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EXACT SOLUTIONS TO SOME EXTERNAL MIXED PROBLEMS
IN POTENTIAL THEORY

VALERY 1. FABRIKANT

(Received December 7, 1984)

Summary. A new and elegant procedure is proposed for the solution of mixed potential
problems in a half-space with a circular line of division of boundary conditions. The approach is
based on a new type of integral operators with special properties. Two general external problems
are solved: i) An arbitrary potential is specified at the boundary outside a circle, and its normal de-
rivative is zero inside; ii) An arbitrary normal derivative is given outside the circle, and the
potential is zero inside. Several illustrative examples are considered. Certain methods of appli-
cation of the proposed technique to the solution of a few complex problems are also discussed.

INTRODUCTION AND PRELIMINARIES

Various applications of the potential theory in electrostatics, fluid flow, heat
transfes, linear elasticity, etc. are well known [1] A majority of these solutions
dealing with classical mixed problems is ‘“‘constructed” rather than derived. The
derivation, if it exists, is very complicated while the final result is simple and is often
expressed in terms of elementary functions. It seems logical that since the solution
is simple, there should exist an elementary and straightforward procedure for
obtaining it. On the basis of this logic, this investigation presents a new method
for obtaining such results.

Some preliminary considerations are necessary to understand the approach
proposed. Introduce the following function

1 - K2 @ -
1 WK, ) = = K"l el
() (K. ¥) 1+ K? — 2K cos n=Z-oo

Define the integral L-operator

B LK) S(9) = - j UKL 6 — ) 1) dv =

s 2n n .
= Z Klnl eimﬁ ‘2%‘[ e—in\hf(l//) dl// = _Z Klnlfneuw.

n=-o 0
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Here f, is the Fourier coefficient of the function f. The following properties of the
L-operators are obvious from (2):

(3) L(K) L(K1) = MKKI) > L(l)f =f.
The properties (3) allow a construction of the operator inverse to Las
(4) ~ LYK) = LK.
The following two integrals will be widely used in this paper:
2
A ("— , /i) dx ]
9 R
\/(p _x)\/(q '—x) qu qu
pq
* (;5 ’ ﬁ) & 1 ¥a(x)
(6) 2 2 2 N R tan”™ ! ==
\/(x —p)\/(x _q) qu qu
where
(7) R:, = p® + q* — 2pgcos B.
Both integrals (5) and (6) are easily verifiable by the substitution
(3) yilx) = J(p* = ¥*) J(g* = x*)x,

ya(x) = J(x* = p?) J(x* = ¢%)[x,

respectively.

Two non-axisymmetric external mixed problems of the potential theory for
a homogeneous half-space with a circular line of division of boundary conditions
are solved in the next section. The problems are called external because nonzero
boundary conditions are prescribed outside a circle while zero conditions are given
inside. Various illustrative examples are considered in the third section. All the
solutions obtained are exact and expressed in terms of elementary functions. The last
-section is devoted to the dicsussion of the results and possibilities of further applica-
tions of the technique introduced.

SOLUTION OF EXTERNAL MIXED PROBLEMS

Problem 1. Consider a homogeneous half-space z = 0. It is necessary to find
a harmonic function W subject to the boundary conditions at z = 0, namely

9) (Z—W=O for 9<a, 0Z ¢ <2m,
z .

W=w(,¢) for ¢=2a, 0=£¢<2n.
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Here a set of cylindrical coordinates g, ¢, z is used. It is well known that the potential
W can be represented as

(10) Wle, ¢, z) = J‘Z"J" i’;_'l’) rdrdy + '(an'w _*6(2 2) rdrdy

where

(11) o= LW o0 and R? = ¢* + r? — 29rcos (¢ — ¥) + z%.

2 9z
Introducing the quantities
(12)  I(r) = 3[J((r + 0> + 2°) + (=)' J((r — 0)* + 2*)] for i=1,2,

one can verify that

(13) Li(r) (r) = or, L(r) + I3(r) = éz + 2 4 22

and

(14) lim I,(r) = min (r, @), lim I,(r) = max (o, 7).
z-0 z-0

Making use of (5) and (6), and substituting p by I,, g by I, and B by ¢ — V, the
following integral representations become possible:

x2
yn A0 v)es

(15) L :
R n)o JB(r) = x?)J(5(r) — x?)

