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EXACT SOLUTIONS TO SOME EXTERNAL MIXED PROBLEMS 
IN POTENTIAL THEORY 

VALERY I . FABRIKANT 

(Received December 7, 1984) 

Summary. A new and elegant procedure is proposed for the solution of mixed potential 
problems in a half-space with a circular line of division of boundary conditions. The approach is 
based on a new type of integral operators with special properties. Two general external problems 
are solved: i) An arbitrary potential is specified at the boundary outside a circle, and its normal de­
rivative is zero inside; ii) An arbitrary normal derivative is given outside the circle, and the 
potential is zero inside. Several illustrative examples are considered. Certain methods of appli­
cation of the proposed technique to the solution of a few complex problems are also discussed. 

INTRODUCTION AND PRELIMINARIES 

Various applications of the potential theory in electrostatics, fluid flow, heat 
transfes, linear elasticity, etc. are well known [1]. A majority of these solutions 
dealing with classical mixed problems is "constructed" rather than derived. The 
derivation, if it exists, is very complicated while the final result is simple and is often 
expressed in terms of elementary functions. It seems logical that since the solution 
is simple, there should exist an elementary and straightforward procedure for 
obtaining it. On the basis of this logic, this investigation presents a new method 
for obtaining such results. 

Some preliminary considerations are necessary to understand the approach 
proposed. Introduce the following function 

1 T(2 co 

(1) X{K, *) = — \ * = £ K"' e** • 
I + KZ — 2K COS 1/7 n = - oo 

Define the integral L-operator 

(2) L(K)f(<t>) = 1 f2 V - 4 ~ *)IW # = 
27t n 

00 1 

£ £Me
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= - oo 2TE 
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e - ^ / ^ d ^ £ К|n|Le xnф 
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Here fn is the Fourier coefficient of the function f. The following properties of the 
L-operators are obvious from (2): 

(3) L{K)L(Kl) = L{KK1), L{l)f = f. 

The properties (3) allow a construction of the operator inverse to L as 

(4) L-\K) = L(K'i). 

The following two integrals will be widely used in this paper: 

(5) 

(6) 

where 

x2 

Ч-*ß)àx 
\pq i i ł n я - i w ) tan" 

pq V ( P 2 - * 2) V(«2 - * 2) R„ R 

* • & > » ) * * , n V* / 1 _i y2(^) _ _ ____ = — tan l Í^-J-
V(x2 - p2) V(*2 - q2) *Pq RPq 

(7) R2
pq = p2 + q2 - 2pq cos p . 

Both integrals (5) and (6) are easily verifiable by the substitution 

(8) yi(x) = J(p2-x2)J(q2-x2)lx, 

y2(x) = J(x2-p2)J(x2-q
2)lx, 

respectively. 

Two non-axisymmetric external mixed problems of the potential theory for 
a homogeneous half-space with a circular line of division of boundary conditions 
are solved in the next section. The problems are called external because nonzero 
boundary conditions are prescribed outside a circle while zero conditions are given 
inside. Various illustrative examples are considered in the third section. All the 
solutions obtained are exact and expressed in terms of elementary functions. The last 
section is devoted to the dicsussion of the results and possibilities of further applica* 
tions of the technique introduced. 

SOLUTION OF EXTERNAL MIXED PROBLEMS 

Problem 1. Consider a homogeneous half-space z ^ 0. It is necessary to find 
a harmonic function W subject to the boundary conditions at z = 0, namely 

dW 
(9) — = 0 for Q < a , 0 = (j> < 2n , 

dz 

W = W(Q, (j>) for Q ^ a , 0 ^ 0 < 2K . 
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Here a set of cylindrical coordinates Q, <j>, z is used. It is well known that the potential 

W can be represented as 

w(в, Ф, Z) = Г f °Ш r ér # + Г Г fí-üö r dr # 
J o J o -R J o Ja R 

(10) 

where 

1 dW 
(11) (7 = - , z = 0 and R2 = O2 + r2 - 2Or cos (0 - ij/) + z2 . 

2TI dz 
Introducing the quantities 

(12) /,.(r) = i [V( ( r + e ) 2
 + z

2 ) + ( - l )y(( r -^ + z2)] f0r 1 = 1,2, 

one can verify that 

(13) h(r) l2(r) = Or , /2(r) + /2(r) = O2 + r2 + z2 

and 

(14) lim lj(r) = min (r, O) , lim l2(r) = max (O, r) . 
z - ,0 z->0 

Making use of (5) and (6), and substituting p by /_, q by l2 and ft by 0 - i/>, the 
following integral representations become possible: 

(15) 

(16) 

1 _ 2 

R Я 

'ПW 
A ( — , (/> — t̂  } đx 

^ßГ 

0 vww-^vта-*2)' 

_ _ _ Ґ " U 2 / 
* * J ь W V ( * 2 - l 2 ( t - ) ) V ( * 2 - ^ M) 

Substituting (15) in the first term of (10), and (16) in the second, one obtains after 
changing the order of integration and making necessary transformations due to (13) 

rh(a) 
(17) W( 

Гhì 

Q, ф, z) = 4 
Jo 

dx 

+ 4 
Г00 dx_ 

J , 2 V ( * 2 -

Vte2 - *2) 
rg(x) 

r ár 

Q2). 

