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VARIATIONAL INEQUALITIES IN PLASTICITY WITH
STRAIN-HARDENING — EQUILIBRIUM FINITE ELEMENT APPROACH

ZDENEK KESTRANEK

(Received April 16, 1985)

Summary. The incremental finite element method is applied to find the numerical solution
of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field
is approximated by equilibrium triangular elements with linear functions. The field of the strain-
hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization
problem with constraints is solved by the Lagrange multipliers method with additional variables.
A comparison of the results obtained with an experiment is given.

1. INTRODUCTION

The flow theory of plasticity with strain-hardening material has been studied
recently by Johnson [1] and Hlavécek, Nedas [2] from a new point of view, pioneered
by Nguyen Quoc Son [4] and Halphen-Nguyen Quoc Son [5]. The common idea
of their existence proofs is to formulate the problem by means of the variational
inequality of evolution and to use a penalty method.

In the present paper we propose an incremental finite element method, starting
from the formulation of the quasi-static problem in terms of stresses and hardening
parameters only [3]. Whereas in the mixed method of [6], [18], the stresses and
hardening parameters are approximated by piecewise constant functions and the
displacements by piecewise linear functions, we employ piecewise linear functions
for both the stresses and the hardening parameters. The stress approximations consist
of Watwood-Hartz equilibriated triangular elements [8]. The finite element method
will produce approximations to the stresses successively at a finite number of time
levels. At each time level one has to solve a constrained nonlinear optimization
problem. We also discuss the Lagrange multipliers method with slack variables
[9], [7]. [21] for solving this problem. With a particular choice of finite element
spaces, the optimization problem is solvable.

Numerical tests for the method proposed were performed for thin perforated
strips of the strain-hardening material subjected to the uniform tension. The stress
applied was increased monotonically from the elastic region of loading to values
producing an impending plastic flow. The numerical results are in a good agreement
with the experiment [10].
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2. BASIC RELATIONS

Let Q be a polyhedral bounded domainin R", n = 2, 3, x = (x4, ..., x,) a Cartesian
coordinate system. Denote by I = [0, T], 0 < T< o0, a fixed interval of time.
Let R, be the space of symmetric n x n matrices (stress tensors). A repeated index
implies summation over the range 1, ..., n.

Assume that a yield function f: R, — R is given, which is convex, continuous in R,
continuously differentiable in R, — Q, where Q is a subspace of dimension one,
and

(2.1) f(26) = |A|f(c), VAeR, VoeR,.

Note that such function satisfies also the condition
(22) 2
ij

For instance, we can employ the von Mises yield function f(¢) = (a7;07})"/2.
Let us introduce the following notations:

”T”R = (vy7i)'%,

S ={r:Q >R, 1,;€ [}Q), Vi, j},

I us—(j e o)

=S x IXQ).

<C, i,j=1,...,n, C=constant, YoeR, — Q.

Let
Q=r,ur,,

r,nr,=90

where I', and I', are either empty or open in 0Q.

Assume that a (reference) body force vector F° e [C(2)]" and a (reference) surface
.traction vector g° € [IX(I',)]" are given. If I', = 0, the total equilibrium conditions
for F°, g° are satisfied.

Let the actual body forces and surface tractions be
F(t,x) = 9() F(x) in Ix Q,
g(t,x) = 9(t) g%(x) on I xTI,.
Here y: 1 - R is a non-negative function from C*(I) such that
(2.3) i, >0, »)=0, Vie[0,1],
(24) y(0) € [r(ta-1), v[8)] 0 9(ta-1) < 9(8) s
v(t) € [(ta)s (ta-1)] 3F 9(t) < 9(ta-1)
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holds in any subinterval I, = [t,-1, f,] of all time discretizations which will be con-
sidered in the following.