) p % ¢ — ¥ )dx
(16) R —< () J(x)— 5

Substituting (15) in the first term of (10), and (16) in the second, one obtains after
changing the order of integration and making necessary transformations due to (13)

» N 11(a) dx a rdr x_z alr
(17)  Wie.¢.2) =4 J@ — %) Lm Jr? = g*(x)) L<er> no

o g(x) o
+ 4 de 5 2r dr 5 L(g—z> o(r, @) .
V= )]s JgHx) - 7)) \x
Hereafter, for the sake of simplicity I, is understood as I,(a) and I, as I,(a); the
operator Lis understood according to its definition (2) as

8 o) = 5[0k 9 = ) o)

and
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(18) o(x) = x\/(l ¥ sz_zx5>.

One can notice that the function g(x) is inverse to I; for x < g, and is inverse

to I, for x2 > % + z%

Now the substitution of the boundary conditions (9) in (17) leads to the integral
equation

(19)

S

Equations of the type (19) were treated in [2]. Here, a different type of solution is

derived. Let the operator
d [~ d 1
i J %, L<M)
dt), J(@e* =1 \e

be applied to both sides of (19). The use of properties of the Abel-type operators and
properties of the L-operators (3) results in

t o rdr ®  odp
= G ) - Tt ) e
The next operator to apply is
tdt ()
.[ NS ,2)
and the result is

—y L) alr. ) = - Ej(ygij—t—z)uﬁ)g; [ NC ;) ve.9).

Finally, using (4), the solution takes the form

@) o) = - 5-1(1)2 j J(y"“ UG j —(&) (,>W(Q, 9.

Differentiation under the integral sign gives another form of the solution, namely

@) )= - AN [ e o)

where ‘
® do 0 r?
(22) X(rv YV, ¢) =r T, Al I:L (*“) W(Q, ¢):] .
» @ =) del \ye
The following transformation can now be performed:
0 ® do
23 > Lw)'} =
(23) o) = [T )
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J’ \/(g Lw) + o(Lw)" — 2(L'ow)] =

[t i) )]

Here the primes (') indicate partial derivatives with respect to g, L stands for
Lr?|yo), w = w(g, ¢), and the following identity is used:

) 2

S

or \ye rde \ye
1w 1L
Q*ap* @ 0¢2

an addition to and subtraction from (23) transforms it into

f - deg—z [LAw — (AL) w],
e =)

where A is the Laplace operator in the polar coordinates. Since A is harmonic
AL = 0, and (23) finally simplifies to

0 ©  gdo
24 —x(r, y, ¢) = LA
() N e

Substitution of (24) in (21) gives
(25)

o(y, ¢) = — %{J((Ly_(p)z)} J . rZ)J T Qdor < ) Aw(o, ¢).

Expression (25) presents a new type of solution for the integral equation (19).
It may be noticed that the first term in (25) becomes singular, and the second
term tends to zero when y — a. In the case of w being a harmonic function, the
second term in (25) vanishes, and the solution is represented by the first term only.
Further, integration with respect to r becomes possible in (25) after changing the order
of integration and using (5). The result is

1 ( xa,y, ¢)
26 oy, d) = — = J MLV @)
2 00 =~
+ i ZnJ'oo AW(Q, W)QdQ dlﬁ tan—l \/(QZ _ a2) \/(yz _ aZ) }
2 2 2 2 :
2nJo Ja /(@ + ¥* = 2yocos (¢ — ¥)) J(@® + y* = 2yg cos (¢ — ¥))
Solutions in the forms (20) or (25) are appropriate to use when exact evaluation

of integrals is possible, while the solution in the form (26) has certain advantages
when numerical integration is to be employed.
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It is of interest to express the potential W in the half-space directly through its
boundary value w. As ¢ inside the circle is zero, expression (17) takes the form

@) Wiedz) =4 J NE j :m s L(g) o0, 9).