«X) s/(r2 - d2(x)) \gr 

r ár 

a(r, ф) + 

„ VИ*)-'2) 
b(^a(r,ф). 

Hereafter, for the sake of simplicity lx is understood as lt(a) and l2 as /2(a); the 

operator L is understood according to its definition (2) as 

L(k) a(r, i» = — f \k, 4>-ý) a(r, _ ) 
2nJ0 

dф 

and 
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(18) «x)шiJ(l + 7T*)-
One can notice that the function g(x) is inverse to lt for x < Q, and is inverse 

to l2 for x2 > Q2 + z2. 

Now the substitution of the boundary conditions (9) in (17) leads to the integral 

equation 

Equations of the type (19) were treated in [2]. Here, a different type of solution is 

derived. Let the operator 

- Г Q dO 

d t J . V ^ 2 - ' 2 ) \Q. 

be applied to both sides of (19). The use of properties of the Abel-type operators and 

properties of the L-operators (3) results in 

2тc 
r ár 

L(-) <r(r, 4>) = -
- r2) \t2 { V) dř LV0 

The next operator to apply is 

_d 

dyj 

<*> ф)Mfi.Ф). 

tăt 

. ЛУ2 - ň 

, V(e 2 - t2) Ve. 

and the result is 

-n2yL(y)a(y, ф) = 
Г tát 

dv 
L(ň-

aҖy2-t2) " >dt 

Q áQ 

, V(e2 - t2) Ve 
V(Q, ф) . 

Finally, using (4), the solution takes the form 

(»)+,«=44'):d[' '*' 
n2y \y/dyja 

ЭДІ.Г 
Q ÚQ 

W(Q, ф) . 
, V ( / - t 2 ) 'dt}t V ( e 2 - t 2 ) \QJ 

Differentiation under the integral sign gives another form of the solution, namely 

(21) 

where 

(22) 

<Hľ, Ф) 
1 f x(a, У, Ф) f X(a, У, Ф) Г 

ÌЛЃ-a1) ]a 

ár 

n2 ( V ( / - a2) J a V(ľ 2 - r2) дr 
X(r, У, Ф) 

x(r, y, ф) = г 
dO 

V(e 2 - r2) dg [ H-
The following transformation can now be performed: 

(23) 
дr 

l(r, У, Ф) = »-i{ 
dв 

, V(e2 - ň 
(Lw)'\ = 
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Г dg 

)r vV - ň 
QàQ 

[(Lw)' + Q(LW)" - 2(Ľ.w)'] = 

- I^K-H-H') 
Here the primes (') indicate partial derivatives with respect to O, L stands for 

I\**2/yO), w = W(Q, <£), and the following identity is used: 

д I 
JL_ 

дr 
2*-

r 

Q Õ 

УQ 
As 

1 õ2w 

'Є~2"ôф2 

1 ð 2 L 
w , 

_ 2 # 2 

an addition to and subtraction from (23) transforms it into 

QdQ 

r v V - r2) 
[LAw - (AL)w], 

where A is the Laplace operator in the polar coordinates. Since X is harmonic 
AL = 0, and (23) finally simplifies to 

(24) — x(r, y, Ф) = 
cr 

Q dQ 

Substitution of (24) in (21) gives 

(25) 

1 f xfa, y, $ a(y, ф) = 
ЛУ2 ~ a2 

r^Q2 

dr 

r2) 
LЛw 

Q dO 

J(y2-r2))rJ(Q2-r2) \ye_ 
Лw(O, ф). 

Expression (25) presents a new type of solution for the integral equation (19). 
It may be noticed that the first term in (25) becomes singular, and the second 
term tends to zero when y -> a. In the case of w being a harmonic function, the 
second term in (25) vanishes, and the solution is represented by the first term only. 
Further, integration with respect to r becomes possible in (25) after changing the order 
of integration and using (5). The result is 

(26) ~f» ̂  - _ 1 \j^iM) 

<*«--;?{; 
+ 2яJ0 . 

W(y2 - a2) 

Aw(Q,\l/)gdQd\l/ t _ _ ! V(g2 

tan 
a2)V(j;2-a2) 

s/(Q2 + Г - ЬQ CОS (ф - ф)) 7 ( e 2 + У2 ~ 2УQ c o s (Ф -*))! 

