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Summary. Simple examples of bounded domains D cz R3 are considered for which the presence 
of peculiar corners and edges in the boundary dD causes that the double layer potential operator 
acting on the space ^(dD) of all continuous functions on dD can for no value of the parameter a 
be approximated (in the sup-norm) by means of operators of the form aI + T (where I is the 
identity operator and Tis a compact linear operator) with a deviation less than |a|; on the other 
hand, such approximability turns out to be possible for a = \ if a new norm is introduced in 
^{dD) with help of a suitable weight function. 
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In this paper we deal with examples of open sets D c R3 whose boundary dD 
is compact and can be covered by a finite number of planes parallel to the coordinate 
axes; we shall consider only those D for which dD is locally a surface (i.e. every 
point of dD has a neighbourhood in dD which is homoemorphic with R2) and we 
shall call these sets rectangular. 

Boundary value problems for sets of this type occur frequently in applications. 
Besides that, rectangular sets are conveniently used for approximation of more 
general domains, and various procedures (like that of Wiener) often permit to 
reduce a (generalized) boundary value problem corresponding to a general domain 
to a (classical) boundary value problem for a rectangular set. Among constructive 
methods of solving boundary value problems the Fredholm method of integral 
equations is of particular interest, also from the point of view of numerical treatment 
(cf. [16], [14], [15]). This method exhibiting the duality between the Dirichlet 
and the Neumann problems is especially efficient in connection with exterior problems. 
Let us suppose, for example that D is bounded, dD connected, and denote byc$*(dD) 
the space of all signed finite Borel measures supported by dD. If v e ^*(dD), then 
its Newtonian potential Uv represents a harmonic function in R3 \ dD whose 
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gradient VUv is integrable over all bounded Borel sets contained in R3 \ 3D; accord­
ingly, one may introduce the functional 
(1) NUv: q> i-> <<p, NUv> 
over the space <3) of all compactly supported infinitely differentiable functions in R3 

defining 

<<p, NUv> = I Vę(x) . VU v(x) áx , 

where G is the complement of D = D u 3D. NUv may be considered as a natural 
weak characterization of the normal derivative of Uv|G at 3G = 3D. There is a uni­
quely determined \i e ^*(3D) representing the functional (1) in the sense that 

<<p, NUv> = <p dfi, cp e 3) ; 
J dD 

if we identify \x = NUv then, moreover, the operator 
(2) N U : v h-> NUv 

is bounded on <£*(3D) normed by total variation. (This follows from the fact that 
there is a constant n < oo such that each straight line in R3 which is not parallel 
to the coordinate planes intersects 3D at most n-times; cf. Th. 1.13 in [9].) 

We shall describe two examples illustrating the difficulties connected with the 
natural question of invertibility of the operator (2) on %?*(3D). An affirmative answer 
(which follows from a recent result in [17]) means that the generalized Neumann 
problem for G with an arbitrarily prescribed normal derivative ji e ^*(3G) has 
always a solution representable as a Newtonian potential Uv of a suitable v e C£*(3G). 

Similarly, if %>(3G) is the space of all continuous functions on 3D then for each 
/ e (€(3T>) the classical double layer potential Wf with momentum density / on 3D 
can be defined and represents a harmonic function on R3 \ 3D admitting continuous 
extension from D to D. If WJ denotes the restriction to 3D of this extension, then 
the operator 

(3) Wtif^WJ 

is bounded on ^(3D) equipped with the usual maximum norm (and the operator (2) 
is dual to (3)). Invertibility of (3) on ^(3D) is another natural question connected 
with representability of solutions of the classical Dirichlet problem by means of 
double layer potentials with continuous momentum densities. Let us remark that 
in the plane R2 such problems for suitably normalized logarithmic potentials have 
been satisfactorily settled because the corresponding operator Wt can be decomposed 
into 