Substitution of (20) in (27) and integration with respect to y yields

8)
wesd= =2 () e 1) e -

Here the properties (3) of the L-operators were used along with the following identity
valid for the Abel-type operators:

9 dy d (7 f(r)tdt _m
@) g nl s =5,

A change of the order of integration in (28) and integration with respect to x give

(30) W(o, ¢, z) = i'rn'ro Z [E + tan~! é] w(r, ¥) rdrdy .
n? . & R

o R?
Here R is defined by (11), and ¢ can be presented in several equivalent forms, namely,
N e N[t B e o N et
a Iy
_ JG(r) = B) J(53(r) = 13) _z NGNS
L Y@@ =)

each form being useful in different specific transformations. It must be noted that
throughout this paper, I, and I, are understood as I;(a) and I,(a) according to the
general definition (12). Details of the derivation of (30) are given in Appendix A.
. In the particular case of z = 0, expression (30) simplifies to

3

(32) W(e. $,0) =
1, (7 w{r,y) r dr dy
_ e )J 0 f NG e m e ) B
w(e, ¢) for 9 =a

Expression (32) corresponds to the result previously reported in [2].

The solution can now be interpreted. The charge density o is given by the two
equivalent expressions (20) and (26); the potential is given by (28) and (30), the former
being more convenient for exact evaluation of the integrals while the latter is better
suited for numerical integration.

229



Problem 2. Consider the following external mixed problem: to find a harmonic
function W, satisfying the boundary conditions at z = 0

W=0 for 9<a, 05 ¢ <2m,

(33) %VK=—2M\Q, ¢) for 9>a, 0<¢ <2m.
zZ

Substitution of the boundary conditions (33) in (17) leads to the integral equation

‘34) e - i )0 -

) J INE QZJ Ve L(iz) or. 9)-

One should notice that ¢ on the right side of (34) is known from (33), while the value
of o on the left side of (34) is yet unknown.

Using (15) and changing the order of integration, the right side of (34) can be
transformed so that Eq. (34) takes the form

[ e ) o -

0 J (¢? i xZ)Eo V/(r: d_rxz) L(Z—:) o(r, ¢) .

with the immediate result

0 [t - [ () -

The application of the operator

L(e)ij ———idx 3
de ), (x* = 0%

to both sides of (35) gives, after necessary transformations,

(36) oo, ¢) = — T _Qz)r‘/(’ ()( $)rdr for ¢ <a,

or, interpreting the L-operator, one obtains

. o) 2n oo\/ — a?) o(r, lj/)rdrdl/l
(37) 0. ¢) 2\/ _02).[ . P+ 0P ——2rgcos(¢—l//)

Now the value of ¢ is known all over the plane z = 0, and (17) can be used for
expressing the potential W directly through the given value of o. Substitution of
(36) in the first term of (17) gives, after integration with respect to r,
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) g =ef [ T ) e+

N dx () rdr or ol
NI NG OR rZ)L(xz> (. 4).

The second term in (38) is equivalent to the second term in (10) which, in turn,
can be represented, using (15), as

Sl e et G e

Now the following scheme of change of the order of integration can be used:

0 I1(r) l1(a) f*oo 11(0) 0
J drj dx=j‘ de dr+J dxj dr,
a 0 0 a li(a) g(x)

and the second term in (38) can be rewritten as

%) S ool e )+

R e | Wi e £ e LD

Substitution of (39) in (38) gives, by virtue of I;(c0) = g,

@ e =af [ ) e

A change of the order of integration in (40) and integration with respect to x, using
(5), results in

(41) W(o, ¢, z)=granMtan_lérdrdw
TJo R

. R

~where R is defined by (11) and ¢ is any one of the expressions in (31).

The solution can now be explained. Expression (37) defines the charge density o
inside a circle directly through its values outside, the potential W is given by the
two equivalent expressions (40) and (41), the first one being recommended for an
exact evaluation of the integrals involved while the second has certain advantages
for numerical integration.

ILLUSTRATIVE EXAMPLES

Several particular cases of general solutions, obtained in the previous section, are
considered here in order to illustrate the effectiveness of the proposed technique.
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Example 1. Consider an external mixed problem with the boundary conditions
atz =0
(42) W = wolg" for ¢=a,
ow

-—— =0 for <a.
0z ¢

The conditions (42) correspond to those of problem 1 given in (9). The solution
is given by (28) and (21).
Substitution of (42) in (28) gives, after integration with respect to r,

2w, I(n + 1))2] [ dx
(43) W(o, ¢,2) = =2
Jro I(nf2) ) VB = ?) 9'(%)
where g(x) is defined by (18).
Here the following integral was employed [3]:

(44) j‘“’ dr _ ﬁ I(nf2) 1
N =g%) 2 I(n + 1)2] g"
For any integer n, the integral in (43) can be evaluated in terms of elementary func-

tions, but the procedure is slightly different for even values of n from those for odd n.
For example, for n = 2k, the problem reduces to the evaluation of the integral

