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THE DISPERSION OF GAS EXHALATIONS AND THE PROBLEM
OF DISTRIBUTION OF NEW SOURCES ON A DRY HILLY SURFACE

TrRAN DIEN HIEN

(Received November 10, 1984)

Summary. The process of gas exhalations in the lower layer of the atmosphere and the problem
of distribution of new sources of exhalations in a hilly terrain are studied. Among other, the
following assumptions are introduced: (1) the terrain is a hilly one, (2) the exhalations enter
a chemical reaction with the atmosphere, (3) the process is stationary, (4) the vector of wind
velocity satisfies the continuity equation. The mathematical formulation of the problem then is
a mixed boundary value problem for an elliptic equation with the given distribution on its right-
hand side. It is shown that the problem has a unique ‘“‘very weak’’ solution which is sufficiently
smooth if so are the coefficients of diffusion and the components of the wind velocity vector.
Further, the problem of distribution of new sources of exhalations is discussed and a method of
calculation of its solution is suggested.

Keywords: mixed boundary value problem; elliptic equation; weak solution of; gas exhalation,
dispersion of; sources of exhalation, distribution of

AMS Subject class.: 353 25, 76 N 99.

INTRODUCTION

The main goal of this paper is to study the following two problems: 1. Existence,
unicity and regularity of the “very weak’ solution of the boundary value problem
corresponding to the dispersion of gas exhalations over a dry hilly surface. 2. The
(optimal) distribution of the source of exhalations on a dry hilly surface.

The problem of dispersion of gas exhalations over a flat surface was considered
by many authors (see e.g. Berliand [ 1] or Sutton [10] etc.). The problem of a reason-
able distribution of new sources of exhalations on a flat surface was considered by
Marchuk [7] and Berliand and coll. [2]. Hino in [4] and Berliand in [1] considered
the problem of dispersion of exhalations over a hilly surface (under some simplifying
assumptions). In [9] the author considered existence, unicity and regularity of the
solution of the boundary value problem corresponding to the process of dispersion
of gas exhalations over a general wet hilly surface. As to the author’s know ledge,
the problem of dispersion of exhalations and the (optimal) distribution of new
sources of exhalations on a general dry hilly surface have not been considered as yet.
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Under the assumptions formulated in section I, the process of exhalation dispersion
corresponds to the mixed boundary value problem for the elliptic equation of the
second order with the Dirac distribution on its right-hand side. So we must seek
the solution of the boundary value problem in a “very weak’ sense (see Definition 3).

Existence, unicity and regularity of the “very weak’ solution are proved in
Section II.

Section III deals with the problem of the (optimal) distribution of new sources
of exhalations.

I. FORMULATION OF THE PROBLEM OF DISPERSION OF EXHALATIONS
OVER A DRY HILLY SURFACE

The general continuity equation has the form

(1) gf — div(K grad ¢) + (v, grad ¢) + oc = f(t, &),
t

where ¢ = ¢(t, é) is the concentration of the exhalations,

k.0 0
K={0 k, 0
0 0 Kk,
is the matrix of the coefficients of turbulent diffusion, v = [v,, v,, v,] is the vector

of the wind velocity, f = f(t, 2,‘) is the density of the given source of exhalations
and (., .) is the inner product in R3.

Assume that during the process of dispersion of exhalations the following con-
ditions are satisfied:

1. The hilly earth surface over which the exhalations spread is described by
a twice continuously differentiable function z = z(x, y).

2. The exhalated gas reacts chemically with the atmosphere. Its loss due to the
chemical reaction is characterized by a non-negative constant o.

3. The source of exhalations is situated at the point &, = [0, 0, h], where h
is its effective height, and Q is its emission for a time unit. Thus the right-hand side
of the equation (1) is given by Q. d,, where d,, is the Dirac distribution with its
support in &,.

4. The process is stationary, i.e: ¢ = ¢(x, y, z).

5. The surface z = z(x, ) consists of two parts P; and P,, where P, corresponds
to all water surfaces and bogs, part P, corresponds to dry earth surface. Experi-
mentally it was shown that the wet surface P; absorbs almost all exhalations, while
on the dry part P, total repulsion takes place. Mathematically it means that

o(x, 5, 2)|p, = 0
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and

0
x =nxkx?£+nykya—c+nzkz% =0,
ov P2 0x dy 0z p,

where n = [n,, n,, n,] is a vector of the external normal to the surface z = z(x, y):
6. The wind velocity satisfies the mass conservation law:

0 0 0

Qo O, 0o o

ox 0Oy 0z
On the earth surface, the vector of the wind velocity lies in the tangent plane to the
surface z = z(x, y), i.e.

n, + no, + nv, =0.