Solutions in the forms (20) or (25) are appropriate to use when exact evaluation 
of integrals is possible, while the solution in the form (26) has certain advantages 
when numerical integration is to be employed. 
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It is of interest to express the potential W in the half-space directly through its 
boundary value w. As a inside the circle is zero, expression (17) takes the form 

• _ ( * ) ydy f00 d x C9 

(27) W(Q, d>, z) - 4J^ V ( x 2 _ Q 2 ) 1 j { g 2 { x ) _ y2) -^2 

Substitution of (20) in (27) and integration with respect to y yields 

(28) 

Ae4\o(y,4>). 

W(g,ф,z) 
ăx 

l2Љ
2 - ñ 

Q g2(x) 

õg(x) 
-тÂ-Hr,Ф). 

9{x) V(r2-ö2(x)) V 
Here the properties (3) of the L-operators were used along with the following identity 
valid for the Abel-type operators: 

ày I mtét _ « Л ŕ ) ! 
( 2 9 ) )aJ(92-y2)dyLJ(y2-t*) 2" 
A change of the order of integration in (28) and integration with respect to x give 

(30) W(Q, <f>, z) = — f * [X — ["- + t a n " x - 1 w(r, ty rdrdip . 
n 2 Jo L # 3 U Rj 

Here R is defined by ( l l ) , and S, can be presented in several equivalent forms, namely, 

(31) { _ V(''2 - °2)M ~ «2) ... V(r2 ~ «2) V(g2 ~ If) _ 
a lt 

= Vffl'-)-/QV(/2
2(r)-/D = zj(r2-a2) 

h V(«2 - ft ' 
each form being useful in different specific transformations. It must be noted that 
throughout this paper, l^ and l2 are understood as lt(a) and l2(a) according to the 
general definition (12). Details of the derivation of (30) are given in Appendix A. 
In the particular case of z = 0, expression (30) simplifies to 

(32) 

= W^ 'Jo l V ( ' - 2 - « 2 ) [ 
[W(Q, ф) 

W(Q, ф, 0) = 

w(r,ф) r dr dф 
for Q ̂  a , 

[r2 + Q2 - 2rQ cos (0 - x//)] 
for Q ̂  a . 

Expression (32) corresponds to the result previously reported in [2]. 

The solution can now be interpreted. The charge density o is given by the two 
equivalent expressions (20) and (26); the potential is given by (28) and (30), the former 
being more convenient for exact evaluation of the integrals while the latter is better 
suited for numerical integration. 
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Problem 2. Consider the following external mixed problem: to find a harmonic 

function W, satisfying the boundary conditions at z = 0 

W = 0 for Qйa, 0 йф <2к, 

дW 
(33) = ~2KG(Q, cj)) for Q > a , 0 = <j> < 2K . 

Oz 

Substitution of the boundary conditions (33) in (17) leads to the integral equation 

(34) JoV(^2)J,V(^2)Lt) f f(^ ) = 

JflV(*2-e2)J«V(*2-'-2) vW i ; 

One should notice that cr on the right side of (34) is known from (33), while the value 
of a on the left side of (34) is yet unknown. 

Using (15) and changing the order of integration, the right side of (34) can be 
transformed so that Eq. (34) takes the form 

r d* r rdr - L ^ V M ) = 
JoVte2-*2^^2-*2) w K } Vte2-*2^^2-*2 

dx f °° r dг 

JoV(e 2-* 2)J« V( f 2-* 2) 

with the immediate result 

r dr 

b(~j<r,ф). 

(35) 
Лr2 

i(')*«=-fAl(')*" 
The application of the operator 

ml x áx 

es/(> 2) 

to both sides of (35) gives, after necessary transformations, 

2 

7i ^ ( a 2 - Q2)J 
(36) <J(Q,Ф) = -~^L(^)<т(r,ф)rdr for g<a, Г«Ч> 
(37) 

or, interpreting the L-operator, one obtains 

m2n r°° V(r 2 - a2) a(r, ifi r dr di/> 

r2 + Q2 — 2rQ cos ((/> — i/f) 

Now the value of a is known all over the plane z = 0, and (17) can be used for 
expressing the potential W directly through the given value of a. Substitution of 
(36) in the first term of (17) gives, after integration with respect to r, 

•^--iW-rtľ. 
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(38) W(Q, ф, Z 

+ 

) = 4 

J o V ( e 2 - * 2 ) j 

4 r - dx [g(x) 

ii>s/(x2-Q2)L : 

ydy 

aj(y2-92(x)) \QУJ 

r dr . ( QГ 

-)o(y,ф) + 

o(r, ф). 
V ( « 2 ( x ) - r 2 ) V^2 

The second term in (38) is equivalent to the second term in (10) which, in turn, 

can be represented, using (15), as 

rh(r) 

J. rd'í 
dx 

o(r, ф) . 
V(e2-*2)VO2-02M) W 

Now the following scheme of change of the order of integration can be used: 

/•GO fh(r) fh(a) /*oo fh(<x>) (*<x> 

dr dx = \ dx\ dr + \ dx\ d r , 
J a J o J O Jrt J h(a) J g(x) 

and the second term in (38) can be rewritten as 

(39) 

+ 4 

h dx 
"»GC 

oV(e 2 -* 2 )J a 

Ii(oo) d x 

r dr 

V ( ' 2 - 92(x)) TL(~V(r' 
x)) \Qr) 

p r 

)«>W-

dr 

Ф) + 

o(r, ф) . 