For any t € I we introduce the set of statically admissible stress tensors

E(t) = E(F(), (1)) = {a e s,j oe(v) dx =f Fi(t) vy dx + L g4i) v.ds, VUGV}

Q Q
where

V={ve[H(Q)]", v=0o0nT,},
eij(v) = 1 ai + ai).
2 6)(1 axi

F(r,0) = f(r) — o,
B = {(r,a)eR, x R, F(r,x) <0},
P = {(r,a) e H, (t(x), {x)) € B a.e. in Q},
K(t) = (E(t) x X(Q))n P, tel.

Let the elasticity coefficients 4,;,€ L*(Q) be given (i,j,k, I =1,...,n) such
that

Let us define

Ajjg = Ajyy = Ayyy; ae. in Q
and 3¢, > O such that

Aijkzﬁijgu 2 Cotij€ij » Vee R,
holds a.e. in Q.

Moreover, let positive constants » € R and «, € R be given.
We introduce the following bilinear forms for 6,7e H, 6 = (0, ), t = (r, p):
(6,8 = gyt + af, |t = <&, DV,

(8, %) = j G tydx, |6 = (@ 007,
(7]

{6, %} =J‘ AjjuiTia dx + xJ' af dx,
Q

ol = (o032

Notice that the norms | - || and |||-||| are equivalent. Denote by ||+ |, .o the norm in

> Q).
Let Cy(I, S) be the space of continuously differentiable mappings 7:I — S such
that 7(0) = 0. Let Hy(I, S) be the closure of Cj(I, S) with respect to the norm

oT 2 \1/2
(j de dt) )
0 N

Similarly, let H'(I, I?) be the closure of C*(I, [*(Q)) with respect to the norm

dt
(1 (v [3,.) )
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Definition 2.1. A weak solution of the plasticity problem with strain-hardening
is a pair of functions
6 = (0, 0) e Hy(I, S) x H'(I, [?)
such that
«0) = oy, 6&(f)eK(r)
and

(2.9) {d%’) - 6(t)} >0, V&= (r,0)eK()

holds for a.e. tel.

Remark 2.1. The existence and uniqueness of a weak solution has been discussed
in [2] for 02 = I', and in [1] for 0Q = T,

3. FINITE ELEMENT APPROXIMATIONS

In the present section, we will extend some results of Johnson [11] to the case of
plasticity with strain-hardening, using also several procedures published in [1]
and [6] and following the paper [3].

We shall use the following approximations of the set E(t):

(3.1) E(t)y=xt) + E), 0<h=<hy<o

where y € Hy(I, S) is a fixed stress field such that y(t) € E(t) a.e. in I and Ej < E(0, 0)
is a finite-dimensional subspace of self-equilibriated stress fields. Then E,(f) < E(1).

Let V, = I}Q) be a finite-dimensional subspace, an approximation of I*(Q).
Assume that ¥V} contains constant functions.

Define
Ky (t) = (Eft) x V)n P
so that K,(1) = K(1).
We introduce a discretization of the time interval as follows: Let N be a positive
integer, k= TN, t,=nk, n=0,1,..,N, I, =[t,_y, 1], 2" =1@1,), ot"=
= (1" — ")k

We define the following approximate problem of (2.5):
Definition 3.1. Find a &}, € K,(t,) such that
(3.2) {06t — 61} =0, VieKyt), n=1,..,N,
o = (0, ) .
Remark 3.1. Since 8y, minimizes the strictly convex functional
(33) Hlel]? = {8, 0"}

over the closed convex set K,(t), there exists a unique 6y, provided K,(t,) + 0.
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The convergence of the finite element approximations is proved in the following
theorem:

Theorem 3.1. Let us denote
o(h, k) = inf l6 = 2ia)

where
H={t=2,..,1, "eK,,), n=1,..,N},

N
lall 2y = Z kla"|®)'*, a=(qa%...q"), q"€H.

Assume that if I', £ 0, then there exists
2° € [L2(Q)]" n E(F°, ¢°).
Then there exist such positive constants C and k, that for k < ky,

(34) max 8" = 6ul = C((e(h, K)) + VK).-

Proof. See [3], Th. 2.1.