7. The concentration of exhalations vanishes in the infinity, i.e.

lim  ¢(x,y,z)=0.

|x]+|y|+z=
z>0

Under these assumptions we can formulate the corresponding boundary value
problem
— div(K grad ¢) + (v grad ¢) + gc = Q9,(¢),

o _y
oV p,
C“,l = 0,

lim  ¢(x,y,2)=0.

|x]+|y|+z= 00
z>0

II. EXISTENCE, UNICITY AND REGULARITY OF THE SOLUTION

We consider our boundary value problem in the bounded domain
Qc{é=[x,y,z]eR z > z(x, y)}.

Suppose that the boundary 0Q is twice continuously differentiable and put I', =
= (02 n P,)° and I'; = dQ\T,. (Both the sets I', and I'y are open in 0Q).

In the domain Q our boundary value problem is the mixed boundary value problem
in the form

(2 Le = —div(K grad ¢) + (vgrad ¢) + oc = Q6,(¢) in @,
(3) C‘rl = 0 N
%‘

=0.

(4)

Remark. Physical considerations make us choose © in such a way that, roughly

av‘rz
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speaking, (i) it adheres to the earth surface (i.e., some non-void part of 3 is described
by the function z = z(x, y); (ii) it contains the point £, where the source of exhala-
tions is situated; (iii) it is sufficiently large so that we can put approximately ¢ = 0
on the part of 0Q which does not adhere to the earth surface.

By the symbols W*?(Q) and W*?(Q) we denote the Sobolev spaces (see [3]).
Moreover, put

U ={ueC*Q):supp (u) = QuTI,}

and denote by V the closure of the set ! in the space W' ?(Q). Denote by 2(Q)
the set of infinitely smooth functions on @ such that supp (1) = Q.

Definition 1. Let Q be a space such that 2(Q) is dense in Q and the imbedding
of Vinto Q is continuous. Denote by Q* the dual space to Q. We say that a function
ue Wh*(Q) (or ue V) is a weak solution of the differential equation

3 3 Fi
() au==% L (a2 ¥ 5, 2y a@yu =y
i,j=10x; ox;) =1 0x;

with f e W~ 2%(Q) (or of the mixed boundary value problem

(6) Au = f,

(7) ulrx =0 N

(8 L,

ovr,

with the right-hand side f € Q*, respectively) if for allve W'*(Q)(ve V) the relation

9) ((u,v))=i,§ La ou o +ijgbialv+Jnauv=<f,u>

ij
= 0x; 0x; i=1 X;

holds, where the symbol {. ,.> denotes the duality between W~ "*(Q) and W'*(Q)
(Q* and Q, respectively).

Proposition 1. Let the surface I'y have a positive measure. Then the norm in the
space V is equivalent to the norm

Jule = (3 [Pl o).
Proof. See [5] or [8], Theorem 1.9, Chapter 1.

Proposition 2. Let Q be a domain with a twice continuously differentiable bound-
ary and let Q, = Q, = QU T, where I is any open part of 0Q. Further, let the
following conditions be satisfied:

(i) There exists y > 0 such that
3
v nl* = ¥ ai&)niny < v|nf?
1,]=
for a.e. £ R® and every n = ['11., N2, 173] * 0.
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(ii) The functions a;; have Lipschitz derivatives of the first order and b;, a are
Lipschitz on Q.

Then every weak solution u of the equation (5) with the right-hand side f € Lz(Q)
which on I is given by some ug from W»2(Q,), i.e.

Au =f’
U = Ug, UpE W2'2(91) s

belongs to W?*(Q,), while for every subdomain Q, < @, < Q, U T there exists
a constant M = M(Q, Q,) such that the following inequality holds:

lullweee, = M(2y, 22) (|1
Proof. See [6].

L@y F [#]|ia@n + [uolwe ) -

Theorem 1. (Existence and unicity of the weak solution.) Let the following con-
ditions be satisfied:
(i) There exists a constant y > 0 such that the inequality

y | £ KO0 + KPn} + k(&) nZ < yln?

holds for every n = [n,n,n.] + 0 and a.e. &€ R>.