Jboo (XZ _ Ql)k-IIZ dx

N x2k(x2 _ Qz _ ZZ)k ’

which can be solved by introduction of a new variable ¢t = x[\/(x*> — ¢?). The final
result is

0 zZ) = %f,[(_n,+ 1)/2] < Am
(45) W(e. ¢, 2) Jr Iz {,.,:1 P

$2B 0+ Y P Q1T - 017 - (&3 - QZ‘“‘)]}

[0

m=21—m
where
1A (g = 1t
(46) Ap—prr = _[ ] for n=0,r}=1+ 0*z?,
komed (m — Dyt (r} = n) ! /
1 dm--l (tZ_ 1)k—1
By—mi1 = for t=r, = J(1 + @?/z%),
T (m = 1)t [sz(r, + t)"] L=V e

B

l, (J(@* +z*) + z)a
0, = 2(J(e* + 2%) + (15 - a’)) 0, = z2(J(@® + z%) — (I3 — a?))

1 1 ’

0, - VE=0) (et )+ - @)l
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2’ Jo* + 2% -z
) Q4: : (Q QZZ )"-“).

z{J(0* + 2%) + z)
Q5 = \\/ o )

For the case of an odd n = 2k + 1 the integration can be performed by using the
substitution

1? = x? — 9% — z2, and the final result is
(47) 6,2) = w0 F[(n + 1)/2] Z C, 4
r(nf2) me1(2m — 1)(a® — 1}y 12
k+1 _ym Am—1 /)2 g2
+ Y D, ]) ¢ —]— cot™! VL[L»—I'—)]} for n = 0>+ z?
m=1 (771 - 1) /?’] \/}7
where
C, = ! ¢ (t + 2% for t=0
" (k= m) T (1 4 0% + 2P '
(48) D, = : N USRS ) for t= —p% — z?
"k + 1= m)ldiriom | - ’

Substitution of (42) in (21) yields, after integration [3],

I'l(n + 1)/2] we 1
(49) o(o, ¢) = [(7[3:r(31// 2]) {a" Nl
n/(e* - a?) 1 3. a?
- 0"+2~ F<E+ 1’5’5’ 1_;2>

and the Gauss hypergeometric function can be expressed through elementary
functions [4], namely, for even n = 2k, k = 1,2,3, ...,

k /
Fliek ;3= L S pmm, LENT]
2727 ) 2k dr 1= Jt
0,1

and forodd n =2k + 1, k =

31,3, ___\[L_i" i
(0) F(k+E’§’2’t)_2r(3/2+k)\/tdtk[¢(1—z)]'

The solution can now be presented for several specific values of n:

n=1
wo oo+ 7
(51) W(e. ¢.2) = n\/(92+22) L
(52) o(e, ¢) = s ;

7[2Q2 \/(QZ _ 02)
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n=2

w zZ
(53) We ¢.2)= 05 [‘ Tt " Q] '
At the plane z = 0,
(2 _ 2
; Wo [ 1 V(fl_m—“g-)il for ¢ £ a,
) a
W(e, ¢,0) =
;29 for ¢ = a,
@
/o2 _ 2
(54 oo gy = 2o Lty e sl
27.[02 \/(02 _ az) 0 a
n=73
4w z? I la® = 17)
55 W Q> ,Z) = ° 2\ e v +
(59) (e ¢.2) n(o® + z%)? {\/(az - 1) 2a°
2 _ 9.2 /(02 2
R
0° + z 2
At the plane z = 0,
Y TR,
W, ¢,0) ={ "
(0, $,0) v .
= for 9= a,
Q
(0,0, 0) = 4w,/3na>,
2w, 2a% — @2
56 o0, P) = 5
(56) (e 9) n?o* a \J(o* — a?)
n=4
3w o~ z? 1 3
57 Wlo, ¢, z) = o 1= Qo) =S (1= Q) +
(57) 0 ) 2(92 4 22)2 %Qz + 22( Qo) 3( Qo )
2 2 2
frr - e -] - =20
0 z%) La e z
At the plane z = 0,
(.2 .2 2 — 2
_V[;_)[l_\/(a Q) _e \/(‘2‘3 Q)] for ¢ <a,
) 0 a a
Wo,¢,0)=("
249 for ¢za,
Q

W(0, 0, 0) = 3w,/8a*,
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(58) ofo. ¢) = 220