I„ V^-^J.wV^-^x)) \Qr 
Substitution of (39) in (38) gives, by virtue of /t(oo) = Q, 

(40) W(Q, <f>, z) = 4 r r — L(—\ a(r, </>). 
1 ' ' J „ V(^2 - x 2) J *-> V(^2 - 92(x)) W 
A change of the order of integration in (40) and integration with respect to x, using 

(5), results in 

(41) W(Q,cj),z) = 2 [ " 
^ J o J, 

where R is defined by (11) and £ is any one of the expressions in (31). 
The solution can now be explained. Expression (37) defines the charge density a 

inside a circle directly through its values outside, the potential W is given by the 
two equivalent expressions (40) and (41), the first one being recommended for an 
exact evaluation of the integrals involved while the second has certain advantages 
for numerical integration. 

^ t a n - ^ r d r d * 
R R 

ILLUSTRATIVE EXAMPLES 

Several particular cases of general solutions, obtained in the previous section, are 
considered here in order to illustrate the effectiveness of the proposed technique. 
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Єз = 
Z(V(Є2 + 22) + Z) 

, e.= 
z(V(e2 + , - z) 

e 
For the case of an odd n = 2k + 1 the integration can be performed by using the 

substitution 

t2 — x2 — O2 — z 2, and the final result is 

,47) w{e,*,2),^níi±m\í cш + 

k+ \ / i \m p)m - 1 

+ y D - 5 — — - -

,„ . (m - 1)! .nm-1LV'/ 

V-x Г(n/2) [,„ . (2m - l ) ( a 2 - / 2 ) m " 1 / 2 

for n = e 2 + z 2 1 - I V . 
- cot ^ ^ -

2 - ' 2 ) 

where 

ď1-"' Г (t + z2)* 
(k - m)! dřfe~m L(ř + O2 + Z2) 

г__±___l for ř_0, 
Ц t + Є2 + 2 2 )* + 1 J 

(48) Ðm = 
_ _ ^ Г _ _ _ _ _ П 

i +l-mL ř* J (k + 1 - m)! d. 

Substitution of (42) in (21) yields, after integration [3], 

(49) a(Q, *) = F^n + M -o { ! 
v ; { ' i. r(n/2) V ' V ( e 2 - « 2 ) 

_ n W - f l
2 ) / n + 1 3 a2 

e " + 2 V2 2 2 

and the Gauss hypergeometric function can be expressed through elementary 
functions [4], namely, for even n = 2fc, fc = 1, 2, 3 , . . . , 

, 1 3 \ 1 ď 
F l + k, - ; - ; ř ) = -

2 2 / 2k! dtfc 

,*-l/2 l„ 1 + Vt ІП 

i - V ü 
and for odd n = 2k + 1, k = 0, 1, 2, . . . , 

(50) V* 3 1 3 \ 
F k + - , - ; - ; n = -

2 2 2 / 2F(3/2 + k) V 

d* г . 1/2 

ř d<* LVO - ř 

The solution can now be presented for several specific values of n: 

n = 1 

(51) 

(52) 

W(Q, ф, z) = -
я V(Є2 + z 2) 

<г(e, </>) = 

- w ° r i „ - i V ( в _ _ 
/, 

* V V (Í?2 - . ' 
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n = 2 

(53) w(e, <p, z) = 

At the plane z = O, 

W(Q, <j>, 0) = ?['-

1 - 00 + 
vV + *2) 

Ч i - v ^ 2 ~ Q2У 

(54) 

и = 3 

(j(O, ø ) 

for O < a 

for _• __ O , 

i, e + v v - fl2. - - l n 

(55) Wfo ф, z) = 

2тт_>2 (V(Í22 ~ ö2) Q 

4w0 

Чe2 + ^2)2 U/V - /ï) 
/;- vva2 - 1 \ ) 

2a2 

2z2 . _ l ч / _2 + 

At the plane z = 0, 

W(Q, tf>, 0) = 

W(0, 0,0) = 4w0/3rrO3, 

2 V(^2 + ^2) /2 

í2w0 f . _! 0 _? // 2 

—I sin ~V(O2 -
\TZQÓ L O O 

for Q __ Я , 

for g __ O , 

2 w 0 2O2 — 
(56) *(<?>.) = - + ; 