(i) ky, ky, k, have Lipschitz derivatives of the first order and v, v,, v, are
Lipschitz functions on Q.

Then the mixed boundary problem

(10) Le =f,

(11) ¢r, =0,

(12) e _o .
avfrz

has a unique weak solution ¢ from V for each right-hand side f € L,(2Q).

If Q, is a subdomain such that 0Q; N 0Q < I'y, then c belongs to W2'2(Ql) and
for every subdomain Q, = @, < Q, U {0Q, N 8Q} there exists a constant M =
= M(Q,, Q,) such that

(13) lellw22n < M(21, Q2) (|f Loy + el @) »
where the constant M(Qy, Q,) is independent of f.

Proof. In the special case of the operator L, the relation corresponding to (9)
has the form

((e,w)) = j . (K grad ¢, grad w) + J'

Q2

(v, grad c) w +J‘ acw =J. fw.
Q Q

To prove existence and unicity of a weak solution in ¥ by means of the Lax-Milgram
theorem (see e.g. [8], Lemma 3.1, Chapter 1) we need to prove continuity of the

261



bilinear form, which is trivial, and of validity the inequality ((w, w)) = «|w]|} for
all we V(with some a > 0).
Observe first that

J‘ (v,grad w)w = 1'[ (v, grad (w?)) = 1J v,w? dS — 1.[ w2divvy = 0.
P 2)a 2 Joo 2]o

Here we used the assumption 6 (Section I) and the fact that w = 0 on I'y. Further,
[a ow? = 0 by the assumption 2 (Section I). So we finally obtain

((w, w)) = Jﬂ (K grad w, grad w) = y~!|w]; .

The inequality (13) follows from Proposition 2.
Analogously, we get the following result:

Theorem 1*. Let the conditions of Theorem 1 be satisfied. Then adjoint problem

(10%) L¥*c* = — div(K grad ¢*) — (v grad ¢*) + oc* = f*,
(l 1*) CT;—-[ =0 ,
*
(12*) L
v r,

has a unique weak solution c¢* from V for an arbitrary f* e L,(Q). If Q,, Q, are
the subdomains from Theorem 1, then the solution ¢* € W**(Q,) and the inequality

(13%) le*lwezg@n < M(R1°22) ([/*]Lan + [¢*

holds, where the constant M(Q,, Q,) is independent of f*.

Lz(Ql))

Remark. According to Theorem 1*, the Green operator

G*: Ly(Q) » Vo W22(Q,)
is defined by the relation
G*f* = c*,

where ¢* is a weak solution of the problem (10%)—(12*).
Let Q, be a subdomain of Q such that ¢, e Q, = Q, = Q. Denote

W(Qo) = W*%(Q,) n Ly(Q),
introducing the norm
lullwan = [ullw22@0 + 4] e -
Definition 2. The boundary value problem is called W-correct, if for every

f € Ly(Q) there exists one and only one weak solution u from W(£,).

Definition 3. Let the boundary value problem

) =y L (aa_'f) _y M) | ey =g,

ij
iLj=1 0x; Ox;) i=1 0x;
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(7%) v, =0,
%
(8) @

oV r,
be W-correct. The function u € L,(Q) is called a “very weak’ solution of the mixed
boundary value problem (6)—(8) with the right-hand side fe W*(Q,), if for
every f* e L,(Q) the inequality
(14) (u, f*) = <f, G*f*>

holds, where the symbol (-, *> means the duality between W*(Q,) and W(Q0)
and (-, *) is the scalar product in L,(9Q).

=0

Proposition 3. If Q is a domain with a Lipschitz boundary, then the imbedding
of the space W*2(Q) into C(Q) is continuous.

Proof. The assertion follows as a special case from the imbedding theorem —
see | 8], Theorem 3.8, Chapter 2.

Lemma 1. The Dirac distribution &z, belongs to W*(Q,).
. Proof. The assertion follows from the continuity of the imbedding of W?%(Q,)
into C(Q).
Lemma 2. Define a function
3
n
(15) o= 5 &P {—=n?& = &|%}
for every ne N and & € R®. Then the sequence of functionals F, € W*(Q) defined as
(16) (Fp 0y = J 18 (&) dE, @ eW(Q)
Q

converges weakly* to 8, in W*(Q,).

