lower triangular, D diagonal and Ay strictly upper triangular.
We construct a sequence {ﬁk}k;o by the process

(322) a) u°eR, isa convenient initial approximation,
b) A (@*) @t + D@*)att? + Ay(a*) @ = o),
c) @t =u*+ @t -w"), k=20, ve(0,1).

This method was originally proposed by M. Feistauer and used successfully in
calculations of subsonic flows by the finite difference method (see e.g. [4]). The
convergence of this method can be proved under relatively restrictive assumptions.
Numerical experiments show that it converges for the problems both without and with
trailing conditions if v = 1, the initial approximation represents the incompressible
flow and the calculated stream field is subsonic. The optimal relaxation parameter
can be found only experimentally. However, the convergence of this method seems
to be faster in connection with the finite-difference method. This is the reason why
we applied also another method. ]

3.2.2. Steepest-descent method with preconditioning. This method is inspired by the
iterative process (2.16) used in the proof of the solution of the discrete problem
(2.5,a—c). With respect to the definition of the operators T, and F,, (2.16) can be
written in the form
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(3.23) weVv,,
(uf ™', wi) = (uf, w¥) — v[ay(uy + i, wi) — m(w)]
i=1,..,n, k=20, v>0.

Here (-, ) denotes a scalar product on V. In order to get good convergence of the
process (3.23), it is convenient to choose this scalar product in some relationship
with the form a,. We put, e.g.,

(3.29) (4, 1) = (up, vy), = f b(+,0) yu, . yv,dx, u,v,€V;.

Q<n
It follows from the properties of the function b that (3.24) reaily determines a scalar
product on V.
Now we see that (3.23) represents an iterative process, which can be written
in the following way:

(3.25) #®cR,,
BE+1 — _(A(ak) ik — Q(ﬁk)) ,
Gl = gk L >0,

v > 0 is a suitable parameter and B is the matrix with elements

(3.26) b= Y vwi | T.yw}| T.[ b(x,0)dx, i,j=1,..,n.
TeIn T
Usually we choose the initial approximation ii® as a solution of an incompressible flow.
In view of the results from Section 2, we know that there exists ¥ > O such that
the process (3.25) converges for v e (0, 7). The choice of the optimal value of v can
be carried out only experimentally. The estimate of the value ¥ is determined by
the constants a, K from (2.7) and (2.8), respectively.
The method described represents the steepest descent method with preconditioning

for the minimization of the functional ®,, defined by

(3.27) ®@,(u,) = J;. F(-, (v(¥y + w))?) dx — (),  u, eV,

n
F(x,n):%j b(x,f)dt, n=0,
0

on the space V,. From this point of view, other iterative methods arise as possible
ones — e.g. the steepest descent method with an optimal step size in every iteration
or the well-known conjugate gradient method. We shall not go into details. Cf. e.g.
[17]. |

4. EXAMPLES

Based on the theory presented, a system of FORTRAN programs was written
which allows the finite element solution of irrotational cascade flows on an arbitrary
surface of revolution in a layer of variable thickness of an arbitrary form.
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Fig. 2
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Here we shall present some calculated stream fields past a cascade of profiles.
The domain €, is drawn in Fig. 1. Fig. 2 represents the triangulation. It consists
of 685 vertices and 1160 triangles. In all the examples considered the iterative proces-
ses (SOR in linear cases, generalized relaxation method in case of a nonlinear sub-
sonic flow) were stopped when the relative error in the stream function was less
than 107

The first example concerns an incompressible flow with the inlet angle 57°. The
resulting outlet angle is —64°39’. We have used the trailing condition. In Fig. 3
we see the comparison of the velocity distributions (i.e. V/ V 1-distributions, where V
is the velocity and V1 is the inlet velocity) round the profile calculated by the finite
element method (denoted by x ) and by the integral equation method (denoted by O).