±J +T+Z= Wi9 

where I is the identity operator, Tis a compact operator and Z is a bounded operator 
on %?(3D) whose norm is less than \; this is true for domains D c R2 whose boundary 
has bounded rotation in the sense of Radon (cf. [5], [10], [1], [11]) and also for 
some more general boundaries admitting infinitely many angular points with angles 
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exceeding a positive constant (compare [7]). The Riesz-Schauder theory then permits 
to apply the Fredholm theorems and obtain the desired results concerning boundary 
value problems. In the space R3, however, the situation is entirely different. We are 
going to exhibit examples of simple rectangular domains D cz R3 for which such 
decomposition of Wt is impossible because the distance of Wt — \l from the space Q 
of all compact linear operators acting on ^>(dD) (in the metric defined by the maximum 
norm) exceeds the critical value \ and also the distance of Wt — ocl from Q exceeds 
|a| for any value of the parameter a. Nevertheless, the situation can be saved if 
a new norm (inducing the same topology of uniform convergence) is introduced 
in ^(dD) (cf. also [17] dealing with general rectangular sets). 

Let us remark that Calderon's result on boundedness of Cauchy's integral operators 
in Lp-spaces opened the way to the investigation of representability of solutions of 
boundary value problems by layer potentials whose densities are in Lp-spaces (cf. 
[3]); for 1 < p < oo the picture is different from that considered here and Verchota's 
inequality relating the L2-norms of normal derivatives from both sides of the bound­
ary for potentials with L2-densities permits to avoid the difficulties connected with 
the approximation by compact operators occurring in the Radon scheme. The reader 
is referred to [13] (cf. also [6]) for results and references concerning the application 
of layer potentials with densities in Lp, 1 < p < oo. 

Notation. We shall consider rectangular sets D #= 0 in R3. If y e 3D, then n(y) 
will denote the unit vector of the exterior normal to D at y provided this is meaningful; 
for definiteness we put n(y) = 0 ( = the zero vector in R3) in the case when y is 
situated on an edge where the normal is not defined. The symbol a will be used 
to denote the 2-dimensional surface measure. Given z e R3 we define the signed 
measure Xz on Borel subsets of 3D by 

«-^)-y,-(y7)do(y) 
4n\y — Z| 

so that, up to the normalizing factor, dlz is just the element of the oriented spatial 
angle under which dD is visible from z; the normalization is so chosen that Xz(dD) = 1 
for any z in D in case D is bounded, while Xz(dD) = — 1 for any z e R3 \ D in case D 
is unbounded. Note that, in case z e dD, y — z is orthogonal to n(y) for all y in those 
faces in dD whose closure contains z. Consequently, for any fixed z e 3D, the function 

y,_»n(y) • (y - z ) 
47r|j; — z\3 

is bounded on dD and the measure Xz is of bounded variation. ^(dD) is the space 
of all continuous functions on dD equipped with the topology of uniform convergence; 
[|.. .|| is the usual maximum norm in ^(dD). For fe ^(dD) we define the correspond­
ing double layer potential by 

Wf{z) = ľ 
JÍ 

fdl2 
dD 
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Wf is a harmonic function on R3 \ 3D tending to zero at infinity. We put 

Qr(y) = {xeR3;\x - y\ < r} 

and denote by 

< i Y y ) - - 1 i m V O l , U n e W y ) n g ) 

rio volume (Qr(y)) 

the density of D at y. Then for any y sdD, 
lim Wf(z) = Wf(y) + [1 - 4y ) ] f (y ) = JVf(y) + i f(y) , 
Z-+y 
zeD 

where we have put 

Wf(y) = Wf(y) + [ i - <2(JO] f(y) , y e dD , fe V(3I>) . 