{ﬂ 3 ij/(é’z;“_i)},
8mo*

a*\J(e* —a*) o a

The total charge at the plane z = 0 is equal to w, for n = 1, and it is zero for
n=2.
Figure 1 shows the dimensionless charge density ga wq versus g/a for n =
= 1,2, 34 (formulae 52, 54, 56, 58). The charge density is nonnegative for n = 1,
~and changes sign when n = 2, its negative maximum increases with n while the
total charge stays at zero.

n+1/

DENSITY
0.25

-8.85
0.00 {.00 2.00 3.00 4.00 5.00 6.00 7.008

RADIUS

Fig. 1. Charge density forn = 1, 2,3, 4

Equipotential lines for the case n = 2 (formula 53) are presented in Fig. 2.

The range of values of the dimensionless potential Wya"/w is taken as 0-05 to 0-6.
Because of symmetry of the problem, only a quarter of each equipotential line is
presented.

Example 2. Consider the boundary conditions

(59) w="nein for o0>a,
Q"
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ow _
0z

0 for 9 <a

where w, is a constant. The solution is given by (28) and (20). Substitution of (59)
in (28) gives after first integration [3]

W(Q, @, z) = %1_1’1_";1/3) Qnein(j)J ‘ &Ad,i

J I(n) RENCro
Z-COORDINATE
7.00
6.00
\WaZ/w =.05
5.00 L ©
4.00 — q
I N \
3.00 \\
R 1 \ \
2.00 _| — ] - N
~ N )
1.00 —
<NV 1)
2.00 i VQ
0.98 {.08 2.00 3.00 4.00 5.08
RADIUS
Fig. 2. Equipotential lines forn = 2
The second integration yields
n _ m— 1 .
(60) W(Qy¢,2)=~g—&ei”"’z (=1) F'in + 1/2) (1 = Q2"

Jre" m=ir(m)I(n + 1 — m)(2m — 1)
and Q, is defined by '(‘46). Substituting (59) in (20), one gets, after integration [3],

r(n+ 1)2 w,e"?

(61) . G'(Q, ¢) = 3/2 -/—) n 2 2\ °

w2 I(n) o'J(e* — a?)

Evidently, it can be noticed that (61) can be obtained by differentiation of (60) with
respect to z for z = 0, instead of integration of (20).
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Here are some explicit expressions for several particular values of n.

n =1

/2 _ 2
W'g’ (f), z) = ‘_v_lei‘/’[] — Eili,__g_)jl

Q [,

n=2

2 2 2 _ 2)\3

(62) Wio, ¢, z) = 3 Xv% e2io )| 1. — -] L [ — VI = 0% .
2 0" 1, 3 I,

n=3

2 _ 2 (12 _ 2\ 3

Wie, ¢, z) = 15w, e3id ! 1 - V-]t 1 - VI = 0 +
4 0 2 I, 3 I

Al

Equipotential lines at the plane ¢ = 0 for n = 2 due to (62) are presented in Fig. 3.
The curves correspond to a set of values of the dimensionless potential (Wa?|w,)

in the range of 0-05 to 0-4.

Z-COORDINATE

.50

.25

N

/—
.00 /| /_\\ wwz - o5

75 / ///—\\ \

NIN//aNEN

N

Wl SN NN

)

NEaNN NN A

0.00 1.00 2.00 3.00 4.00
RAD

Fig. 3. Equipotential lines for r = 2

5.00
IUs
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Example 3. Consider several cases related to problem 2, with the boundary con-
ditions

(63) W=0 - for ¢9=ua,
ELV:—ZR-{Q for 0>a.
Cz 0"

The solution is given by (40) and (36). Substitution of (63) in (40) yields, after first
integration, using (44),

, , rfin—1)2](° dx
64 Wo, b, z) =2 /maoy L'
(64) 0.6.5) =2 ra 0 J“Jﬂz_xﬁgh%@

where g(x) is defined by (18). The technique, used in the previous examples, can be
employed here for further integration. The final result depends on the value of n
being even or odd. For n = 2k, k = 1,2, 3, ..., the potential is

: : ri(n—1)2
(65) Wo,d,z) =2 no, f[;\Tz))u {231 In Q +
k-1 A ‘/(02—‘ IZ) 2m—1
+ — mo = (M 1/
mgl (2]71 —_ l) sz_l [ ( a > ] +
k-1 p
+;£$M%—§4@—wﬂ~