Proof. Let ¢ € W(Q,). For ¢ > 0 let A > 0 be such that B = B,(&,) = Q, and
|o(&) — @(&,)| < & for £ e B. Tt is easy to check that f, tends to zero uniformly on
QN B; this together with the Lebesgue Dominated Convergence Theorem yields
that

lim f&) p(é)dE =0.

n—ow O\B

Using the fact that lim |, f, = 1 we obtain that

n—oo

lim j £.42) 08 de — o(e0)| <o
n—oo B
Combining these two results with the definition (16) we easily obtain

lim (F,, > = ¢(&,) = 0(9) .

n—w
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Theorem 2. (Existence and unicity of the “‘very weak” solution.) Let the con-
ditions (i)—(ii) from Theorem 1 be satisfied. Then the mixed boundary value
problem (2)—(4) has a unique “very weak” solution c € Ly(2Q).

Proof. Let {f,} be the sequence (15). According to Theorem 1, for every ne N
there exists a weak solution ¢, of the problem

(17) Le, = Qf,on Q, ¢, =0, Ocn/av’,.z =0.
Since ¢, is also a “very weak™ solution of the problem (17), we have (for every
ue N and f* € L,(Q))
(18) (e f*) = <QF,, G*f* ,
where F, is defined by (16).
From the estimate
(19) [<QF,, G¥f*)| < M||F,|

from (18) and from the boundedness of {F,}s; which follows from Lemma 2 we
obtain

(20)

W*(20) ”f*.l L2(2) »

le.]l L) £ M||F,|

W*(20) é Ml .

So we can find a subsequence {c,, } converging weakly in L,(®) to some ¢ € L(<Q)
which is a “very weak” solution of our problem (2)—(4). The uniqueness of the
“very weak’ solution ¢ follows from Definition 3.

Proposition 4. Let {(p:‘} be a sequence of distributions such that ¢¥ — @* in
2'(Q) and

IIA

107903 | Ly < €

for every ne N. Then DP¢* e L,(Q) and
1DPo*||,,20 < C.
Proof. See [8] — Prop. 2.4, Chap. 2.

Theorem 3. (Regularity of the “very weak” solution up to the boundary.)

Let the assumptions (i)—(ii) of Theorem 1 be satisfied. Then the “‘very weak”
solution ¢ belongs to W**(Q,) n W"*(Q,) for all subdomains Q, and Q, such that
Q,cQur;, 3, cQurl,and Q,nQy=0,n 0y =0.

Proof. Let ¢ be a “very weak” solution of the problem (2)—(4) and Q; = @, <
cQuTy, 2,nQ,=0. Choose Q] such that @, « QU {0Q| N T} = Q] =
cQurl, QinQ,=0.

Let ¢, be a weak solution of the problem (15)—(17). According to Theorem 1,
there exists a constant M = M(Q,, Q7) independent of n such that the inequality

”cn”Wl'z(ﬂx) = M(Ql’ Q;)(”fn”Lz(Ql') + “Cn”Lz(Ql’))
holds for every n.
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This estimate together with the boundedness of both {f,} and {c,} in L,(Q})
(See Lemma 2 and the estimate (20)) yields the weak convergence of some sub-
sequence {c, } in W?2(Q,) to some d € W?*(Q,), which cannot differ from cl,,.
Thus ¢|o, € W22(Q,).

Now, let , c @, c QuUT, and Q,n Q, = 0. Choose Q) such that O,
cQuio,nl,}cQ),cQurl, and Q5 n Q, = 0. Further, let ¢ be an in-
finitely differentiable function in Q such that

_ 1 for Ce,
8(‘5)‘{0 for ¢ Q).

From the coerciveness we obtain
(21) [ecallir 2y < ¥((2c, £c,)) <

= yl((ec,,, sc,,)) - ((C,,, 820,,))] + Vl((C,,, gzcn))l .
The definition of the weak solution gives
(22) ((cas 2| = [full i len]aco)

for every ne N.
An easy computation yields

(23) I((ze. 2e)) = (e 8Ze))| = M, e, |Euca) -
From (21)—(23) we obtain

”“’n”fw-Z(m = anrrHLz(ozc) ”Cn”Lzm) + Ml”C"”iz(Q)'

Reasoning as in the case of Q; we conclude c|,, € W3(Q,).

Proposition 5. Let the assumption (1) from Proposition 2 be satisfied. Let, further,
the functions a;; have Lipschitz derivatives of the order k and functions b; a
Lipschitz derivatives of the order (k — 1) in Q (for k = 1).