71 Q a ч/(_? — я ) 

п = 4 

(57) -„„.)-__^j£z^,l-0o)-i<l-ЄЛ + 

+ E 2(g2 + z2) _a 2 V 

At the plane z = 0, 

2../П 2 - /v2 
(/2 - a2 z(2z2 - Зg2) 

2 ' Є

2 + z2)3'2 
l n Q U 

W\_. </>, 0) = 

_ Г І _ _ _ І Z І _ ; _ > ! _ J _ П f o r e _ й , 
>4 L - 2 a 3 J 

for Q _ a , 

řҒ(0, 0, 0) = Зw0/8a4, 
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(58) G{Q, ф) = 
ЗWn ЗO2 - O2 3 O + V(^2 ~ a2) 

8тrO4 [a2

 X/(O2 - O2) O 

The total charge at the plane z = 0 is equal to \v0 for n = 1, and it is zero for 
n = 2. 

Figure 1 shows the dimensionless charge density GO,, + 1/w0 versus Qja for n = 
= V 2, 3 4 (formulae 52, 54, 56, 58). The charge density is nonnegative for n = 1, 
and changes sign when n = 2, its negative maximum increases with n while the 
total charge stays at zero. 

DENSITY 

0 . 2 5 

0 . 0 0 

0.20 

0. 15 

0. 10 -

0.05 

0.00 

ц\\n=i 

\ \ >v? 

- 0 . 0 5 

1 .00 2 . 0 0 З.øø 4.øø 5.øø 6 . 00 7 . 00 

RADIUS 

Fig. 1. Charge density for n = 1, 2, 3, 4 

Equipotential lines for the case n = 2 (formula 53) are presented in Fig. 2. 
The range of values of the dimensionless potential WQanjw is taken as 005 to 0-6. 

Because of symmetry of the problem, only a quarter of each equipotential line is 
presented. 

Example 2. Consider the boundary conditions 

(59) W -5 Qinф for o = a , 
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ÕW 

õz 
= 0 for Q < a 

where w„ is a constant. The solution is given by (28) and (20). Substitution of (59) 
in (28) gives after first integration [3] 

W(Q, ф, Z) = 
2Г(И + l/2) „ dx 

Лг' V(*2 - ñ 

Z-C00RDINATE 

7.00 

ø.øø 1 .00 2.øø З.øø 4 . 0 0 5 .08 

RADIUS 

Fig. 2. Equipotential lines for n = 2 

The second integration yields 

(60) W(Q9 4>9Z) = — ^ txn* Y i"1)"1"1^ + V2) / 1 _ Q2«-1) 
V ; V ^ V71 e" » - i r(m) r(n + l - m) (2m - 1)V ^ ° ' 

and Q0 is defined by (46). Substituting (59) in (20), one gets, after integration [3], 

(бi) O(Q, ф) 
inф Г(n + 1/2) w„e 

*3,2Г(n) e V ( / - « 2 ) 

Evidently, it can be noticed that (61) can be obtained by differentiation of (60) with 
respect to z for z = 0, instead of integration of (20). 
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Here are some explicit expressions for several particular values of n. 

W'Q,Ф,Z) = - i Qiф 

Q 

M ~ ťï 

n = 2 

3 w? 
(62) W{Q,ф,z) = ~^є2 

2 O 2 

n = 3 

PV(>, <_ , z) -
15 w 

4 O3 

з _ з Ж - g2)] _ 1 [. _ /V(/2 - g2)̂  IH^-ин^ľh 
Equipotential lines at the plane 0 = 0 for n = 2 due to (62) are presented in Fig. 3. 
The curves correspond to a set of values of the dimensionless potential (Wa2jw2) 
in the range of 0-05 to 0-4. 

Z-COORDINATE 

I .50 

І .25 

1.00 

0.75 

0.50 

0.25 

ø.øø 

/ \ w Wa 2 /w ? = .05 

\ J 0 7 

\ .1 

ч̂X \ . 1 5 \ 

\ \ 

/ л\ \ \ \ \ 
0 . 0 0 1 .00 2.øø З.øø 4.øø 5.øø 

RADIUS 

Fig. 3. Equipotential lines for n = 2 
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Example 3. Consider several cases related to problem 2, with the boundary con­

ditions 

(63) w= 0 for O < a , 

дW _ 

cz 
2к°° 

Q" 
for O > a . 