The symbol I will always denote the identity operator on %(dD). Since for any 
feV(dD) 

WJ(y) = lim Wf(z). 
z->y 
zeD 

is a continuous function of the variable y e dD, the so-called direct double layer 
operator 

W= Wt-ll 
is a bounded operator acting on <g(dD) (cf. Th. 2.19 and Prop. 2.20 in [8]). The 
Dirichlet problem for D with the prescribed boundary condition g e ^(dD) can be 
reduced to the equation 

(4) (±/+ W)f=g 

for an unknown fe ^(dD). For a rectangular set D the corresponding operator W 
can never be compact, because the smoothness of the boundary (of class ^ ( 1 )) is 
necessary for the compactness of W on %?(dD) (cf. Th. 3.15 in [8]). Q will stand 
for the space of all compact linear operators acting on ^(dD). If S is a bounded 
linear operator on ^(dD), we denote by 

coS = inf{| |S - T\\; TeQ} 

its distance from Q. The Radon scheme permits to apply the Riesz-Schauder theory 
to the equation (4) under the assumption that 

(5) coW<i. 

The quantity coW (usually called the essential norm of W) can be simply evaluated in 
geometric terms connected with D. Put 

F = {6eR3;\6\ = 1} . 

Given y e R3, 6 e F and r > 0, we denote by nr(6, y) the number (possibly 0 or + oo) 
of all points in {y + QQ; 0 < Q < r} n D. The function 

0 h-> n/6, y) 

is Borel measurable on F (cf. Lemma 5.3 in [9]; note also that it coincides a.e. 
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on F with the function «f(#, y) investigated in 1.11 in [9]) so that we may define 

vr(y) = l-[nr(0>y)do(0). 
4njr 

Then co Wean be evaluated by the formula 

(6) coW = lim sup {vr(y); y e dD} 
r j O 

(cf. Th. 4.1 in [8]). 

We are now going to discuss an example of a rectangular set D c= R3 for which 

Ғig. 1 

Example 1. 

Put 
D = (-í, 1) x (0,1) x (-1,0) u(0,1) x (-1,1) x (-1,0) , 
B = ( - 1 , 0 ) x {0} x (-1,0), 
C = {0} x ( - l , 0 ) x ( - l , 0 ) , 
E = < - ł , ł > x <0,i> x {0}u<0,i> x < - Ь Ì > x {0} 
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(cf. Fig. 1). Consider a variable point y = [0, y2, y3~] e C and fix r e (0, -0. If y 
approaches the origin, then the normalized spatial angle under which E is visible 
from y tends to 3/8, so that 

lim \Xy(Qr(y) n JB)| = | ; 
y-+0 
yeC 

if, at the same time, the ratio y2/y3 tends to zero (so that y comes much closer to B 
than to E), then the normalized spatial angle under which B is visible from y ap­
proaches \, whence 

\ky(Qt(y) n B)\ -> i as ^ - + 0 , j ; 3 - * 0 , yeC. 
y3 

We see that 

vr(y) = \ly(Qr(y) n E)\ + \Ay(Qr(y) n B)\ -> f 

as 

- - + 0 , y3-+0, yeC. 
y3 

Consequently, for any r e (0, -|), 

sup {vr(><); y e dD} = f 

and, in view of (6), cDW ^ f > i-

Remark . One might also think of decomposing the operator Wx into 

Wi = (Wi - at) + aI 

with another value of the parameter a 4= 0 (for a = \ we get Wt - \I = W). It 
follows from the reasoning described in 4.2 in [9] that, for our set D, we have always 

co(Wt ~ od)> \a\ ; 

the distance (if measured by the norm ||.. .||) of the operator 1/a Wt — I from Q can 
never be made smaller than 1 once we have 

lim sup {vr(y); y e 3D} > \ . 

In order to overcome this difficulty we are now going to introduce a new norm 

in r£(pD) inducing the same topology of uniform convergence. 

Let 
£ i = <0, i> x <0, i> x {0} , 
E2 = (-i,0) x <0,i> x { 0 } , 
^ 3 = <0,i> x < - i , 0 ) x {0}. 

Fix a constant q e (1, f) whose precise value will be specified later and define the 
function w on dD as follows: 

w(y) = i<l for y e Et, w(y) = \q for y e E2 u K3 , 
Kyi>y2> - 1 ) = Ky i 'y2»° ) i f [y i>y2>0]e£ 5 

w(y) = 1 for all remaining y e dD . 
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Fig. 2 

The distribution of values of w in E is illustrated in Fig. 2. 