Figs. 4— 6 represent the streamlines, lines of constant velocity and velocity vectors
drawn at the vertices of the triangulation.
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Fig. 7 represents the velocity distribution on the profile calculated for the compress-
ible fluid with the use of the method (3.22,a—c). For the inlet Mach number M = 0.7
this iterative process converged in 50 iterations.

v/v1
Fig. 7
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As the third example we consider an incompressible cascade flow in a fluid layer
whose thickness decreases linearly from its inlet value h; > 0 to the outlet thickness
hy, = hy/4.

In Fig. 8 the velocity distribution is drawn and Fig. 9 represents the streamlines.

y/v1
Fig. 8
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In all the above examples we considered the trailing condition. In the following
example we do not use this condition but we assume that beside the inlet angle also
the outlet angle —45° is given. We consider again an incompressible plane flow.
The results drawn in Fig. 10 (velocity distribution) and Fig. 11 (streamlines) show
that the outlet angle is not well determined. (It ought to be equal to —64°39" as

in the first example.) This last example demonstrates the necessity to use the trailing
conditions.

Fig. 11 \
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Souhrn

RESENI PROUDEN{ PROFILOVYMI MRIZEMI
VE VRSTVE PROMENNE TLOUSTKY METODOU KONECNYCH PRVKU

MIiILOSLAV FEISTAUER, JikRf FELCMAN, ZDENEK VLASEK

V predloZeném ¢lanku se zabyvame numerickym modelovanim nevifivych stacionarnich nebo
kvazistacionarnich proudovych poli profilovymi mfiZemi ve vrstvé prom&nné ilouStky na osové
symetrické proudoploSe. Tento problém, velmi duleZity pro konstruktéry lopatkovych stroja,
je formulovan jako nelinearni okrajova uloha eliptického typu pro proudovou funkci s nestan-
dardnimi nehomogennimi podminkami a je diskretizovan metodou koneénych prvkia. Clanek
je vénovan jak teoretickym, tak praktickym aspektiim této metody: jde zejména o konvergenci
metody, numerickou integraci, iteracni metody pro feSeni nelinearniho diskrétniho problému
a algoritmizaci. Jsou téZ uvedeny ukazky numerickych vysledki ziskanych mnohoucelovym
programem, ktery autofi vytvorili.

Pe3iome

PEUWIEHUE TEYEHWUI PEMIETKAMMU ITPO®UJIEN B CJIOE IIEPEMEHHOMI
TOJIBIMHBI METOJOM KOHEYHBIX 3JIEMEHTOB

MiLosLAV FEISTAUER, JIRf FELCMAN, ZDENEK VLASEK

PaBora mocBsilieHa YUCICHHOMY MOMEUIMPOBAHUIO O3BYKOBBIX CTALMOHAPHBIX MJIM KBa3u-
CTAUMOHAPHBIX OEe3BMXPEBBIX TEYSHHM pemeTKaMu Ipoduieidl B CJl0€ TNEPEeMEHHOW TOJBIIMHBI
Ha OCECHMMETPUYHOM IOBEPXHOCTH TOKa. DTa MpobiieMa, O4YeHb BaXXHas AL KOHCTPYKTOPOB
JIONATOYHBIX MALLKH, GOPMYIHPOBAHA KaK HETMHENHAS 3a/1a4a UTAIITHYECKOTO THIA AJIs GYHKLUH
TOKa C HECTAHAAPTHBIMU HEOJHOPOJHBIMH KPACBbIMHU YCIIOBUSIMH M JMUCKPETH3HPOBAHA METOIOM
KOHEYHBIX 37eMeHTOB. CTaThsi MOCBSLIEHA TEOPETHYECKMM M NPAKTHUYECKMM AacleKTamM MeToHa:
H3y4YeHbl CXOIMMOCTh METOIA, YHCIIEHHOE UHTErPUPOBAHUE, UTEPAIMOHHBIE METOMAbI AJis PELICHHS
HEJIMHEMHON IMCKPETHOM 3a1a4u U anropudpmusauus. IIpuBeJeHbI HEKOTOPbIE PE3YIbTAThl YUCIIEH-
HBIX PacyeTOB IO aBTOPAMM COCTAaBJIEHHOM MPOTrpaMme.
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