Then every weak solution u of the equation (5) with fe W*™"*Q) belongs to
W 1-2(Q,) for any Q; = Q, = Q. There exists a constant M = M(Q,) such that

[ullwics 1.20,) < M(22y) (”“"Wlﬂ(m + | lwe-120)
holds, where M(Q,) is independent of f.
Proof. See [8], Theorem 1.2, Chapter 4.

Theorem 4. (Interior regularity of the “very weak” solution.)

Let the condition (i) from Theorem 1 be satisfied. Let, further, the functions
ks, ky, k, have Lipschitz derivatives of the order k and the functions v, v, 0,
derivatives of the order (k — 1) on @ (k 2 1).

Then the “very weak” solution c belongs to W**1%(Q,) for every subdomain
Q3 Q;cQ— Q,.

Proof. Let Q5 be a subdomain such that Q; = Q) =« @, <« Q — @, and let ¢,
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be a weak solution of the problem (15)—(17). According to Proposition 5, there
exists a constant M = M(Q3, Q}) such that the inequality

(24) leallwes 1.2 < M(R3, 25) ([fullwe-r2@75) + [enllwr )

holds for every n. An analogous consideration as in the proof of the preceding theo-
rem leads to the estimate

(25) leallwiasn = Y fullaca llen
Now (24)—(25) and Proposition 4 imply our assertion.

+ My, -

Corollary. If the coefficients K and v are infinitely differentiable, then the “very
weak™ solution c is infinitely differentiable with the exception of the point where
the source is located.

Proof follows from Theorem 4.

III. PROBLEM OF DISTRIBUTION AND OPTIMAL DISTRIBUTION
OF NEW SOURCES OF EXHALATIONS

Let Q be the domain described at the beginning of Section II. Let D, D;,, .
be domains in R? such that the sets D = {¢ =[x, y, z] e R*; [x, y]e D,,, z

= z(x, y)} and D" = {¢ = [x, y, z] e B®; [x, y] € D, z = z(x, V)} (i=1,2,. k}
are contained in I',.

Our aim is to locate in D n sources of exhalations (chimneys of factories, power
plants etc.) with given intervals <h ;» H;» of their heights above the surface and given
emissions Q;, in such a way that in each domain D! the value of some exhalation
functional ®; (for example, the quantity of exhalation in the domain [Diy X
x (0, )] N @) does not exceed a given value N; (i = 1, ..., k) (N; have the meaning
of hygienic norms in the domains D’. The domains D* stand for check points, as e.g.
densely populated areas, sources of drinking water, agricultural land etc.)

Denote by C the set of all admissible points where the mouths of the chimneys
can be situated, i.e.

(26) C=C, xCyx...xC,,
where
C,={¢ =[xy z]; [x,y] €Dy, ze<z(x,y) + h;, z(x,y) + HD} n Q.
If the sources are situated at a point @ = [&,, ..., £,] € C, then the total concentra-

tion ¢y = ¢; + ... + ¢, is computed as the solution of the mixed boundary value
problem

(27)

where

(28) fo=2 01,.

Dn

{Lce = —div (K grad ¢o) + (v, grad ¢o) + oco = fq,
A¢elr, = 0, (dce/dV)|r, =0,
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Let f{* be the function from L,(Q) representing the exhalation functional @, i.e.,

(29) <¢.~,v>=(fi*,v)=J'f;"v, i=1,..,k
2

for every v e L,(2Q).

The problem, which was roughiy described above, can be formulated mathematical-
ly as follows: We seek for all points © € C such that the “very weak’ solution cg
of (27) satisfies the inequality

(30) (ff,ce) <N;, i=1,..,k.

Define S; = C as the set of all points @ for which (f}, cg) < N;. The solution of
our problem is performed in two steps:

Step 1. Calculate (f;°, o), OeC,i=1,...,k

Step 2. Comparing the obtained values with the corresponding N; determine the

sets S;,, i =1,..., k.
k
One of two possibilities can occur: Either S = (1 S; +# 0 — then each ©® €S
i=1

solves our problem — or S = 0. In this case there is no solution of the problem.

Remark. If S = 0 then we must somehow lessen the emissions Q; to make our
problem solvable.