Here Q, Q. Q,, Q;, Q,, are defined by (46), and
, m=1 _ S2)\k—1
(66) Ay = — : o (n == )»»—* for =20,
(m — 1)t dy™ ' L(0* + 2% — n)f
1 dm-1 I: (1 — 221

Biomer = o 272 J(o? + 22)
VAR

| for 1= — (0 + z?).
(m — 1)l dm-t ~ t)"] o Ve )

For n = 2k + 1, the result is
; k /(12 2 2m—1
(67) Wio,¢.2) =2 yn LN = 2] o0 G (VI3 = @)\ _
F(n/Z) UL S 2m — a

—1)m om= /(12 /
_(=1"H, o [1 _wuz—azm] for p=t7

— | — tan
F(m) onpm-1 \;";1 a

N 1 m—1 k—1 2 2
(68)°  Gipyy=- -9 [(1 :t)"”J for 1=0.q= @t

Fimydem= 1| (g + 1) | 22
1 m—1 k—1 2 :2
H/\'*m+1 = d (_L__tﬁ,_. for t= — e+ .
I(m) drm—1 t* z2



The solutions for several specific values of n can now be given.

n=2
(69) Wi, ¢, z) = — 2no, —1InQ
Vet + %)

1 oW/
(70) o= —LW
2n GZ/ z=0
and as
(71) “InQ=Rel- L 4 U for z=0,
oz 0 o/(a* = 0%
we have
(72 oo, d)=0Rell = — U 500 =
(72) #=RRefi- Sl 0.0 = -

and Re means that only the real part of the expression inside the brackets is taken.

n=3
(73) Wo, ¢, z) = 4o, Vi = a’) _ T sint! Vo't
o 0% + z? a /(0 + =z?) [ )
0 VAR z 2
Differentiating (73) and using (70)
2
:—G{) [I sin"1? _ 212] for o0 < a,
(74) 0’0, $) = mo” Lo a 'a* = ¢
i‘; for 9= u i
0 .
and ¢(0, 0) = —200/3na3. The following formula was used in the derivation of (74):
(75) f— JU? = a*) = Re {a— L for z=0.
Cz Ja? = 0%
n=4
(76) W d.z)= 20 =22 04
£ = 2('92 + 22)2 \_, 02 2)

2z /(2 2 1; /2 2
+ = Ja ‘Il)_3z+;'z'v'klz_") .

At the plane z = 0 we have

2 2 /(2 _ 2
W0,</>,0)=Ztﬂ’ an+'\/(Q a)+QV(Q @) for 0=u
203 2

a a
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and W o, ¢, 0) = 0 for ¢ £ a. Further,
-2 /(2 2
W(0,0, z) = 20 l:; @’ + 2 ):] ,

z3 | 2a* a

Z

The charge density ¢ can be found from (76) using (70), (71) and (75):

o 2a% — o2 o
(77) a(e, ¢) = j:— Re {1 =y \/(ai%gzj} , 0(0,0) = — é;oi -
Example 4. Consider the boundary conditions at the plane z = 0
(78) W=20 for 9<a,
oW

o .
—2n e for 9> a.
az Q"

Substitution of (78) in (40) gives after in:egration
F(n 2) O',, m¢>
( ) Q"

+Z"_‘ (—=1)y"r(n)
m=t F(m + 1) I'(n — m)(2m — 1)

(79) W, $,2) =2 Jn { JE—a) -z

[t = (1 = ity
and at the plane z = 0,

Wie, ¢, 0) =2 n In = 12) 00y J(@* = a?)

I(n) ¢
with the charge density
(80) o(o. §) = Iln = 1]2) 04 g g {1 .
/nF(n) q" Jla® = 0%
o < (=1)"Tln)

Y — [t~ (1 = ety

m=1 I'(m + 1) r(n —m)(2m — 1)
The results for several particular values of n are

n=1

(81) W(o, ¢, z) = 21 E’: e [ (12 = a?) - 2],
/ = TleivRel1 - 4 |.
ned =g e[ Jla* - @2)]’
n=2
(82) W, ¢, z) = ngf- e?id [\/(15 —a*) -2z + —z J(a* - lf)]



02 2i¢ 2a° — o*
alg, p) = = e““Re|1 — — ;
@9) e’ [ 2a \f(a® - ¢%)

n=3

© e )= TRen - a) - daral Y i -
Q;