Remark 3.2. Construction of a fixed stress field ¥°: Let F° be continuous in Q.
Then there exists
eSS L))
such that
divyl= —F%in Q
(x* can be obtained by integration).

Let the vector-function g® — y!.v, where v denotes the unit outward normal,
be piecewise linear on I'; with respect to a simplicial partition of I',. Then there
exists a simplicial partition of Q and y? € EJ, where EJ consists of piecewise linear

stress fields such that

ov=9g"=x'.v.

Setting x° = x' + x?, we obtain
10 e [L7(@)]",
divy® = —F° in Q,

0

X.v=yg°

on T

o

which implies x° € E(F®, g°).

4. EQUILIBRIUM FINITE ELEMENT MODEL
IN TWO-DIMENSIONAL PROBLEMS

In the following we shall consider the problems in R? and evaluate the quantity

¢(h, k) introduced in Theorem 3.1 for a piecewise linear finite element model assuming
a certain regularity of the exact solution &.
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We assume that the reference body forces F® are constant and the reference
surface tractions g° are piecewise linear on I',,.

Let us consider a regular family {7}, 0 < h < h,, of triangulations of the
domain Q (i.e., there exists a positive 9, such that all angles in all triangulations are
not less than 9,). Let i denote the maximal length of all sides in 77,

We employ the self-equilibriated triangular block-elements of Watwood and
Hartz [8]. The model consists of triangular block-elements, each of them being
generated by connecting the vertices of the triangle K with its centre of gravity.
On each subtriangle K; three linear functions — components of a self-equilibriated
stress tensor — are defined. The stress vector has to be continuous when crossing
any common boundary between the subtriangles.

Note that under the assumptions on F° and g° the auxiliary function x° can be
chosen piecewise linear with respect to the triangulation 7. Then x(t,) = ¥(t,) x°
is piecewise linear as well. In the sequel, we assume that each 7, of the family {77}
of the triangulations is generated by a regular refinement of .

Let us define

M(K) = {731 = By + Bax1 + Bsxa, T2z = Ba + Bsxy + BsXa,
Tyz = T2y = Bz — BeXy — Baxa, ﬁ€R7} 5
N(K) = {r = (z', 7% %), ©' = 1|x, e M(K), T(<) + T(z'*") =0,
T(c) = {Ti(x), T2(2)} , Ti(r) = v} s
Ny(Q) = {r€ S, t|xeN(K), VK e T, T(7)|x + T(t)|]x- =0 on KnK'};
E) = Ny(Q) n E(0,0) = {teN,(Q), t.v=0 on I,}.
An a priori error estimate is presented in the following theorem.

Theorem 4.1. Let the solution & = (o, «) be such that for 6o =0 —y and o
and for any K e 7,

St“IP loo()lic2xons = 0]z rexgonsy <

€.

SUIP le@ sy = [ot|eeamgey < ©, i=1,2,3.
te.

Then there exist constants C and k, such that

(4.1) _max N||&" — & < C(h + k)
holds for k < ko, h < h,.

Proof. see [3], Th. 3.2.

Remark 4.1. For 7} € E; we obtain
(42) (" + 10, B) € P> B(a;) = f(x" + 75) (ay)

at all vertices a; € K; = K of all triangles K e 77,
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Thus we have also nonlinear constraints for the parametrs of " and 7g. In the
case of von Mises’ yield function f these constraints are quadratic.

Remark 4.2. (An algorithm for solving the approximate problem (3.2).) At each
time level we have to minimize the quadratic functional (3.3) with the nonlinear
constraints (4.2) and with linear constraints (equations) which guarantee the con-
tinuity of the stress vectors across the interelement boundaries. We employ the initial
values

a0) =0,

a{0) = o,
and for the initial values of the next time step we take the values calculated at the
previous one.
The choice of a suitable algorithm of nonlinear programming is discussed in the
next chapter.