Clearly, w is lower semicontinuous on 3D and satisfies the inequalities 

i < w g 1. 

We shall now define the norm |...|^w in %>(dD) by 

| / | , w = max { i ^ ; v e <?/)} , / e <g(dD). 
IWJ) J 

Obviously, 

| | /N Ijk = 4lljll . feV(dD), 
so that the space Q of all compact linear operators acting on the Banach space 

^(dD) with the new norm |...|#w remains the same. We shall prove that the distance 

a*JW) = M{\W-T\v„;TeQ} 

can be made smaller than \ by a suitable choice of the constant q occurring in the 
definition of w. Let us fix r e (0, J), denote by cyft. the characteristic function of 
dD \ Qr(y) and define 

Kf(y)=\ cy>r.fdXy, yedD, feV(dD). 

It is not difficult to verify that the operator 

Wr:f^Wrf 
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is compact on ^(dD) (compare the proof of Th. 3.6 in [8]). We shall now investigate 
the operator 

Zr = W - Wr. 
In order to estimate |Zr|^w we fix an arbitrary fe ^(dD) with |f|#w g 1 and consider 
the ratio 
(?) \Zrf(y)\,w(y). 

Suppose first that y = \yl9 y2, j;3] e dD, max \yk\ ^ \. We shall distinguish the 
l^fc^3 

cases (I) —(III) described below (where int M always denotes the interior of M c 3D 
with respect to 3D). 
(I) yeintEk9 1 g k g 3: 
It is easily seen that 

fc| (0,(y) n 3D) * WH)| + W C ) | £ ||" * !f
f J J J ^ ^ ^ 

so that 

q 
and the ratio (7) is bounded by \jlq. 

(II) yeB: 

Put 
£ = E3 u E2 

and consider the normalized spatial angle 
(8) |A,(E)| = ^£3)1 + HE2)\ . 
Let 

e1 = [ - 1 , 0 , 0 ] , e2 = [0,1,0] 
and denote by Pj (j= 1, 2) the half-plane determined by the straight line {ty; t e R1} 
and the half-line {teJ; t ^ 0}. Let Vbe that part of the unit sphere F which is enclosed 
between Px and P2. Since Pl9 P2 are orthogonal, the area of V equals 

a(V) = n . 
Defining 

E3 = {y - (x - y);xeE3} 

by reflection of F3 at y, we have 

(9) \ly(E3)\ = \Xy(£3)\. 

Observe that £3 (as well as F2) -s contained in the wedge bounded by the half-
planes Pi, P2 and that the rays from y through the points of I?3 are different from 
all rays from y through the points in F2, because the latter are directed upwards 
whereas the rays from y through £3 are directed downwards due to y3 < 0. Con­
sequently, 

w-3-)i + w*-)i * - £ ? - * , 
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whence we get by (9), (8) 

K(E)| = i-
Further we have 

M-i)|_u.i, 
VM = i- i-

Noting that | / | ^ w we summarize 

| Z r / ( » | ^ i . lW .E.)! + * « W £ 2 ) | + iq\ly(E3)\ + |Ay(C)| £ 

^Hr^ + ^ + ^ = i-~^^y)> 
16 

so that the ratio (7) is bounded by 

j 7c7 + 8 

in this case. 

(Ill) y e C : 

In view of the symmetry of D and w we again have 

\zrf(y)\ ^ i _ 7g + 8 
w(j>) 16 

We have thus seen that in all cases (I)—(III) the estimate 

(10) &Msimafk,h±!\ 
w(y) \q 16 ) 

holds for any y in the intersection of the sets 
3 

H! = B u C u U int Ek 

fc=i 

and 
# 2 = {y = [yi, y2, y3] e GD; max | ^ | ^ i } . 