_ e = 1)
3a’ ’

(84) a(o, ¢) = 3 03 e3¢ Re 8 a ) \/(a2 -0 + (a® — 0?32 .
3 \/(‘72 - QZ) a 343

A more general case of boundary conditions, namely,

(85) W=0 for 0<a,

w_ —og T gimé for )
0z 0"

v
Q

can also be considered using the same technique as in the previous examples, and
the final result can always be expressed in elementary functions. The form of the
result will be different for (m + n) even and for (m + n) odd. As an example, the
following expression can be obtained by substituting (85) in (36), namely for m + n =

= 2%k,
(86) ofo,¢) = 72 e™ Re {1 - ]@L_QZ) [ ! ,i g(\j/r:_r%z)) (f) ZH]} ’

and for m + n =2k + 1 and ¢ < a,

(87) olo.¢) =~ Q'"" e {Si“—lg \/_‘Qiez)[l _éz %/_21))6)”_2]} '

Expressions (86) and (87) represent general formulae which cover all the particular
‘cases considered in Example 3 and Example 4. The form of the solution may some-
times be different, for example, for m = n = 3 formula (86) gives

0'33 e - a ¢ ¢*
(88) ole¢) =~ e™ Re {1 Vi@ =) 20 Jlat - @) " 84 Jla® - gz)}

which looks different from (84), but as one can easily verify expressions (84) and (88)

are equivalent.
Using (36) one can obtain the following expression for the total charge X directly

through the given charge density o
) 2 2n Moo a
(89) Z:—j f o(r, ) cos™ = rdrdg.
T)o Ja r
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In the particular case of 6 = gor™", (89) results in

20, JnI(n — 1)[2]
(0) = (n—2)(nf2)a"~2"

The total charge for n = 3 is 40,/a, and for n = 4, ¥ = no,f2a>.
Figure 4 presents the charge density versus radius defined by formulae (72), (74)
and (77). The equipotential lines, defined by expression (73), are presented in Fig. 5.

DENSITY
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1.00

0.50

.08 n=2 e
n=2

-1.00 €
- 4\
1.50 \

-2.00
9.00 .00 2.00 3.00 4.00 5.90 6.90 7.00

RADIUS

Fig. 4. Charge dersity forn = 2, 3, 4,

The dimensionless potential w* = Wa®|o, was varied from 0-5 to 1-3. One can
notice that the equipotential lines for w* <. 92 have two branches. The corresponding
equipotential surfaces can be seen in Fig. 6.

DISCUSSION

No new attention has been paid in literature to the basics of the potential theory
after classical contributions in this field by Green, Lord Kelvin, Hobson and others.
This paper presents a novel approach to the problem and the advantages of this
new approach become evident when compared with the previous classical results.
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Fig. 6. Equipotential surfaces for n
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A formula similar to (30) was first published without proof by Lord Kelvin in 1847,
and 22 years later he proved it in his “Papers on Electrostatics and Magnetism”
using the method of images which requires a lot of ingenuity in geometric considera-
tions. Later the same formula was derived by Hobson [5] who used Sommerfeld’s
method of a potential in a Riemannian space. Later several solutions were also
published using various integral transforms. Unfortunately, practical applications
of these results are rather difficult due to the complexity of the integrals involved.
"%Ihe main advantage of the new approach is its simplicity where the generation of
the solution is reduced to a straightforward procedure, and the integrals involved
%lre elementary as demonstrated in the previous section.
; The technique of this paper can be used for the solution of many different problems,
and, among various immediate applications, one can indicate the punch and crack
problems in linear elasticity. For example, expression (25) is proportional to the
normal stress distribution for the external punch problem when the normal displace-
ments w are given outside a circle, and the normal stresses are zero inside; expression
(37) can give the normal stress distribution in the crack neck through its values on
the crack faces; the total force at infinity in external crack problems can be defined

by (89), etc.
. This new approach can be generalized for more complicated boundary conditions.
It can be used not only for a disk, but also for a spherical bowl, and possibly for an
arbitrary surface of revolution.

The investigation reported in this paper was supported by grants A 7104 and
A 0791 from the Natural Science and Engineering Research Council of Canada.

References

[1] I. N. Sneddon: Mixed boundary value problems in potential theory. North-Holland Publishing
Company, Amsterdam, 1966.