The solution is given by (40) and (36). Substitution of (63) in (40) yields, after first 

integration, using (44), 

r[(n - l)/2] (Q dx 
(64) W O, ф, z) = 2 yjҡ a0 

Г(n/2) J ,,Vu?2 - x 2 ) ű - Ҷ x ) 

where #(x) is defined by (18). The technique, used in the previous examples, can be 

employed here for further integration. The final result depends on the value of n 

being even or odd. For n = 2k, k = V 2, 3, ... , the potential is 

(65) Wg, ф, z) = 2 > *c Г [ í " : 1 ) / 2 ] í 2ß , ln ô 
гv"/ 2) l 

íc - 1 

+ 1 
m = l ^2w — 1) Z 2 

A - 1 

•-+-FfT1 + 

"m + 1 

+ I -~t [Є7 - eт - (Є7 - e:)] 
•• i mz 

Here 0 , 0 „ £>2, Q3, QA, are defined by (46), and 

d m - l p („ _ z 2 ) * " l 
(66) 

(m - ť ) ! d n m " 1 + z2 - цf 

"k-m+X ~ 
(ř2 - z 2 ) 

(m - 1)! d t m _ 1 

For /r = 2k + 1, the result is 
ЃЛJ 

'• - z 2 ) " - 1 -

V + z2)-t) f c. 

for n = 0 , 

for ř = - V ( ő 2 + z2 

(67) W(O, 0, z) __ 2 Vn Y^{n " 1 ) / 2 ] - - Í 2 - V J — ^ ^ " fl 

r(n/2) z"" 1 m = i (2m - 1 \ O 

Г(m) õif1'1 

Vч 
tan" 

- a 2 ) 

7 

for ГҪ = 
e2 + z2 

Here, 

(68Y fc — m + i — 

Д«) dŕ 

1 Г_+ ___"] 
1 L (ч + t)* J 

for ř = 0 , n = 
Є2 + z 2 

я ^ + 1 = J_i___Г____ГП f0 
г ( m ) d í m - 1 L tk 

r ř = -
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The solutions for several specific values of n can now be given. 

n = 2 

(69) WÍQ,4>,z)=-r*p—\TiQ 
v V + * ) 

2JI õz I z = 0 

and Q is defined by (46). The charge density can be found by differentiation 

(70) ' dW> 

and as 

(71) 

we have 

(72) 

a — ln 0 = R e í - - + 
^Z ( Q O X / ( O 2 — Q2 

for z = 0 . 

<<O, ф) = Ц Re í 1 - . đ } , Ov0, 0) = - -pL 
O2 ( V(я ~ e )i 2 a 

and Re means that only the real part of the expression inside the brackets is taken. 

n = 3 

(73) W'Q,Ф,Z) = 
4<гn 

Q2 + Z 2 

V<I2 - «2) 

У(e2 + ; 2 ) 

Differentiating (73) and using (70) 

(74) 

2 f 7 n 

OQ, <f>) = J 

- sin — 
O O yj(a2 — Q2) 

<__o 

. - i V i g ! + i ! ) 

for Q < a , 

for O > ű 

and c(0, 0) = — 2G0/37U/3. The following formula was used in the derivation of (74): 

dz 
n = 4 

(75) 

tľ 

(76) 

?z ( v y 2 - Є2)J 
foг z = 0 

W,Q, ф, z) = 
KGr, Q2 - 2z2 

2(в2 + z2)2 У Q2 + z2' 
l n Є + 

+

 2l^a2-l2)-Зz+Ѓ\^l2

2-a2)i. 

At the plane z = 0 we have 

ЪOQ flti g + Vtø2 ~ Д2) __ O y V - fl2> 

2O3 
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and W O, (j>9 o) = 0 for O ___\ a. Further, 

Җa2 + 
W(0, 0, z) = —° 

K ' z 3 12a2 a 

The charge density a can be found from (76) using (70), (71) and (75): 

(77) O(Q, *) = a-l Re ( l - - ^ - f ^ l , <0, 0) = - ^ . 
Q [ 2a \'\a - Q )) %a 

Example 4. Consider the boundary conditions at the plane z = 0 

(78) W = 0 for Q S a , 

— = - In 5-5 e1"* for <> > O . 
dz O" 

Substitution of (78) in (40) gives after in.egration 

(79) Wye, <j>,z) = 2 > L ^ M ^ e-* L/(/ 2 - a 2 ) - z + 
E(n) g" I 

+ z " y „ _ ! _ _ _ _ ) [1 _ (i _ ,2/a2y.-i/2-il 
» = i r ( m + l ) r ( n - m)(2m - 1) L V " ; J J 

and at the plane z = 0, 

W(Q, (j>, o) = 2 VTT r ( " ~ ^ 2 ) £2 ein* Re V(<?2 - n2) 
It") <?" 

with the charge density 

ff(g^) ________ _2e'"* Re II 

• (-i)mrfn 

(80) 

-I F(m 4- 1) F(/t — m) (2m — 1) 

The results for several particular values of n are 

n = 1 

V(«2 - e2) 
[1 _ ( 1 _ ^ a 2 ) m - l / 2 J I 

(81) 

n = 2 

(82) 

1 T ( e , ^ z ) = 2 I r ^ e i * [ V ( / 2 - f l 2 ) - z ] , 

<Л_S íìe'*ReГl « -1; 
Q L V(« 2 - e2)J 

w \ e , </>, z) Ä2 І*Г V ' ( / 2 - a 2 ) - 2 z + l V ( « 2 - ' 2 ) 
a 
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1 ^ C?2 L 2 a V ( a 2 - Є 2 ) J 
и = 3 

(83) W(Q, Ф,*) = ђ Ц e з i* L . - a2) - 8 z + 2 Z V(«2 - П) ~ 
4 QЛ l Ъ a 

z(a2 - l]fl2} _ 

Зa3 J ^ 

3 °Ä e

З І * Re l 8 - 2 > 2 ~ ^ ) + (*' ~ g2)3 7 2 
(84) O-(O,.) 