To avoid the calculation of the solution ¢4 at each point © € C, which we need
in Step 1, we use the duality method (see e.g. [7]). Using Theorem 1 and the defini-
tion of the “very weak” solution we get

Theorem 5. (The adjoint expression of the exhalation functional.) If ¢t is a weak
solution of the adjoint boundary value problem

{L*c?‘ = —div (K grad ¢}) — (v, grad ¢f) + ocf = fI,

(31) cﬂr1 =0, 6c?/6vl,—z =0,

then the value of (f,-*, c@) can be calculated from the relation

(32) (fF co) = for€f>s i=1,2,. k.

The continuity of ¢} in C ; together with the definition of fy enable us to calculate
o €FY as Zn Q; cf,,(ﬁj). So this method reduces Step 1 to the slution of k boundary
value problje:r;s for ¢f, i =1,...,k and the easy calculations of the expressions
,-; 0; ¢i(&)-

Together with the problem we have just discussed various problems of optimal
distribution of sources can be formulated. For example, we want to find © € S

267



which on this set minimizes the expression

P,
max (Pi co .

ie{l,...k} N;

Supposing S #+ 0, the problem has always a solution thanks to the continuity of
the minimized function on the compact set S.
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Souhrn

SIRENI PLYNNYCH EXHALATU A PROBLEM ROZLOZENI NOVYCH ZDROJU
NA SUCHEM KOPCOVITEM TERENU

TrAN DieN HIEN

V ¢&lanku je zkouman proces Sifeni plynnych exhalata v prizemni vrstvé atmosféry a problém
rozloZeni novych zdroju exhalati na kopcovitém terénu. Pri zkoumani se mimo jiné predpoklada,
Ze: 1. Povrch je kopcovity, 2. exhalaty se udastni chemické reakce s atmosférou, 3. proces je sta-
cionarni, 4. vektor rychlosti vétru spliiuje rovnici kontinuity. Matematickou formulaci je pak
smiSena okrajova uloha pro elliptickou rovnici s pravou stranou zadanou distribuci. Ukazuje se,
7e uloha ma pravé jedno ,,velmi slabé‘ feSeni, které je dostateCné hladké, jsou-li koeficienty
difuze a sloZky vektoru rychlosti vétru dostatené hladké. Dale se zkouma existence freSeni
problému rozloZeni novych zdroju exhalati na kopcovitém terénu a ukazuje se postup pro vypo-
Cet tohoto feSeni.
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Pesrome

PACIIPOCTPAHEHME TA30BBIX BK3IAJIALUMW U MPOBJIEMA PACITOJIOXXEHUSA
"X HOBBIX MCTOYHUKOB B CYXON XOJIMUCTON MECTHOCTH

TrAN DIeN HIEN

B cratbe HCCeayeTCsi TPOUECC PACIPOCTPAHEHUS Ta30BBIX IKCrajauMil B NPHU3EMHOM CIIOE
aTMocdepsl ¥ npobiiemMa PacioNIOKEHHs] HOBBIX MCTOYHHKOB 3arpsi3HEHMSI BO3yXa B XOJMHCTOM
mectHocTH. IIpu 3TOM mpenmosnaraercsi, Y10 1. MECTHOCTH XOJIMHCTasi, 2. 3KCTaJaThl XMMHYECKH
pearnpyioT ¢ atmochepoii, 3. mpouecc crandoHapeH U 4. BEKTOP CKOPOCTH BETPa yIOBIETBODPSET
YPaBHEHUIO HENPePHIBHOCTH. MaTemMaTuyeckoil (OpMyIHpPOBKON 3aJayd SIBIISETCSl CMEIIAHHAs
Kpaepas 3a/iaya AJIsi SJUTHIITHYECKOTO YPAaBHEHHsI C NPABOMl YacThIO 3aJaHHOI paclpenesieHueM.
OxaspiBaeTcsi, YTO 3aj4aya O0JafmaeT B TOYHOCTH OIHHM ,,04€Hb CIAObIM‘ pemeHueM, KOTOpoe
IOCTAaTOYHO TJAIKO, eClT JOCTATOUHO IJIaAKU KoddduuueHTHE! auddy3un ¥ KOMIOHEHTHI BEKTOPa
ckopocTH BeTpa. MccnenyeTcs Takke CyINECTBOBAHME PEIEHUS NMPOOIEeMBI PACIIONOXEHHS HOBBIX
WCTOYHMKOB 3arPA3HEHHs B XOJIMACTON MECTHOCTHM M YKA3bIBA€TCs IMPHEM IJIS1 BEIYHCICHHS 3TOTO
peleHus.
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