Remark 4.3. In three-dimensional problems, Theorem 4.1 can be proved if we
use tetrahedral block-elements [12].

Remark 4.4. The convergence of the approximations can be proved without any
regularity assumptions (see [3], Th. 4.1).

5. NONLINEAR OPTIMIZATION PROBLEM
Using Remark 3.1, for each time level we can define the following nonlinear
optimization problem for the plasticity with strain-hardening:

Definition 5.1. For each time level ¢, find a minimum of the functional
N,

(5.1) J(S) = ¥, 1,1, 5%)
=1

with linear constraints (equations)

(5.2) NyX Ny Ngx 1 Ngx1

(4 {s} = {”}
and with nonlinear constraints (inequalities, cf. (4.2), 2{S%) = 0)

(5.3) 9N, x 1 9N, x 1
{7} = {/(SD)}* 2 0

where

S = (S}, S*)" are parameters,

J,f(81,8%) = L(J' A0 dx + %J. o? dx} - {J- Ayjoion dx + xJ' aoz""‘dx}
2 Uk K K K

— the functional defined on one block-element,
[A] - the matrix of linear constraints,
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{R} — the vector of external applied stresses,
a(S*) — the linear approximation of the hardening parameter,
f(S}) — the approximation of the yield function,

Ng  — the dimension of the problem,
N, — the number of the linear constraints,
N, — the number of the elements in the model.

The constrained nonlinear programming problem (5.1)—(5.3) is for each t, cqui-
valent to the problem of finding the saddle-point of the Lagrangian with slack
variables v and with multipliers 2, 7, [7], [13]—[15],

(54) L(S,v,2,7) = J(S) + {47 {[4] {Si} — {R}} +
+{AT{e?} = {17 - {0}
In this form the constrained problem (5.1)—(5.3) is formulated as an unconstrained

one with S, v, A, 1 variables. Many algorithms have been frequently investigated in
the mathematical programming theory, and their global convergence theorem was

proved [9], [13]—[15], [17], [19], [20].
In this paper we have used the Newton-like type algorithm [9], [13]—[15], [19].
Consequently, the stationary point of (5.4) can be found by the nonlinear equations

(5.5) L _qo, E_o, L_y L_,
oS ov oA o1
Using the Newton-Raphson method we have
(5.6) XM= Xk — [V2L/x¥)] ™ VL(x")

where
XKL = (S G QM M s a solution for the (k + 1)st step,

V2L(x*) — the Hessian of the Lagrangian at the point x*.

The problem (5.6) can be written in the form of the linear equations
(5.7) VL(x*) + V2L(x*) (x**! — x*) = 0.

The choice of an efficient algorithm for the solution of large linear systems (5.7)
is of great practical importance. We have used the frontal algorithm solver for the
semidefinite matrix [16]. Approximately four to seven iterations were required for
finding the solution of (5.5).

Remark 5.1. From the physical point of view and using (5.5) we see that the
solution 1 = 0, v + O satisfies in the elastic region and 1 + 0, v = 0 in the plastic
region.
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6. NUMERICAL RESULTS

Numerical tests of the method proposed were performed for thin perforated
strips of a strain-hardening material subjected to a uniform tension [10] (Fig. 1).

The results have been compared with the experiment. The material and geometrical
parameters considered were E = 68 700 [MPa], Poisson’s ratio v =02, x =

Ll

L

036

HEEREEEEE
P

Fig. 1. Perforated tension strip.

= 0:555,0—3 [MPa] !, a, = 238 [MPa], = 0:003 [m], L = 0-2 [m],d = 01 [m].
The applied stress was increased monotonically from the elastic region of loading
(P = 104 [MPa]) to values producing an impending plastic flow (P = 117, 130, 144,
158, 172 [MPa]). Due to the symmetry of the problem we can restrict the solution
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to a quarter of the strip only. The mesh is displayed in Fig. 2. It was represented
by 28 triangular block-elements. The total number of parameters used for nonlinear
optimization problem was 1204 with the frontwidth 84.