8 O3 (3 ^/(/r - O2) a 3a3 

A more general case of boundary conditions, namely, 

(85) W = 0 for O _ O , 

T1IF rT 

_!_ _ _27C^e i m ^ for O _ a 
dz On 

can also be considered using the same technique as in the previous examples, and 
the final result can always be expressed in elementary functions. The form of the 
result will be different for (m + n) even and for (m + n) odd. As an example, the 
following expression can be obtained by substituting (85) in (36), namely for m + n = 
= 2k, 

(86) a(Q, _ = _ - e - Re ( l _ — f l - V ^ - ^ ( « f " l l , 
1 } [ } Qn I V(«2 - e2) L >=2 2 > r(j) W J j 

and for m + n = 2k + 1 and Q < a, 

(87) ,,«.) = 2 _ » e i » . • ; _ - ! £ — g — f i _ _ _ - _ - i Y g y j " 2 i i . 
*.<?" 1 « V ( « 2 - e 2 ) L ,=2 4T(j + 1/2)W Jj 

Expressions (86) and (87) represent general formulae which cover all the particular 
cases considered in Example 3 and Example 4. The form of the solution may some­
times be different, for example, for m = n — 3 formula (S6) gives 

(88) . , _ - 2 S e3i* Re ( l - - / • + _ _ _ + 
<?3 I V(A2 - e2) 2a V(a2 - e2) 8a3 V(«2 - Q2). 

which looks different from (84), but as one can easily verify expressions (84) and (88) 
are equivalent. 

Using (36) one can obtain the following expression for the total charge I directly 
through the given charge density a: 

2 C2n f °° n 
(89) I = - a(r, <f>) cos"1 - r dr d(j> . 

*Jo J . r 
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In the particular case of a = a0r
 n, (89) results in 

(90) s _ 2<T0 VIT r(n - l)/2] 

(n - 2) E(n/2) a"""2 

The total charge for n = 3 is 4a0ja, and for n = 4, .27 = na0\2a2. 
Figure 4 presents the charge density versus radius defined by formulae (72), (74) 

and (77). The equipotential lines, defined by expression (73), are presented in Fig. 5. 

DENSITY 

1 .00 -

ø . 5 ø -

0 00 n = 2 ^ ^ 

4 

•0.50 -

— - _ ^ n = 2 

1 .00 - V 

1.50 _ 4 

2 . 0 0 _ 

0 . 0 0 1 .00 2.00 З.øø 4 . 0 0 5 . 0 0 6 . 0 0 7 . 0 0 

RÁDIUS 

Fig. 4. Charge density for n = 2, 3, 4, 

The dimensionless potential w* = Wa2\a0 was varied from 0-5 to 1-3. One can 
notice that the equipotential lines for w* < . 92 have two branches. The corresponding 
equipotential surfaces can be seen in Fig. 6. 

DISCUSSION 

No new attention has been paid in literature to the basics of the potential theory 
after classical contributions in this field by Green, Lord Kelvin, Hobson and others. 
This paper presents a novel approach to the problem and the advantages of this 
new approach become evident when compared with the previous classical results. 
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Z-COORDINATE 

7 . 0 0 

6 . 0 0 

5 . 0 0 J 

4 . 0 0 J 

З.øø J 

w*= .5 

0 . 0 0 

RADIUS 

Fig. 5. Equipotential lines for n 

Fig. 6. Equipotential surfaces for n === 3 
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A formula similar to (30) was first published without proof by Lord Kelvin in 1847, 
and 22 years later he proved it in his "Papers on Electrostatics and Magnetism" 
using the method of images which requires a lot of ingenuity in geometric considera­
tions. Later the same formula was derived by Hobson [5] who used Sommerfeld's 
method of a potential in a Riemannian space. Later several solutions were also 
published using various integral transforms. Unfortunately, practical applications 
of these results are rather difficult due to the complexity of the integrals involved. 
The main advantage of the new approach is its simplicity where the generation of 
the solution is reduced to a straightforward procedure, and the integrals involved 
tre elementary as demonstrated in the previous section. 
| The technique of this paper can be used for the solution of many different problems, 
ind, among various immediate applications, one can indicate the punch and crack 
problems in linear elasticity. For example, expression (25) is proportional to the 
normal stress distribution for the external punch problem when the normal displace­
ments w are given outside a circle, and the normal stresses are zero inside; expression 
(37) can give the normal stress distribution in the crack neck through its values on 
the crack faces; the total force at infinity in external crack problems can be defined 
by (89), etc. 