l^fc^3 
\ 

It follows from the construction of w that every y e H2 is either contained in Hx 

or is a limit of a sequence >>" e Hx n H2 with lim w^") = w(y). Since lim Zrf(y
n) = 

w->oo n->oo 

= Zrf(y) because of continuity of Z r / we conclude that the inequality (10) holds 
for all y e H2. Since the vertex e3 = [0, 0, —1] has a similar position as the origin 
in 3D, we conclude by symmetry that (10) remains valid for all y — [y1? j / 2 , j / 3 ] e 3D 
satisfying 

M = i , |y2| = i , |y3 + i | ^ i . 
Even simpler considerations show that for the remaining y e dD the estimate 

*O0 - W 7 V« 16 

301 



holds. Thus (10) is valid for all ye 3D. Since fe ^(dD) was an arbitrary function 
with |f|^w ^ 1, we have 

(11) | Z r k < i m a x ( i , ^ ) . 

Let q0 = (7(138) — 4)/7, which is the positive root of the equation \\q = (7q -f 8)/l6. 
Since 1 < q0 < 8/7 we may take q = q0 in (11) and conclude that 

c % w ( l F ) < | Z r | ^ < ^ - < i . 
2o0 

In order to exhibit another type of critical corners we shall consider the following 
example. 

Example 2. Put 

D = ( -2 ,1) x ( -1 ,0) x ( - 1 , 0 ) u ( - l , 0 ) x (0,1) x ( - 2 , l ) u ( - l , 0 ) x 
x {0} x ( - 1 , 0 ) , 

C ={0} x ( 0 , l ) x ( - 2 , l ) , 
Ci = {[0, x2, x3] e C; |x3| < ^(3) x2} , 
c 2 = c \ CA , 
E = < - 2 , l > x < - l , 0> x {0}, 
F! = {[xu x2, 0] e E; \xt\ ^ - 7(3) x2} , 
B =(0,1) x {0} x ( - l , 0 ) , 
B1 = {[xi9 0, x3] e B; x3 ^ - x j , 
B2 = B\BX 

(cf. Fig. 3). 

In this case we have, for any r > 0, 

lim sup vr(y) = \ 

and the quantity 

y-+0 
yedD 

coW = lim sup {vr(y); y e 3D] 
rjO 

assumes precisely the critical value 1/2. We shall describe the construction of a lower 
semicontinuous function w on 3D satisfying the inequality 

(12) 5\6 < w S 1 

for which the norm |...|^w makes the distance 

<%w(?F)<i. 

If e = [el9 e2, e3~\ and Q > 0, let 

(13) K,(e) = (j; e * 3 ; max | ^ - ek\ ^ iQ\ ; 
( 1<^3 J 

if e = 0 is the origin, we write simply KQ = KQ(0). 
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|X, 

Define 

w(Ў) 
/ 6*1 

'— 5/7 
\~ 6V 
X 1 

Fig. 3 

for j e Ki n Ci , 
for y e Kx n Et , 
for the remaining y eKx n 3D , 

where q e (1, f) is a constant whose value will be specified later. If e is any of the 
points e1 = [-1,0,0], e3 = [0,0, - 1 ] and e1 + e3 = [-1,0, - 1 ] , then w is 
transferred into the intersection of dD with 

Kt(e) 

using the symmetry of dD with respect to the planes {x e R3; x3 = ~^} and {xeR3; 
xi = —i}- Finally, we let w(y) = 1 for all y e dD not situated in any of the cubes 
Ki, Ki(e), e = e1, e3, e1 + e5. Clearly, w is a lower semicontinuous function on dD 
satisfying (12). Let us fix an arbitrary fe<g(dD) with | / | V w ^ 1 and re(0,i). We 
shall again examine the ratio (7) as in Example 1. Let us first consider y e Kl/2 n 3D 
and distinguish the following cases (A)—(D). 

(A) yeBx: 
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Then the normalized spatial angle under which E is visible from y is estimated by 

W-9I-U-
Further we have 

WQ)| = i. 
Let 

P = {[xi909x3];x3 = - x j , 

denote by Pj the half-plane determined by the straight line p and the half-line 

{te3; t ^ 0} and let P2 be the half-plane determined by p and the half-line 

{[0, x2, x 3 ] ; 0 ^ x 3 = - V(3) x2) . 