The average computer time required for the solution of the system of linear equations
was 2:43 min. CPU (ICL 2958 computer). The total time was about 60 min. The ulti-

AN

3 VLV, NI L

Fig. 2. Finite element mesh, Fig. 3. Progressive yielding of perforated strip
(numerical and experimental). Values at the
centroid of elements: ® — 117 MPa, 0 - 130 MPa,
A - 144 MPa, 0O - 158 MPa, + - 172 MPa,

— — experimental.

mate elastic stress was calculated to 117 [MPa]. The measured value of this stress
was 109 [MPa]. The first yielding appeared in the element at the root of the notch
(node number 3). The propagation of the elastic-plastic points is shown in Fig.3.
The figure includes the experimental results due to Theocaris and Marketos [10].
The results obtained by the present method are in good agreement with the experi-
ment. It may be seen that a slight difference results from the coarse mesh used and
the difference of load and boundary conditions between the calculation and the
experiment.
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7. CONCLUSION

The theory of variational inequalities applied to plasticity provides a firm basis
for the theory and for the numerical algorithms. In the present paper the equilibrium
finite element model has been used.

This new analysis has opened up great possibilities for better understanding of
nonlinear models of the plastic bodies used in practice.
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Souhrn

VARIACNI NEROVNICE V PLASTICITE SE ZPEVNENIM DEFORMACI —
UZITI ROVNOVAZNEHO MODELU METODY KONECNYCH PRVKU

ZDENEK KESTRANEK

V ¢lanku je aplikovana priristkova metoda koneénych prvka k nalezeni numerického feSeni
problému plasticity se zpevnénim deformaci. K aproximaci pole napéti je uZito rovnovaznych
trojuhelnikovych prvku s linearnimi funkcemi podle Watwooda a Hartze. Pole parametru zpev-
néni deformaci je uvaZovano rovnéZ po Castech linearni. K feSeni vysledného nelinearniho opti-
maliza¢niho problému s vazbami je uZito metody Lagrangeovych multiplikatortt s pridatnymi
proménnymi. Ziskané numerické vysledky jsou porovnany s experimentem.

Pe3ome

BAPUALIMOHHBIE HEPABEHCTBA B ITJIACTUYHOCTU
C MEXAHUYECKUM YIIPOUHEHWEM — IIPWJIOXEHUE PABHOBECHOW
MOJEJIM METOJA KOHEYHBIX 3JIEMEHTOB

ZDENEK KESTRANEK

B cTaTht NPUMEHSETCS METOJ INPUPALICHUS KOHEYHBIX 3JIEMEHTOB K ONPEJESICHHIO YHCIEHHOTO
pelieHus npobaeMbl IIACTUYHOCTH C MEXAHMYECKMM YNPOYHEHHeM. J1si annpoKCHMALHMH MOJIs
HaIpPsKEHUH MCTIONB3YIOTCS PAaBHOBECHBIE TPEYTOJIbHBIC 3JIEMEHTHI C JIMHEHHBIMU (QYHKLMSIMH TI0
BotByay u Xapuy. ITone napameTpa MeXaHM4Ye€CKOIO YIPOYHEHHs TAaKXKe CYUTAETCS KyCOYHO JIMHEH-
HbIM. JUJIsl peIeHus] Pe3yJbTUPYIOLICH HEIMHEHHOM NpoOJIeMbl ONTHMH3ALUK C OPTaHHUYEHHSIMU
MCIOJIB30BaH METOJ MHOXMTeneil JlarpaHxka C JONOJHUTEIbHBIMH NepemeHHbiMH. [TpoBeneHo
CPaBHEHHE TOJTYYCHHBIX YHCICHHBIX PE3YNbTATOB C IKCIIEPHMEHTOM.

Author’s address: RNDr. Zdenék Kest¥anek, CSc., V§potetni centrum CKD Praha, Na Harf&
7, 190 02 Praha 9.
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