[2] T. S. Sankar, V. I. Fabrikant: Investigations of a two-dimensional integral equation in the
theory of elasticity and electrostatics. Journal de Mécanique Théorique et Appliquée, Vol. 2,
No. 2, 1983, pp. 285—299.

[3] 1. S. Gradshtein, I. M. Ryzhik: Table of Integrals, Series and Products. AP, New York, 1965.

[4] H. Bateman, A. Erdelyi: Higher transcendental functions, Vol. 1, McGraw-Hill, 1953.

[5]1 E. W. Hobson: On Green’s function for a circular disk, with application to electrostatic
problems. Transactions of Cambridge Philosophical Society, Vol. 18, 1900, pp. 277—291.

APPENDIX A
Here some details of the derivation are presented which allow transformation

of (28) into (30).
Introduction of a new variable u = g(x) changes (28) into

a0 Wetna) = =2 [t () L e T ) e -
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Change of the order of integration in (A1) yields

M@‘”@¢”=§£Q(D (¢””_f¢u-;§ﬁ2w—mﬂLCT%'

Here the following general formula was used:

(A3) r (u) du duju\/’(_rfr)_QL _ f ) ar —jr \;(f(u_).du

Differentiation under the integral sign in (A2) gives

50 g y)

(A4) Wio, b, z) = % J " J' ® lr(a”( or

o Ja |V(r* = a?){/(I3(a) - 0%

D uwn(@l¢—w
* f . wzd- w?) u NCOET: )

wir, y) rdrdy .
J

Formula (2) was used here along with the following rule of differentiation under
the integral sign:
(A5) d uf(uydu  fla)r + df(u)

N

s BN (e
Introducing the notation
(A6) F(u) = [ ;) + tan-! ﬁ(ﬂ f) = 3= ) ) = )

expression (A4) can be rewritten as

(A7) Wio, b Z)“”i[ j{ —a dF(a)

J r?— uZ) ddul: _u L ds(u)]} w(r, ) rdrdy .

Now integration with respect to u in (A7) can be performed elementarily by parts,
and the result is

(AS) W(e, ¢, 2) = % j ” Jﬁwp(a) w(r, ) dr dy

[

Taking into consideration (A6), one can see that expression (A8) is equivalent to (30).

245



Souhrn

EXAKTNI RESENf NEKTERYCH VNEJSICH SMISENYCH PROBLEMU
V TEORI POTENCIALU

VALERY I. FABRIKANT

Je navrZena nova metoda fefeni smiSeného problému potencialu v poloprostoru s okrajovymi
podminkami na &astech hranice rozdélenych kruhovym obloukem. Postup je zaloZen na novém
typu integralnich operatora se specialnimi vlastnostmi.

Resi se dva obecné vn&jsi problémy: 1) libovolny potencial je specifikovan na hranici vnd
kruZnice, a jeho norméalova derivace uvnitt je nulova; 2) vné kruZnice je dana libovolna normalova
derivace, uvnitf je potencial roven nule.

Je uvedeno nékolik ilustrativnich pfiklada a diskutuji se n€které metody aplikace navrZenych
postupt na feSeni nékolika sloZitych problému.

Pesrome

TOYHOE PEHIEHUE HEKOTOPBIX BHEIIHMX CMENAHHBIX 3AIAY
TEOPUU INOTEHLUAIJIA

VALERY 1. FABRIKANT

IIpepnaraeTcsi HOBBIA METOJ PEIUCHMS CMEIIAHHBIX 3aJa¥ TEOPUH IMOTEHUHWA/Ja B MOJIYIpPO-
CTPaHCTBE C KDYrOBOW JIMHMEHM pa3gena TIPaHMYHBIX YCIIOBHMA. METOA OCHOBaH Ha HOBOM THIIE
MHTETPAJIBHBIX OTIEPAaTOPOB CO CHELMAILHBIMM CBOMCTBAMH. PacCMOTPEHBI HECKOJIBKO WIUIFOCTPa-
THBHBIX IPUMEPOB ¥ OOGCYKACHBLI BO3MOXHOCTH NPUMEHEHUSI HOBOTO METO/IA K PEIUEHHEO CITOKHBIX
3a[1a¥ TEOPHH YIPYTOCTH.

Author’s address: Dr. Valery Fabrikant, Dept. of Mechanical Engineering, Concordia Uni-
versity, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1MS8, Canada.

246



		webmaster@dml.cz
	2020-07-02T05:57:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