The angle enclosed by P1 and P2 equals 

2n 
arctan V(l) < ^~ * 

Writing 

(14) 

we get for 

the estimate 

в- — arctan .У(ł)є(0,1) 
2ҡ 

C2 = {[0, x 2, x 3 ] Є C ; Ï 3 < - 7(3) x2 , x2 > 0 } , 

C2
+ = {-x.xєСJ} 

K(Cj)| + WC2

+)| S ~ 

which is based on a reasoning similar to that occurring in case (II) of Example 1 

in connection with | ^ ( E 3 ) | + |Aj,(.E2)|. Clearly, 

WCчCOHІAДC^I + WCЛU^. 

Hence we obtain 

& M H z , / W | S i + i + Ii = }.»±±i±i2 
w(y) 9 6-6 18 

(B) j ; e P 2 : 

Now we get 

K(c)| = i , 

so that again 

IMdl = | z , / W | S i . i i ^ t a , 
W(j>) l o 

where e is defined by (14). 
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(C) yeC2: 

The reasoning described in case (II) of Example 1 yields for 

B = {[xl5 x2, x3] e 3D; x2 == 0} 
the estimate 

K(e)l = i-
Further we have 

IWIá-^, 

ЏÁ^E^й — , 
L . O 

whence 

^ H z . / w l s i ( i + A + i ) = i . i i ^ 

(D) J - e C , : 

Again 

Now 

so that 

K(£)l ^ i • 

W-0I = ̂ 3 . 

|Z r / (y) |^ i ( i + i) = i . | = f vv(j), 

w(y) 2q 

Since this estimate holds also for y e F! while for y eB\B we get, by symmetry, 
from (A), (B) the estimate 

\Zrf(y)\ < 1 9 + 4s + 5q 
w(y) " 2 ' 18 

we conclude that, for any y e K1/2 n dD, 

IMzll < imaxfi,ILL*,?Li*L±^V imax A 9±4 i ± j ?-
w(y) V? 1 8 18 j \« 1 8 

The same estimate holds for y BKll2(e) n 3D, e = e1, e3, e1 + e3. Since an even 
better estimate can be established for the remaining j ; e 3D we arrive at 

\Zf\ <±mж(l 9 _ ± 4 є + 5<7 
| Z / k - 2 (,,' І 8 
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If a! is the positive root of the equation 

1 _ 9 + 4s + 5q 

q~ 18 

one easily checks that ax e (1, f). Taking q = qx we obtain 

<%w(W) ^ - L < i . 
2qi 

The discussion of the above examples permits to establish the following results. 

Let us agree for a while to denote by Di and D2 the rectangular set described in 
Example 1 and Example 2, respectively; let Wj be the corresponding lower semi-
continuous function constructed on dDj (j = 1, 2). Consider an arbitrary rectangular 
set D c= R3. We shall say that a point z e 3D is critical if, for every Q > 0, 

limsup vQ(y) = £ ; 
y-+z 
yedD 

obviously, any critical z e dD is a vertex. D will be termed admissible if, for every 
critical z e dD there is a Q e (0, £) and an isometric mapping of KQ(z) n dD onto 
one of the sets Ke n dDj (j = 1 or 2). 

Proposition. If D is an admissible rectangular set in R3 with 3D =# 0 and W is 
the corresponding direct double layer operator on ^(dD), then there is a lower 
semicontinuous function v on 3D satisfying the inequalities 

(15) i < v ^ 1 

such that 

(16) <o*J(w)<i-
Proof. Let us fix Oe(0, £) which is less than half of the distance of any two 

different vertices in dD and satisfies 

sup{vQ(y);yeKQ(e)ndD} <i 

for each noncritical vertex e e dD. Take O small enough to guarantee that for each 
critical z e dD there is an isometric mapping xz o{KQ(z) n dD onto KQ n dDj (j = 1 
or 2); in this case we define v(x) = WJ(TZ(X)), xeKQ(z) n dD. 