:• This new approach can be generalized for more complicated boundary conditions. 
It can be used not only for a disk, but also for a spherical bowl, and possibly for an 
arbitrary surface of revolution. 

The investigation reported in this paper was supported by grants A 7104 and 
A 0791 from the Natural Science and Engineering Research Council of Canada. 
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APPENDIX A 

Here some details of the derivation are presented which allow transformation 
of (28) into (30). 

Introduction of a new variable u = g(x) changes (28) into 

/ A . IT// , ^ 2 f00 dl2(u) T(l](u)\ d f00 rdr / 1 \ , . 
Al) W(Q,^Z)=--\ -lhl( T 2\L[ ) T \ ITI KL~Wr '*)' 

* J« VO2OO - Q) \ Q JduL V(r " u) VJ 
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Change of the order of integration in (Al) yields 

(A2) W(Q,ф,z) L Í - ) w(r, 0) dr — 
\rl ár 

u ál2(u) 

Here the following general formula was used: 

rf(r) dr 
(AЗ) F(u) du — 

du 

.v(r2--a)va.(-)-вa) 

d Г u F(u) du 

m 
I . V(^ 2 - «2) 

Differentiation under the integral sign in (A2) gives 

r°° d Cr 

/(r)drf 
drj a 

V(r 2 - и2) 

(A4) lҒ(в 

-ţ /*2я ŕa 

>Ф>*)-M l 
Я Jo Ja 

ľ(a) X 
QГ 

, ф - ф 

Ш-a2)Ш")-Q2) 
+ 

+ 
áu 

^J(r2 — u2) áu 

l\(u) 
Г2{a)Xp-2, * - * 

V('K«) - Q2) 
w(r, ф) r àr åф 

Formula (2) was used here along with the following rule of differentiation under 
the integral sign: 

(A5) 
_d_ 

dr 

« j («)dи f(a) r 
+ r 

r d/(и) 

LV(-2-"2) V(^a-«a) ' J.VO"2-"2) 
Introducing the notation 

(A6) F(u) = — [ — + t 7,3 U(«) 
z 

R3 R 
, ( t t ) _V(^ 2 -» 2 )V( l 2 И-« 2 ). 

expression (A4) can be rewritten as 

(A7) W(Q, ф, Z) = 
0 J 

r2 - a2 áF(a) 

a áa + 

+ í áu d Г(r2 - u2)3/2 dF(u) 

л/(r2 — u2) du L w du 
\iw(r, i/t) r ár áij/ . 

Now integration with respect to u in (A7) can be performed elementarily by parts, 
and the result is 

(A8) 
ґ»2я /»oo 

W(Q, ф,z)ш — F(a) w(r, ф) r dr dф 

Taking into consideration (A6), one can see that expression (A8) is equivalent to (30). 
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S o u h r n 

EXAKTNÍ ŘEŠENÍ NĚKTERÝCH VNĚJŠÍCH SMÍŠENÝCH PROBLÉMŮ 
V TEORII POTENCIÁLU 

VALERY I. FABRIKANT 

Je navržena nová metoda řešení smíšeného problému potenciálu v poloprostoru s okrajovými 
podmínkami na částech hranice rozdělených kruhovým obloukem. Postup je založen na novém 
typu integrálních operátorů se speciálními vlastnostmi. 

Řeší se dva obecné vnější problémy: 1) libovolný potenciál je specifikován na hranici vně 
kružnice, a jeho normálová derivace uvnitř je nulová; 2) vně kružnice je dána libovolná normálová 
derivace, uvnitř je potenciál roven nule. 

Je uvedeno několik ilustrativních příkladů a diskutují se některé metody aplikace navržených 
postupů na řešení několika složitých problémů. 

Р е з ю м е 

ТОЧНОЕ РЕШЕНИЕ НЕКОТОРЫХ ВНЕШНИХ СМЕШАННЫХ ЗАДАЧ 
ТЕОРИИ ПОТЕНЦИАЛА 

УАГЕйУ I . РАВЯ1КАЭТ 

Предлагается новый метод решения смешанных задач теории потенциала в полупро­
странстве с круговой линией раздела граничных условий. Метод основан на новом типе 
интегральных операторов со специальными свойствами. Рассмотрены несколько иллюстра­
тивных примеров и обсуждены возможности применения нового метода к решению сложных 
задач теории упругости. 

АиХког'з айАгезз; Ог. Уа1егу РаЪпкап1, Оерт.. оГ Меспатса1 Еп§теепп§, Сопсогша ^п^-
уешгу, 1455 с!е Ма1$оппеш!е В1уа\ ХУезг, Мопггеа!, ОиеЪес НЗС 1М8, Сапаёа. 
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