Letting z run over all critical verticles in dD we put 

v(y) = 1 for yedD\[JKQ(z). 
z 

In this way we obtain a lower semicontinuous function v on dD satisfying (15) and 
the discussion described in the above examples yields the inequality (16). 

The following corollaries of the above theorem can be proved by arguments 
described in § 5 of [9]. 

Corollary 1. Let D be an admissible rectangular set in R3 with dD =¥ 0, G = 
= R3\D,fie ^(dD). 
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Then the generalized Neumann problem 

NUv = ix 

for G with the boundary condition \i admits a solution v e W*(dD) iff fi(dH) = 0 
for each bounded component H of G; the solution v is uniquely determined iff G 

is unbounded and connected. 

Corrolary 2. Let D be an admissible rectangular set in R3 with dD 4= 0 and let 
Gl9 ..., Gp(p ^ 0) be bounded components of G = R3 \D; fix Xj e Gj (j = 1, ..., p). 

Given ge^(dD), then there are uniquely determined constants cl,...,cp and 
an f e ^(dD) such that the function 

(17) x -» Wf(x) + £ CJ\X ~ ^l"*1 

1=i 

represents a solution of the Dirichlet problem for D and the boundary condition 
g;f is uniquely determined iff D is bounded and G connected (in which case the sum 

p 

2^ ... in (17) disappears). 
1=i 

Remark . The world "admissible" can be dropped in the above corollaries. This 
follows from a recent result in [17], 
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Souh rn 

NĚKTERÉ PŘÍKLADY NA APLIKABILITU FREDHOLMOVY-RADONOVY 
METODY V TEORII POTENCIÁLU 

JOSEF KRÁL, WOLFGANG WENDLAND 

Jsou vyšetřeny jednoduché příklady omezených oblastí D a R3, pro něž hrany a vrcholy 
na hranici dD způsobují, že operátor potenciálu dvojvrstvy na prostoru ^(dD) všech spojitých 
funkcí na dD nelze pro žádnou hodnotu parametru a aproximovat (vzhledem k maximové 
normě) operátory tvaru aI -f- T (kde I je identický operátor a Tje kompaktní lineární operátor) 
s chybou menší než |a|; taková aproximace je však možná po zavedení nové normy na ^(dD) 
odvozené od vhodné váhové funkce. 

Р е з ю м е 

НЕКОТОРЫЕ ПРИМЕРЫ ОТНОСИТЕЛЬНО ПРИМЕНИМОСТИ МЕТОДА 
ФРЕДГОЛМА-РАДОНА В ТЕОРИИ ПОТЕНЦИАЛА 

1ОЗЕР ККАЕ, \УОЕРСЬШО \VЕN^^АN^ 

Рассматриваются простые примеры ограниченных областей ^ а К с ребрами и верши­
нами на границе д^. В этих примерах оператор двойного слоя на пространстве ^(д!)) всех 
непрерывных функций на д^ нельзя ни при каком значении параметра а аппроксимировать 
(относительно максимум-нормы) при помощи операторов а I + Т(где I—тождественный опе­
ратор и Т—компактный линейный оператор) с погрешностью меньше чем | а | ; с другой сто­
роны, такая аппроксимация становится возможной для значения а = \ после введения новой 
нормы на <&(д^), определенной при помощи подходящей весовой функции. 

Ашкогз* аМгеззез: 1о8е/ Кгй1> Ог8с, Ма1етагтску йз1ау С8АУ, 2кпа 25, 115 67 Ргапа 1; 
РгоГ. Т)г. \Уо1[дапд УУепШапа1, Теспшзспе Носпзспи1е Оагтз1ааЧ, РаспЪегегсп М а т е т а п к , 
8сЫоз§§аг1епз1га5зе 7, 6100 БагпШааЧ, ВЯО. 
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